Performance of Two-Way Concrete Slabs Reinforced with Basalt and Carbon FRP Rebars
Abstract
:1. Introduction
2. Experimental Program
2.1. Material Properties
2.2. Specimens
2.3. Test Setup and Procedure
3. Test Results and Discussion
3.1. The Failure Modes
3.2. The Load–Deflection Behaviour
3.3. Stiffness of the Slabs
3.4. Experimental Loads and Moments of the Concrete Slabs
3.4.1. Cracking Moment
3.4.2. Serviceable State
3.4.3. Ultimate Moment
3.5. Displacement Ductility of the Slabs
3.6. Residual Deflections and Elastic Recovery of the Slabs
3.7. Experimental vs. Theoretical Deflections
3.8. Load–Strain Profile of Rebars Used in the Slabs
3.9. Flexural Moment Capacities of the Concrete Slabs
3.10. Punching Shear Capacity of the Slabs
3.11. Experimental Load and Internal Capacities of the Slabs
4. Summary and Conclusions
- Compared to the typical steel-RC slab, both the CFRP- and BFRP-RC slabs experienced significantly higher deflection and cracking while loading. However, the performance of the FRP-RC slabs was comparable to that of the steel-RC slab within the serviceability limit.
- Although the axial rigidity of CFRP and BFRP rebars are 41% and 16% of that of steel rebar, the CFRP- and BFRP-RC slabs exhibited 64% and 48% the stiffness of the steel-RC slab after cracking.
- Both the CFRP- and BFRP-RC slabs showed significant elastic recovery during unloading, which was not the case in the steel-RC slab. This indicates that the FRP rebars did not reach their rupture strain, as CFRP and BFRP rebars reached 71% and 78% of their rupture strength at failure, respectively.
- Beyond the peak load, the BFRP-RC slabs experienced a gradual decrease in the load capacity with incremental displacement, whereas the CFRP-RC slabs underwent a sharp decrease in load capacity, similar to the steel-RC slab. Consequently, the CFRP- and BFRP-RC slabs exhibited 1.26- and 2.18-times higher displacement-ductility than that of the steel-RC slab. The BFRP-RC slabs demonstrated 1.72-times higher ductility than CFRP-RC slabs because the percentage of elongation of BFRP rebars was higher than that of CFRP rebars.
- The steel-RC slab failed due to flexural tension, and the FRP-RC slabs failed due to punching shear. As the FRP-RC slabs experienced significantly higher cracks, the shear capacity of the slabs dropped gradually with the increase of loading. These cracks resulted in reducing the effective depth of the section. Thus, the FRP-RC slabs failed due to punching shear without any rupture of the FRP rebars.
- Since the design of the FRP-RC flexural member is governed by serviceability criteria, and the performance of CFRP- and BFRP-RC slabs is comparable with that of the steel-RC slab, CFRP- and BFRP both are suitable to reinforce concrete slabs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- ACI PRC-440.1-15; Guide for the Design and Construction of Structural Concrete Reinforced with Fiber-Reinforced Polymer Bars. American Concrete Institute: Farmington Hills, MI, USA, 2015.
- Wang, X.; Zhang, X.; Ding, L.; Tang, J.; Wu, Z. Punching shear behavior of two-way coral-reef-sand concrete slab reinforced with BFRP composites. Constr. Build. Mater. 2020, 231, 117113. [Google Scholar] [CrossRef]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Hossain, M.M. Residual properties of conventional concrete repetitively exposed to high thermal shocks and hydrocarbon fluids. Constr. Build. Mater. 2020, 252, 119072. [Google Scholar] [CrossRef]
- Mirza, O.; Shill, S.K.; Johnston, J. Performance of Precast Prestressed Steel-Concrete Composite Panels Under Static Loadings to Replace the Timber Transoms for Railway Bridge. Structures 2019, 19, 30–40. [Google Scholar] [CrossRef]
- Shill, S.K.; Al-Deen, S.; Ashraf, M.; Elahi, M.A.; Subhani, M.; Hutchison, W. A comparative study on the performance of cementitious composites resilient to airfield conditions. Constr. Build. Mater. 2021, 282, 122709. [Google Scholar] [CrossRef]
- Metwally, I.M. Prediction of punching shear capacities of two-way concrete slabs reinforced with FRP bars. HBRC J. 2013, 9, 125–133. [Google Scholar] [CrossRef] [Green Version]
- Aljazaeri, Z.; Alghazali, H.H.; Myers, J.J. Effectiveness of Using Carbon Fiber Grid Systems in Reinforced Two-Way Concrete Slab System. ACI Struct. J. 2020, 117, 81–89. [Google Scholar] [CrossRef]
- El-Gamal, S.; El-Salakawy, E.; Benmokrane, B. Behavior of Concrete Bridge Deck Slabs Reinforced with Fiber-Reinforced Polymer Bars Under Concentrated Loads. ACI Struct. J. 2005, 102, 727. [Google Scholar] [CrossRef]
- Yost, J.R.; Goodspeed, C.H.; Schmeckpeper, E.R. Flexural Performance of Concrete Beams Reinforced with FRP Grids. J. Compos. Constr. 2001, 5, 18–25. [Google Scholar] [CrossRef]
- Mahroug, M.; Ashour, A.; Lam, D. Tests of continuous concrete slabs reinforced with carbon fibre reinforced polymer bars. Compos. Part B Eng. 2014, 66, 348–357. [Google Scholar] [CrossRef]
- Banthia, N.; Al-Asaly, M.; Ma, S. Behavior of Concrete Slabs Reinforced with Fiber-Reinforced Plastic Grid. J. Mater. Civ. Eng. 1995, 7, 252–257. [Google Scholar] [CrossRef]
- Cai, J.; Pan, J.; Zhou, X. Flexural behavior of basalt FRP reinforced ECC and concrete beams. Constr. Build. Mater. 2017, 142, 423–430. [Google Scholar] [CrossRef]
- Fang, H.; Xu, X.; Liu, W.; Qi, Y.; Bai, Y.; Zhang, B.; Hui, D. Flexural behavior of composite concrete slabs reinforced by FRP grid facesheets. Compos. Part B Eng. 2016, 92, 46–62. [Google Scholar] [CrossRef]
- Zhang, B.; Masmoudi, R.; Benmokrane, B. Behaviour of one-way concrete slabs reinforced with CFRP grid reinforcements. Constr. Build. Mater. 2004, 18, 625–635. [Google Scholar] [CrossRef]
- Rahman, A.H.; Kingsley, C.Y.; Kobayashi, K. Service and Ultimate Load Behavior of Bridge Deck Reinforced with Carbon FRP Grid. J. Compos. Constr. 2000, 4, 16–23. [Google Scholar] [CrossRef]
- Michaluk, C.R.; Rizkalla, S.H.; Tadros, G.; Benmokrane, B. Flexural behavior of one-way concrete slabs reinforced by fiber reinforced plastic reinforcements. ACI Struct. J. 1998, 95, 353–365. [Google Scholar]
- Erfan, A.M.; Elnaby, R.M.A.; Badr, A.A.; El-Sayed, T.A. Flexural behavior of HSC one way slabs reinforced with basalt FRP bars. Case Stud. Constr. Mater. 2021, 14, e00513. [Google Scholar] [CrossRef]
- Mahroug, M.E.M. Behaviour of Continuous Concrete Slabs Reinforced with FRP Bars. Experimental and Computational Investigations on the Use of Basalt and Carbon Fibre Reinforced Polymer Bars in Continuous Concrete Slabs. Ph.D. Thesis, University of Bradford, Bradford, UK, 2014. [Google Scholar]
- El-Salakawy, E.; Benmokrane, B. Serviceability of concrete bridge deck slabs reinforced with FRP composite bars. ACI Struct. J. 2004, 101, 727–736. [Google Scholar]
- Taerwe, L. Non-Metallic (FRP) Reinforcement for Concrete Structures: Proceedings of the Second International RILEM Symposium; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- Zhang, Q. Behaviour of Two-Way Slabs Reinforced with Cfrp Bars. Ph.D. Thesis, Memorial University of Newfoundland, St. John’s, NL, Canada, 2006. [Google Scholar]
- Rashid, M.I. Concrete Slabs Reinforced with GFRP Bars; Memorial University of Newfoundland: St. John’s, NL, Canada, 2004. [Google Scholar]
- Karayannis, C.G.; Kosmidou, P.-M.K.; Chalioris, C.E. Reinforced Concrete Beams with Carbon-Fiber-Reinforced Polymer Bars—Experimental Study. Fibers 2018, 6, 99. [Google Scholar] [CrossRef] [Green Version]
- Bilotta, A.; Compagnone, A.; Esposito, L.; Nigro, E. Structural behaviour of FRP reinforced concrete slabs in fire. Eng. Struct. 2020, 221, 111058. [Google Scholar] [CrossRef]
- Amran, Y.H.M.; Alyousef, R.; Rashid, R.S.M.; Alabduljabbar, H.; Hung, C.-C. Properties and applications of FRP in strengthening RC structures: A review. Structures 2018, 16, 208–238. [Google Scholar] [CrossRef]
- Huang, Z.; Zhao, Y.; Zhang, J.; Wu, Y. Punching shear behaviour of concrete slabs reinforced with CFRP grids. Structures 2020, 26, 617–625. [Google Scholar] [CrossRef]
- Yu, X.; Zhou, B.; Hu, F.; Zhang, Y.; Xu, X.; Fan, C.; Zhang, W.; Jiang, H.; Liu, P. Experimental investigation of basalt fiber-reinforced polymer (BFRP) bar reinforced concrete slabs under contact explosions. Int. J. Impact Eng. 2020, 144, 103632. [Google Scholar] [CrossRef]
- Hassan, M.; Benmokrane, B.; ElSafty, A.; Fam, A. Bond durability of basalt-fiber-reinforced-polymer (BFRP) bars embedded in concrete in aggressive environments. Compos. Part B Eng. 2016, 106, 262–272. [Google Scholar] [CrossRef]
- Adhikari, S. Mechanical Properties and Flexural Applications of Basalt Fiber Reinforced Polymer (BFRP) Bars. Ph.D. Thesis, University of Akron, Akron, OH, USA, 2009. [Google Scholar]
- Sun, X.; Gao, C.; Wang, H. Bond performance between BFRP bars and 3D printed concrete. Constr. Build. Mater. 2021, 269, 121325. [Google Scholar] [CrossRef]
- Balea, L.; Dusserre, G.; Bernhart, G. Mechanical behaviour of plain-knit reinforced injected composites: Effect of inlay yarns and fibre type. Compos. Part B Eng. 2014, 56, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Deák, T.; Czigány, T. Chemical composition and mechanical properties of basalt and glass fibers: A comparison. Text. Res. J. 2009, 79, 645–651. [Google Scholar] [CrossRef]
- Attia, K.; Alnahhal, W.; Elrefai, A.; Rihan, Y. Flexural behavior of basalt fiber-reinforced concrete slab strips reinforced with BFRP and GFRP bars. Compos. Struct. 2019, 211, 1–12. [Google Scholar] [CrossRef]
- Nanni, A. Flexural Behavior and Design of RC Members Using FRP Reinforcement. J. Struct. Eng. 1993, 119, 3344–3359. [Google Scholar] [CrossRef]
- El-Gamal, S.; El-Salakawy, E.; Benmokrane, B. A new punching shear equation for two-way concrete slabs reinforced with FRP bars. ACI Spec. Publ. 2005, 230, 877–894. [Google Scholar]
- Goonewardena, J.; Ghabraie, K.; Subhani, M. Flexural Performance of FRP-Reinforced Geopolymer Concrete Beam. J. Compos. Sci. 2020, 4, 187. [Google Scholar] [CrossRef]
- Provis, J.L.; Rose, V.; Bernal, S.A.; van Deventer, J.S.J. High-Resolution Nanoprobe X-ray Fluorescence Characterization of Heterogeneous Calcium and Heavy Metal Distributions in Alkali-Activated Fly Ash. Langmuir 2009, 25, 11897–11904. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, P.; Gross, S.; Ospina, C. The story behind proposed changes to ACI 440 deflection requirements for FRP-reinforced concrete. Spec. Publ. 2009, 264, 53–76. [Google Scholar]
- ACI CODE-318-14: Building Code Requirements for Structural Concrete and Commentary; American Concrete Institute: Farmington Hills, MI, USA, 2014.
- Bischoff, P.H. Reevaluation of Deflection Prediction for Concrete Beams Reinforced with Steel and Fiber Reinforced Polymer Bars. J. Struct. Eng. 2005, 131, 752–767. [Google Scholar] [CrossRef]
- Rakhshanimehr, M.; Esfahani, M.R.; Kianoush, M.R.; Mohammadzadeh, B.A.; Mousavi, S.R. Flexural ductility of reinforced concrete beams with lap-spliced bars. Can. J. Civ. Eng. 2014, 41, 594–604. [Google Scholar] [CrossRef]
- Benmokrane, B.; Chaallal, O.; Masmoudi, R. Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Constr. Build. Mater. 1995, 9, 353–364. [Google Scholar] [CrossRef]
- Ospina, C.E.; Alexander, S.D.B.; Cheng, J.J.R. Punching of Two-Way Concrete Slabs with Fiber-Reinforced Polymer Reinforcing Bars or Grids. Struct. J. 2003, 100, 589–598. [Google Scholar]
- Bischoff, P.H.; Scanlon, A. Effective Moment of Inertia for Calculating Deflections of Concrete Members Containing Steel Reinforcement and Fiber-Reinforced Polymer Reinforcement. ACI Struct. J. 2007, 104, 68. [Google Scholar] [CrossRef]
Parameters | Rebar Type | ||
---|---|---|---|
Steel | CFRP | BFRP | |
Bar diameter (mm) | 7.8 | 6 | 6 |
Nominal cross-sectional area (mm2) | 48 | 28 | 28 |
Tensile strength (MPa) | 500 | 2150 | 1300 |
Elastic modulus (GPa) | 200 | 140 | 55 |
Elongation (%) | 2.27 a | 1.3 b | 1.8 b |
Slab Specimen | Concrete Compressive Strength, f’c (MPa) | Reinforcement Area (mm2/m) | Effective Depth (mm) | Reinforcement Ratio (%) |
---|---|---|---|---|
Steel | 29.62 | 318.56 | 51.1 | 0.62 |
CFRP-1 | 29.62 | 188.50 | 52 | 0.36 |
CFRP-2 | 34.59 | |||
CFRP-3 | 34.59 | |||
BFRP-1 | 29.62 | |||
BFRP-2 | 34.59 | |||
BFRP-3 | 34.59 |
Slab ID | Elastic Modulus of Rebars (GPa) | Area of Reinforcement (mm2/m) | Ratio of the Axial Rigidity (EfrpAfrp)/(EsAs) | Stiffness of Uncracked Section (kN/mm) | Uncracked Ratio (FRP/Steel) | Stiffness of Cracked Section (kN/mm) | Cracked Ratio (FRP/Steel) |
---|---|---|---|---|---|---|---|
Steel | 200 | 318.56 | 1 | 15.76 | 1.00 | 5.45 | 1.00 |
CFRP-1 | 140 | 188.50 | 0.414 | 13.53 | 0.86 | 3.45 | 0.63 |
CFRP-2 | 29.57 | 1.87 | 3.44 | 0.63 | |||
CFRP-3 | 16.16 | 1.02 | 3.67 | 0.67 | |||
BFRP-1 | 55 | 188.50 | 0.162 | 7.28 | 0.46 | 2.47 | 0.45 |
BFRP-2 | 27.12 | 1.72 | 2.65 | 0.49 | |||
BFRP-3 | 22.31 | 1.41 | 2.61 | 0.48 |
Slab ID | Cracking Load, Pcr (kN) | Cracking Moment, Mcr-exp (kN-m)/m | Serviceable Moment, Ms (kN-m)/m | Ultimate Load, Pu (kN) | Ultimate Bending Moment, Mu (kN-m)/m | |
---|---|---|---|---|---|---|
2000 µε | 0.3 Mu | |||||
Steel | 50.00 | 1.96 | - | 2.45 | 222.50 | 8.17 |
CFRP-1 | 46.70 | 1.84 | 2.00 | 1.88 | 169.10 | 6.25 |
CFRP-2 | 56.03 | 2.18 | 2.21 | 1.97 | 177.50 | 6.55 |
CFRP-3 | 57.95 | 2.25 | 2.57 | 2.29 | 207.70 | 7.64 |
BFRP-1 | 42.04 | 1.67 | 1.60 | 1.16 | 103.00 | 3.87 |
BFRP-2 | 56.50 | 2.19 | 1.72 | 1.34 | 120.10 | 4.48 |
BFRP-3 | 57.60 | 2.23 | 1.74 | 1.61 | 144.30 | 5.35 |
Slab ID | Deflection at Ultimate Load | Ductility of the Slabs | |
---|---|---|---|
Steel-RC slab | 3.20 | 46.45 | 14.51 |
CFRP-1 | 2.85 | 49.58 | 17.39 |
CFRP-2 | 2.20 | 50.26 | 22.84 |
CFRP-3 | 4.25 | 63.63 | 14.97 |
BFRP-1 | 4.80 | 56.79 | 11.83 |
BFRP-2 | 2.15 | 85.00 | 39.53 |
BFRP-3 | 2.00 | 87.00 | 43.504 |
Slab ID | Deflection at Serviceability Limit | Ultimate Deflection | Ultimate Deflection Ratio | Elastic Recovery | ||
---|---|---|---|---|---|---|
2000 µε | 0.3 Mu | (FRP/steel) | (%) | |||
Steel-RC slab | - | 9.97 | 46.45 | 1 | 46.45 | 0 |
CFRP-1 | 20.1 | 6.65 | 49.58 | 1.07 | 18.00 | 64 |
CFRP-2 | 4.5 | 4.23 | 50.26 | 1.08 | 22.87 | 54 |
CFRP-3 | 3.35 | 8.6 | 63.63 | 1.37 | 38.42 | 40 |
BFRP-1 | 5.2 | 4.8 | 56.79 | 1.22 | 24.69 | 57 |
BFRP-2 | 1.35 | 1.2 | 85.00 | 1.83 | 38.12 | 55 |
BFRP-3 | 19.6 | 1.7 | 87.00 | 1.87 | 36.8 | 57 |
Slab ID | Ultimate Strain of Concrete | Strain in Rebars at Failure | Developed Stress in FRP Rebars | Ultimate Strength of FRP Rebars | Ratio of Stress/Strength of FRP Rebars | Remarks on FRP Rebars |
---|---|---|---|---|---|---|
(MPa) | (MPa) | |||||
Steel | 0.00199 | 0.01420 | - | - | - | |
CFRP-1 | 0.00199 | 0.01042 | 1458 | 2150 | 0.67 | Not ruptured |
CFRP-2 | 0.00202 | 0.01125 | 1575 | 0.73 | ||
CFRP-3 | 0.00202 | 0.01133 | 1586 | 0.73 | ||
BFRP-1 | 0.00199 | 0.01752 | 963 | 1300 | 0.74 | Not ruptured |
BFRP-2 | 0.00202 | 0.01887 | 1037 | 0.79 | ||
BFRP-3 | 0.00202 | 0.01920 | 1056 | 0.81 |
Slab ID | Reinforcement Ratio | Balanced Reinforcement Ratio | Resisting Moment, Mn | Resisting Load, Pn | Ultimate Bending Moment, Mu | Remarks | |
---|---|---|---|---|---|---|---|
(kN-m/m) | (kN) | (kNm/M) | |||||
Steel | 0.00623 | 0.02269 | 7.61 | 206.95 | 8.17 | 0.93 | Failed by steel yielding |
CFRP-1 | 0.00362 | 0.00241 | 10.04 | 274.45 | 6.25 | 1.61 | Safe against bending moment |
CFRP-2 | 0.00248 | 11.06 | 302.78 | 6.55 | 1.69 | ||
CFRP-3 | 0.00248 | 11.06 | 302.78 | 7.64 | 1.45 | ||
BFRP-1 | 0.00362 | 0.00240 | 6.77 | 183.61 | 3.87 | 1.75 | Safe against bending moment |
BFRP-2 | 0.00239 | 7.41 | 201.39 | 4.48 | 1.65 | ||
BFRP-3 | 0.00239 | 7.41 | 201.39 | 5.35 | 1.39 |
Slabs | ACI 440.1R-15 [1] | El-Gamal et al. [35] | Metwally [6] | ||||
---|---|---|---|---|---|---|---|
CFRP-1 | 169.10 | 177.1 | 1.05 | 181.5 | 1.07 | 202.4 | 1.20 |
CFRP-2 | 177.49 | 184.9 | 1.04 | 196.5 | 1.11 | 219.1 | 1.23 |
CFRP-3 | 207.74 | 184.9 | 0.89 | 196.5 | 0.95 | 219.1 | 1.05 |
BFRP-1 | 102.96 | 115.0 | 1.12 | 132.9 | 1.29 | 148.2 | 1.44 |
BFRP-2 | 120.05 | 119.9 | 1.00 | 143.9 | 1.20 | 160.5 | 1.34 |
BFRP-3 | 144.34 | 119.9 | 0.83 | 143.9 | 1.00 | 160.5 | 1.11 |
Slab ID | Experimental Failure Load (Pu) of the Slabs in kN/m2 | Internal Load Resistance (Pn) of the Slabs in kN/m2 Based on | |||||
---|---|---|---|---|---|---|---|
Flexural Moment (Pn-m) | Punching Shear Capacity (Pn-ps) | One Way Shear Capacity (Pn-s) | |||||
Steel | 90.27 | 83.96 | 97.41 | 122.30 | 0.93 | 1.08 | 1.35 |
CFRP-1 | 68.60 | 111.34 | 71.85 | 124.45 | 1.62 | 1.05 | 1.81 |
CFRP-2 | 72.01 | 122.84 | 75.01 | 134.50 | 1.71 | 1.04 | 1.87 |
CFRP-3 | 84.26 | 122.84 | 75.01 | 134.50 | 1.46 | 0.89 | 1.60 |
BFRP-1 | 41.79 | 74.49 | 46.66 | 124.45 | 1.78 | 1.12 | 2.98 |
BFRP-2 | 48.72 | 81.70 | 48.64 | 134.50 | 1.68 | 1.00 | 2.76 |
BFRP-3 | 58.54 | 81.70 | 48.64 | 134.50 | 1.40 | 0.83 | 2.30 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shill, S.K.; Garcez, E.O.; Al-Ameri, R.; Subhani, M. Performance of Two-Way Concrete Slabs Reinforced with Basalt and Carbon FRP Rebars. J. Compos. Sci. 2022, 6, 74. https://doi.org/10.3390/jcs6030074
Shill SK, Garcez EO, Al-Ameri R, Subhani M. Performance of Two-Way Concrete Slabs Reinforced with Basalt and Carbon FRP Rebars. Journal of Composites Science. 2022; 6(3):74. https://doi.org/10.3390/jcs6030074
Chicago/Turabian StyleShill, Sukanta Kumer, Estela O. Garcez, Riyadh Al-Ameri, and Mahbube Subhani. 2022. "Performance of Two-Way Concrete Slabs Reinforced with Basalt and Carbon FRP Rebars" Journal of Composites Science 6, no. 3: 74. https://doi.org/10.3390/jcs6030074
APA StyleShill, S. K., Garcez, E. O., Al-Ameri, R., & Subhani, M. (2022). Performance of Two-Way Concrete Slabs Reinforced with Basalt and Carbon FRP Rebars. Journal of Composites Science, 6(3), 74. https://doi.org/10.3390/jcs6030074