Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Towpreg Production
- Carbon fibre tows are unwound from the reel, and the tension is maintained by a magnetic brake that automatically adjusts the tension based on the data from the tension sensor.
- Powder–epoxy is electrostatically charged and sprayed on the carbon fibre tow as it moves.
- An electrical current is supplied via a power controller between two conductive metal rollers to initiate powder melt by the Joule effect [15]. The temperature can be adjusted according to data from an infrared sensor.
- Cooled towpreg is collected on a drum after it passes through a series of rollers.
2.3. Composite Plate Production
2.4. Tensile Tests
2.5. Flexural Tests
2.6. Interlaminar Shear Strength
2.7. Scanning Electron Microscopy (SEM)
2.8. Optical Microscopy
2.9. Interfacial Void Content Analysis
- The coordinates of a fibre were compared to the locations of the voids for a sample using Equation (2).
xf The x-coordinate of the fibre centre point xv The x-coordinate of the void centre point yf The y-coordinate of the fibre centre point yv The y-coordinate of the void centre point d Distance between the centre points of the fibre and void - Voids that were outside the fibre radius rf and within a set distance of the outer edge of the fibre rf+a were recorded using comparator Equation (3), along with their respective area (Figure 5). These were classified as interfacial voids.
rf The radius of the fibre using a maximum calliper rf+a The radius of the fibre plus a set distance (0.25, 0.5, and 1 µm) - This process was repeated for every fibre in a sample picture, and the individual areas were summed to provide a total area of interfacial voids (Equation (4)).
- Then, the interfacial void area was compared with the total void area found previously using optical microscopy to find the percentage of interfacial voids compared to the total void fraction.
- This process was repeated for the other sample pictures, and an average was taken of the percentage of interfacial voids at the two towpreg line speeds, 3 and 5 m/min. Figure 6 illustrates the locations of interfacial and bulk voids that were captured by the algorithm (circles sizes are not representing the void areas).
3. Results and Discussion
3.1. Fibre Volume Fractions: Strip, Plate, and Bulk
3.2. Interfacial Voids
3.3. Fibre Straightness
3.4. Tensile Performance
3.5. Flexural Performance
3.6. Interlaminar Shear Strength (ILSS)
3.7. Scanning Electron Microscope (SEM) Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Centea, T.; Hubert, P. Out-of-autoclave prepreg consolidation under deficient pressure conditions. J. Compos. Mater. 2014, 48, 2033–2045. [Google Scholar] [CrossRef]
- Maguire, J.M.; Simacek, P.; Advani, S.G.; Ó Brádaigh, C.M. Novel epoxy powder for manufacturing thick-section composite parts under vacuum-bag-only conditions. Part I: Through-thickness process modelling. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105969. [Google Scholar] [CrossRef]
- Maguire, J.M.; Nayak, K.; Ó Brádaigh, C.M. Novel epoxy powder for manufacturing thick-section composite parts under vacuum-bag-only conditions. Part II: Experimental validation and process investigations. Compos. Part A Appl. Sci. Manuf. 2020, 136, 105970. [Google Scholar] [CrossRef]
- Maguire, J.M.; Nayak, K.; Ó Brádaigh, C.M. Characterisation of epoxy powders for processing thick-section composite structures. Mater. Des. 2018, 139, 112–121. [Google Scholar] [CrossRef] [Green Version]
- Mamalis, D.; Murray, J.J.; McClements, J.; Tsikritsis, D.; Koutsos, V.; McCarthy, E.D.; Ó Brádaigh, C.M. Novel carbon-fibre powder-epoxy composites: Interface phenomena and interlaminar fracture behaviour. Compos. Part B Eng. 2019, 174, 107012. [Google Scholar] [CrossRef]
- Floreani, C.; Robert, C.; Alam, P.; Davies, P.; Ó Brádaigh, C.M. Mixed-mode interlaminar fracture toughness of glass and carbon fibre powder epoxy composites—For design of wind and tidal turbine blades. Materials 2021, 14, 2103. [Google Scholar] [CrossRef]
- Robert, C.; Pecur, T.; Maguire, J.M.; Lafferty, A.D.; McCarthy, E.D.; Ó Brádaigh, C.M. A novel powder-epoxy towpregging line for wind and tidal turbine blades. Compos. Part B Eng. 2020, 203, 108443. [Google Scholar] [CrossRef]
- He, H.W.; Gao, F. Effect of Fiber Volume Fraction on the Flexural Properties of Unidirectional Carbon Fiber/Epoxy Composites. Int. J. Polym. Anal. Charact. 2015, 20, 180–189. [Google Scholar] [CrossRef]
- Robert, C.; Mamalis, D.; Alam, P.; Lafferty, A.D.; Cadhain, C.Ó.; Breathnach, G.; McCarthy, E.D.; Ó Brádaigh, C.M. Powder Epoxy Based UD-CFRP Manufacturing Routes for Turbine Blade Application. In Proceedings of the SAMPE Europe Conference 2018, Southampton, UK, 11–13 September 2018; Volume 18, pp. 1–12. [Google Scholar]
- Courter, J.; Dustin, J.; Ritchey, A.; Pipes, B.R.; Sargent, L.; Purcell, W. Properties of an out-of-autoclave prepreg material: Oven versus autoclave. In Proceedings of the 41st International SAMPE Technical Conference, Witchita, KS, USA, 19–22 October 2009. [Google Scholar]
- Centea, T.; Grunenfelder, L.K.; Nutt, S.R. A review of out-of-autoclave prepregs—Material properties, process phenomena, and manufacturing considerations. Compos. Part A Appl. Sci. Manuf. 2015, 70, 132–154. [Google Scholar] [CrossRef]
- Sutter, J.K.; Kenner, W.S.; Pelham, L.; Miller, S.G.; Polis, D.L.; Nailadi, C.; Hou, T.H.; Guade, D.J.; Lerch, B.D.; Lort, R.D.; et al. Comparison of autoclave and out-of-autoclave composites. In Proceedings of the SAMPE Fall Technical Conference 2010, Salt Lake City, UT, USA, 11–14 October 2010. [Google Scholar]
- Noble, T.; Davidson, J.R.; Floreani, C.; Bajpai, A.; Moses, W.; Dooher, T.; McIlhagger, A.; Archer, E.; Ó Brádaigh, C.M.; Robert, C. Powder Epoxy for One-Shot Cure, Out-of-Autoclave Applications: Lap Shear Strength and Z-Pinning Study. J. Compos. Sci. 2021, 5, 225. [Google Scholar] [CrossRef]
- Mamalis, D.; Flanagan, T.; Ó Brádaigh, C.M. Effect of fibre straightness and sizing in carbon fibre reinforced powder epoxy composites. Compos. Part A Appl. Sci. Manuf. 2018, 110, 93–105. [Google Scholar] [CrossRef]
- Athanasopoulos, N.; Kostopoulos, V. Resistive heating of multidirectional and unidirectional dry carbon fibre preforms. Compos. Sci. Technol. 2012, 72, 1273–1282. [Google Scholar] [CrossRef]
- Alam, P. Composites Engineering: An A–Z Guide; IOP Publishing: Bristol, UK, 2021. [Google Scholar]
- Little, J.E.; Yuan, X.; Jones, M.I. Characterisation of voids in fibre reinforced composite materials. NDT E Int. 2012, 46, 122–127. [Google Scholar] [CrossRef]
- Chang, T.; Zhan, L.; Tan, W.; Li, S. Void content and interfacial properties of composite laminates under different autoclave cure pressure. Compos. Interf. 2016, 24, 529–540. [Google Scholar] [CrossRef]
- Mehdikhani, M.; Gorbatikh, L.; Verpoest, I.; Lomov, S.V. Voids in fiber-reinforced polymer composites: A review on their formation, characteristics, and effects on mechanical performance. J. Compos. Mater. 2018, 53, 1579–1669. [Google Scholar] [CrossRef]
- Dona, K.N.U.G.; Du, E.; Carlsson, L.A.; Fletcher, D.M.; Boardman, R.P. Modeling of water wicking along fiber/matrix interface voids in unidirectional carbon/vinyl ester composites. Microfluid. Nanofluidics 2020, 24, 31. [Google Scholar]
- Judd, N.C.; Wright, W.W. Voids and their effects on mechanical properties of composites—Appraisal. SAMPE J. 1978, 14, 10–14. [Google Scholar]
- Zhang, R.L.; Huang, Y.D.; Li, N.; Liu, L.; Su, D. Effect of the concentration of the sizing agent on the carbon fibers surface and interface properties of its composites. J. Appl. Polym. Sci. 2012, 125, 425–432. [Google Scholar] [CrossRef]
- Sharma, M.; Gao, S.; Mäder, E.; Sharma, H.; Wei, L.Y.; Bijwe, J. Carbon fiber surfaces and composite interphases. Compos. Sci. Technol. 2014, 102, 35–50. [Google Scholar] [CrossRef]
- Ma, Q.; Gu, Y.; Li, M.; Wang, S.; Zhang, Z. Effects of surface treating methods of high-strength carbon fibers on interfacial properties of epoxy resin matrix composite. Appl. Surf. Sci. 2016, 379, 199–205. [Google Scholar] [CrossRef]
- Grogan, D.; Leen, S.; Kennedy, C.; Brádaigh, C. Design of composite tidal turbine blades. Renew. Energy 2013, 57, 151–162. [Google Scholar] [CrossRef] [Green Version]
- Papaelias, M.; Márquez, F.P.G.; Karyotakis, A. Non-Destructive Testing and Condition Monitoring Techniques for Renewable Energy Industrial Assets; Butterworth-Heinemann: Oxford, UK, 2020. [Google Scholar]
- Chawla, K. Composite Materials: Science and Engineering; Springer: New York, NY, USA, 2012. [Google Scholar]
Line Speed (m/min) | Line Tension (N) | Heating Temperature (°C) | Gun Flow Air (%) | Total Flow (Air + Powder) (%) | Strip FVF | Plate FVF | |
---|---|---|---|---|---|---|---|
Sample set 1 | 3 | 20 | 120 | 99 | 40 | 53.1% | 56.5% |
Sample set 2 | 5 | 20 | 120 | 99 | 40 | 62.5% | 64.2% |
Line Speed (m/min) | FVFstrip (%) | FVFplate (%) | FVFOptical (%) | Porosity (%) |
---|---|---|---|---|
3 | 53.1% | 56.5% | 59.8 ± 4.04 | 0.62 ± 0.09 |
5 | 62.5% | 64.2% | 64.4 ± 2.20 | 0.82 ± 0.19 |
Method | Tensile Strength at 59.8% FVF (MPa) | Modulus at 59.8% FVF (GPa) | Tensile Strength at 64.4% FVF (MPa) | Modulus at 64.4% FVF (GPa) | Fibre Direction Parameter f |
---|---|---|---|---|---|
Measured | 2039.04 | 115.63 | 2186.74 | 126.36 | 0.91 |
ROM | 2913.67 | 138.75 | 3132.95 | 149.19 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Çelik, M.; Noble, T.; Jorge, F.; Jian, R.; Ó Brádaigh, C.M.; Robert, C. Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg. J. Compos. Sci. 2022, 6, 75. https://doi.org/10.3390/jcs6030075
Çelik M, Noble T, Jorge F, Jian R, Ó Brádaigh CM, Robert C. Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg. Journal of Composites Science. 2022; 6(3):75. https://doi.org/10.3390/jcs6030075
Chicago/Turabian StyleÇelik, Murat, Thomas Noble, Frank Jorge, Rongqing Jian, Conchúr M. Ó Brádaigh, and Colin Robert. 2022. "Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg" Journal of Composites Science 6, no. 3: 75. https://doi.org/10.3390/jcs6030075
APA StyleÇelik, M., Noble, T., Jorge, F., Jian, R., Ó Brádaigh, C. M., & Robert, C. (2022). Influence of Line Processing Parameters on Properties of Carbon Fibre Epoxy Towpreg. Journal of Composites Science, 6(3), 75. https://doi.org/10.3390/jcs6030075