Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review
Abstract
:1. Introduction
2. Methods
3. Results
3.1. General Characteristics of Conventional Heat-Cured PMMA Resins for Denture Bases Composition of Polymethyl Methacrylate Resins
3.1.1. Properties
3.1.2. Aesthetics
3.1.3. Tensile and Compressive Strength
- Composition of the dental resin
- Degree of polymerization
- Technological protocol
- Water sorption
- Subsequent storage and use of the dentures
3.1.4. Hardness and Durability
3.1.5. Biocompatibility
3.1.6. Volumetric and Linear Changes
- Volumetric shrinkage—8%
- Linear shrinkage—0.53%
3.1.7. Optical Properties
3.1.8. Adhesion
3.1.9. Water Sorption and Solubility
3.1.10. Polymerization Protocol
- Sandy phase—the structure is granular, wet sand-like, does not stick, and clearly defined spheres are distinguished.
- Filamentous phase—fine threads are formed like a cobweb from the dissolved polymer, and it sticks to the spatula. Manipulation of the resin is still not recommended at this stage.
- Plastic phase—the polymer dissolved in the monomer turns into a plastic state.
- Elastic phase—if not treated, the polymer-monomer mixture reaches an elastic state, no longer suitable for work. The consistency in this phase is non-flowing and difficult to press [33].
3.2. General Characteristics of 3D Printed Resins for Denture Bases and 3D Printing Devices
3.2.1. 3D Printing Denture Base Materials
3.2.2. Composition and Properties
3.2.3. 3D Printing Devices in Dentistry
3.2.4. Scanning Devices
- For improved model-fit, angle the part 60° (60–70 mm height)—3–4 builds on a platform, with the posterior border of the maxilla and/or the lower trigone facing towards the build area, and with the mucosal side facing towards the build area.
- Generate supports by using Smart Supports. Rather than deleting auto-generated supports, consider moving them to another position. Removing critical supports because they interfere with a margin line may affect print quality.
- For best results use the Resin Mixer to gently stir between prints and after the resin has been sitting overnight.
- Verify proper cleaning method. Ensure cleaning solvents are not saturated and parts are allowed to dry for 10 min before post cure.
- (1)
- Creating an order for a set of the full dentures. There are two options—with factory artificial teeth and with printed artificial dentitions.
- (2)
- Scanning of upper and lower model.
- (3)
- Intermaxillary ratio scan—scanning the occlusion.
- (4)
- Determination of the occlusal plane.
- (5)
- Marking of anthropometric points on the upper and lower jaw.
- (6)
- Outlining the boundaries of the upper and lower dentures.
- (7)
- Check for undercut areas of the upper and lower jaws.
- (8)
- Selection of factory artificial teeth from the “Library” and digital arrangement of the artificial teeth.
- (9)
- Corrections on the denture base of the upper and lower prosthesis.
- (10)
- Digital modeling of the finished removable dentures.
3.2.5. Manufacturing Techniques for 3D Printed Removable Dentures
3.2.6. Comparative Studies between Heat-Cured and 3D Printed Resins for Denture Bases
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
OBJ | object |
STL | stereolithography, standard triangle language, standard tessellation language |
3D | three-dimensional |
ABS | acrylonitrile butadiene styrene |
CAD/CAM | computer-aided design/computer-aided manufacturing |
DBRs | denture-base resins |
DLP | digital light processing |
FDM | fused deposition modeling |
ISO | International Organization for Standardization |
KHN | Knoop hardness |
LFS | low force stereolithography |
LPU | light processing unit |
MMA | methacrylate monomer |
NBS | National Bureau of Standards |
PC | polycarbonates |
PCL | polycaprolactone |
PEI | polyetherimide |
PLA | polylactic acid |
PMMA | polymethyl methacrylate |
SLM | selective laser melting |
SLS | selective laser sintering |
References
- Baydas, S.; Bayindir, F.; Akyil, M.S. Effect of processing variables (different compression packing processes and investment material types) and time on the dimensional accuracy of polymethyl methacrylate denture bases. Dent. Mater. J. 2003, 22, 206–213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bonatti, M.R.; Cunha, T.R.; Regis, R.R.; Silva-Lovato, C.H.; Paranhos, H.D.; de Souza, R.F. The effect of polymerization cycles on color stability of microwave-processed denture base resin. J. Prosthodont. 2009, 18, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Pero, A.C.; Barbosa, D.B.; Marra, J.; Ruvolo-Filho, A.C.; Compagnoni, M.A. Influence of microwave polymerization method and thickness on porosity of acrylic resin. J. Prosthodont. 2008, 17, 125–129. [Google Scholar] [CrossRef]
- Baemmert, R.J.; Lang, B.R.; Barco, M.T., Jr.; Billy, E.J. Effects of denture teeth on the dimensional accuracy of acrylic resin denture bases. Int. J. Prosthodont. 1990, 3, 528–537. [Google Scholar] [PubMed]
- Lin, Y.M. Digitalisation in Dentistry: Development and Practices: Exploring the Transformation from Manufacturing to a Digital Service Hub; Palgrave Macmillan Asian Business Series; Palgrave Macmillan: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Susic, I.; Travar, M.; Susic, M. The application of CAD/CAM technology in dentistry. IOP Conf. Ser. Mater. Sci. Eng. 2017, 200, 012020. [Google Scholar] [CrossRef] [Green Version]
- Anadioti, E.; Musharbash, L.; Blatz, M.B.; Papavasiliou, G.; Kamposiora, P. 3D printed complete removable dental prostheses: A narrative review. BMC Oral Health 2020, 20, 343. [Google Scholar] [CrossRef] [PubMed]
- Anusavice, K.; Shen, C.; Rawls, H.R. Phillip’s Science of Dental Materials, 13th ed.; Elsevier Mosby: Philadelphia, PA, USA, 2021. [Google Scholar]
- Sun, S.F. Physical Chemistry of Macromolecules—Basic Principles and Issues, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004; ISBN 0-471-28138-7. [Google Scholar] [CrossRef]
- Anusavice, K.; Phillips, R.W.; Shen, C.; Rawls, H.R. Phillips’s Science of Dental Materials, 15th ed.; Elsevier/Saunders: St. Louis, MO, USA, 2013. [Google Scholar]
- Craig, R.G.; Powers, J.M. Craig’s Restorative Dental Materials, 14th ed.; Elsevier Mosby: Philadelphia, PA, USA, 2018. [Google Scholar]
- Anthony, D.H.; Peyton, F.A. Dimensional accuracy of various denture-base materials. J. Prosthet. Dent. 1962, 12, 67–81. [Google Scholar] [CrossRef]
- Consani, R.L.X.; Domitti, S.S.; Barbosa, C.R.; Consani, S. Effect of commercial acrylic resins on dimensional accuracy of the maxillary denture base. Braz. Dent. J. 2002, 13, 57–60. [Google Scholar]
- Zebarjad, S.; Sadrabadi, E.; Tahere, A.; Yaghmae, N.B. A study on mechanical properties of PMMA/hydroxyapatite nanocomposite. Engineering 2011, 3, 795–810. [Google Scholar] [CrossRef] [Green Version]
- Alla, R.K. Dental Materials Science; Jaypee Brothers Medical Publishing: New Delhi, India, 2013. [Google Scholar]
- Cowie, J.M.G.; Arrighi, V. Polymers: Chemistry and Physics of Modern Dental Materials, 3rd ed.; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2007. [Google Scholar]
- DaBreo, E.L.; Herman, P. A new method of measuring dimensional change. J. Prosthet. Dent. 1991, 65, 718–722. [Google Scholar] [CrossRef]
- Darvell, B.W. Materials Science for Dentistry, 10th ed.; Elsevier Mosby: Philadelphia, PA, USA, 2018. [Google Scholar]
- Doǧan, A.; Bek, B.; Çevik, N.N.; Usanmaz, A. The effect of preparation conditions of acrylic denture base materials on the level of residual monomer, mechanical properties and water absorption. J. Dent. 1995, 23, 313–318. [Google Scholar] [CrossRef]
- Dootz, E.R.; Koran, A.; Craig, R.G. Physical property comparison of 11 soft denture lining materials as a function of accelerated aging. J. Prosthet. Dent. 1993, 69, 114–119. [Google Scholar] [CrossRef] [Green Version]
- Schweiger, J.; Stumbaum, J.; Edelhoff, D.; Güth, J.-F. Systematics and concepts for the digital production of complete dentures: Risks and opportunities. Int. J. Comput. Dent. 2018, 21, 41–56. [Google Scholar] [PubMed]
- Duymuş, Z.Y.; Yanikoğlu, N.D. The investigation of solubility values, water sorption and bond strength of auto-polymerising and heat-polymerising acrylic resin materials. Eur. J. Prosthodont. Restor. Dent. 2006, 14, 116–120. [Google Scholar] [PubMed]
- Einarsdottir, E.R.; Geminiani, A.; Chochlidakis, K.; Feng, C.; Tsigarida, A.; Ercoli, C. Dimensional stability of double-processed complete denture bases fabricated with compression molding, injection molding, and CAD-CAM subtraction milling. J. Prosthet. Dent. 2020, 124, 116–121. [Google Scholar] [CrossRef] [PubMed]
- Todorov, R.; Zlatev, S.; Uzunov, T.; Apostolov, N. Translucent zone registration with spectrophotometry and transillumination. CR Acad. Bulg. Sci. 2021, 74, 619–628. [Google Scholar] [CrossRef]
- Todorov, R.; Yordanov, B.; Peev, T.; Zlatev, S. Shade guides used in the dental practice. J. IMAB—Annu. Proceeding Sci. Pap. 2020, 26, 3168–3173. [Google Scholar] [CrossRef]
- Cho, S.Y.; Song, Y.G. A comparison study on shear bond strength of 3D printed resin and conventional heat-cured denture base resin to denture relining materials. J. Dent. Rehabil. Appl. Sci. 2021, 37, 232–243. [Google Scholar] [CrossRef]
- Figuerôa, R.M.S.; Conterno, B.; Arrais, C.A.G.; Sugio, C.Y.C.; Urban, V.M.; Neppelenbroek, K.H. Porosity, water sorption and solubility of denture base acrylic resins polymerized conventionally or in microwave. J. Appl. Oral Sci. 2018, 26, e20170383. [Google Scholar] [CrossRef] [PubMed]
- Tuna, S.H.; Keyf, F.; Gumus, H.O.; Uzun, C. The evaluation of water sorption/solubility on various acrylic resins. Eur. J. Dent. 2008, 2, 191–197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malacarne, J.; Carvalho, R.M.; de Goes, M.F.; Svizero, N.; Pashley, D.H.; Tay, F.R.; Yiu, C.K.; Carrilho, M.R. Water sorption/solubility of dental adhesive resins. Dent. Mater. 2006, 22, 973–980. [Google Scholar] [CrossRef] [PubMed]
- Geukens, S.; Goossens, A. Occupational contact allergy to (meth)acrylates. Contact Dermat. 2001, 44, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Gharechahi, J.; Asadzadeh, N.; Shahabian, F.; Gharechahi, M. Dimensional changes of acrylic resin denture bases: Conventional versus injection-molding technique. J. Dent. Tehran 2014, 11, 398–405. [Google Scholar] [PubMed]
- Goseki, R.; Ishizone, T. Poly(methyl methacrylate) (PMMA). In Encyclopedia of Polymeric Nanomaterials; Kobayashi, S., Müllen, K., Eds.; Springer: Berlin/Heidelberg, Germany, 2014. [Google Scholar] [CrossRef]
- Grant, A. Problems with polymers in dentistry. Br. Polym. J. 1978, 10, 241–244. [Google Scholar] [CrossRef]
- Hristov, I.; Slavchev, D.; Zlatev, S.; Alexandrov, S. Visco-elastic properties of soft relining materials—Review. J. IMAB—Annu. Proceeding Sci. Pap. 2017, 23, 1571–1574. [Google Scholar] [CrossRef]
- Wong, D.M.; Cheng, L.Y.; Chow, T.W.; Clark, R.K. Effect of processing method on the dimensional accuracy and water sorption of acrylic resin dentures. J. Prosthet. Dent. 1999, 81, 300–304. [Google Scholar] [CrossRef]
- Gu, Z.; Fu, J.; Lin, H.; He, Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J. Pharm. Sci. 2020, 15, 529–557. [Google Scholar] [CrossRef]
- Berli, C.; Thieringer, F.; Sharma, N.; Müller, J.; Dedem, P.; Fischer, J.; Rohr, N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J. Prosthet. Dent. 2020, 124, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Arslan, M.; Murat, S.; Alp, G.; Zaimoglu, A. Evaluation of flexural strength and surface properties of prepolymerized CAD/CAM PMMA-based polymers used for digital 3D complete dentures. Int. J. Comput. Dent. 2018, 21, 31–40. [Google Scholar]
- Hada, T.; Suzuki, T.; Minakuchi, S.; Takahashi, H. Reduction in maxillary complete denture deformation using framework material made by computer-aided design and manufacturing systems. J. Mech. Behav. Biomed. Mater. 2020, 103, 103514. [Google Scholar] [CrossRef]
- NextDent Denture 3D+. 2021. Available online: https://nextdent.com/products/denture-3dplus/ (accessed on 1 November 2021).
- Formlabs 3D Printers. 2021. Available online: https://formlabs.com (accessed on 1 November 2021).
- Formlabs. 2022. Available online: https://formlabs.com/eu/company/ (accessed on 23 February 2022).
- NextDent. 2022. Available online: https://nextdent.com/ (accessed on 23 February 2022).
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Garfunkel, E. Evaluation of dimensional changes in complete dentures processed by injection-pressing and the pack-and-press technique. J. Prosthet. Dent. 1983, 50, 757–761. [Google Scholar] [CrossRef]
- Compagnoni, M.A.; Barbosa, D.B.; de Souza, R.F.; Pero, A.C. The effect of polymerization cycles on porosity of microwave-processed denture base resin. J. Prosthet. Dent. 2004, 91, 281–285. [Google Scholar] [CrossRef] [PubMed]
- Artopoulos, A.; Juszczyk, A.S.; Rodriguez, J.M.; Clark, R.K.; Radford, D.R. Three-dimensional processing deformation of three denture base materials. J. Prosthet. Dent. 2013, 110, 481–487. [Google Scholar] [CrossRef] [PubMed]
- 3Shape TRIOS 4. 2021. Available online: https://www.3shape.com/en/scanners/ (accessed on 12 February 2022).
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-printed vs. heat-polymerizing and autopolymerizing denture base acrylic resins. Materials 2021, 14, 5781. [Google Scholar] [CrossRef] [PubMed]
- NextDent 3D Systems. 2022. Available online: https://infocenter.3dsystems.com/bestpractices/figure-4-best-practices/nextdent-5100/nextdent-print-material-quick-reference (accessed on 23 February 2022).
- Parvizi, A.; Lindquist, T.; Schneider, R.; Williamson, D.; Boyer, D.; Dawson, D.V. Comparison of the dimensional accuracy of injection-molded denture base materials to that of conventional pressure-pack acrylic resin. J. Prosthodont. 2004, 13, 83–99. [Google Scholar] [CrossRef]
- Goodacre, B.J.; Goodacre, C.J.; Baba, N.Z.; Kattadiyil, M.T. Comparison of denture base adaptation between CAD-CAM and conventional fabrication techniques. J. Prosthet. Dent. 2016, 116, 249–256. [Google Scholar] [CrossRef]
- Koh, E.-S.; Cha, H.-S.; Kim, T.-H.; Ahn, J.-S.; Lee, J.-H. Color stability of three dimensional-printed denture teeth exposed to various colorants. J. Korean Acad. Prosthodont. 2020, 58, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.; Sayed, M.; Ahmed, W.M.; Halawi, A.H.A.; Najmi, N.M.A.; Aggarwal, A.; Bhandi, S.; Patil, S. An in-vitro study to evaluate the effect of denture cleansing agents on color stability of denture bases fabricated using CAD/CAM milling, 3D-printing and conventional techniques. Coatings 2021, 11, 962. [Google Scholar] [CrossRef]
- Choi, J.J.E.; Uy, C.E.; Plaksina, P.; Ramani, R.S.; Ganjigatti, R.; Waddell, J.N. Bond strength of denture teeth to heat-cured, CAD/CAM and 3D printed denture acrylics. J. Prosthodont. 2020, 29, 415–421. [Google Scholar] [CrossRef] [PubMed]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Ateeq, I.S.; Helal, M.A.; Al-Harbi, F.A. Strength and surface properties of a 3D-printed denture base polymer. J. Prosthodont. 2021, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Alfouzan, A.F.; Alotiabi, H.M.; Labban, N.; Al-Otaibi, H.N.; Al Taweel, S.M.; AlShehri, H.A. Color stability of 3D-printed denture resins: Effect of aging, mechanical brushing and immersion in staining medium. J. Adv. Prosthodont. 2021, 13, 160–171. [Google Scholar] [CrossRef] [PubMed]
- Gruber, S.; Kamnoedboon, P.; Özcan, M.; Srinivasan, M. CAD/CAM complete denture resins: An in vitro evaluation of color sta-bility. J. Prosthodont. 2021, 30, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Ulmer, M. Biocompatibility and Mechanical/Physical Properties of 3D Printed, Milled, and Conventionally Processed Denture Base Materials. Doctoral Dissertation, Augusta University, Augusta, GA, USA, 2019; pp. 52–56. [Google Scholar]
- Shin, J.-W.; Kim, J.-E.; Choi, Y.-J.; Shin, S.-H.; Nam, N.-E.; Shim, J.-S.; Lee, K.-W. Evaluation of the color stability of 3D-printed crown and bridge materials against various sources of discoloration: An in vitro study. Materials 2020, 13, 5359. [Google Scholar] [CrossRef] [PubMed]
- Revilla-León, M.; Meyers, M.J.; Zandinejad, A.; Özcan, M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J. Esthet. Restor. Dent. 2019, 31, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitencourt, S.B.; Catanoze, I.A.; da Silva, E.V.F.; dos Santos, P.H.; dos Santos, D.M.; Turcio, K.H.L.; Guiotti, A.M. Effect of acidic beverages on surface roughness and color stability of artificial teeth and acrylic resin. J. Adv. Prosthodont. 2020, 12, 55–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dimitrova, M.; Corsalini, M.; Kazakova, R.; Vlahova, A.; Chuchulska, B.; Barile, G.; Capodiferro, S.; Kazakov, S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. J. Compos. Sci. 2022, 6, 87. https://doi.org/10.3390/jcs6030087
Dimitrova M, Corsalini M, Kazakova R, Vlahova A, Chuchulska B, Barile G, Capodiferro S, Kazakov S. Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. Journal of Composites Science. 2022; 6(3):87. https://doi.org/10.3390/jcs6030087
Chicago/Turabian StyleDimitrova, Mariya, Massimo Corsalini, Rada Kazakova, Angelina Vlahova, Bozhana Chuchulska, Giuseppe Barile, Saverio Capodiferro, and Stoyan Kazakov. 2022. "Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review" Journal of Composites Science 6, no. 3: 87. https://doi.org/10.3390/jcs6030087
APA StyleDimitrova, M., Corsalini, M., Kazakova, R., Vlahova, A., Chuchulska, B., Barile, G., Capodiferro, S., & Kazakov, S. (2022). Comparison between Conventional PMMA and 3D Printed Resins for Denture Bases: A Narrative Review. Journal of Composites Science, 6(3), 87. https://doi.org/10.3390/jcs6030087