Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krauklis, A.E.; Karl, C.W.; Gagani, A.I.; Jørgensen, J.K. Composite Material Recycling Technology—State-of-the-Art and Sustainable Development for the 2020s. J. Compos. Sci. 2021, 5, 28. [Google Scholar] [CrossRef]
- WindEurope-Cefic–EuCIA. Accelerating Wind Turbine Blade Circularity. White Paper, May 2020. Available online: https://windeurope.org/wp-content/uploads/files/about-wind/reports/WindEurope-Accelerating-wind-turbine-blade-circularity.pdf (accessed on 11 November 2020).
- Van der Woude, J. (EuCIA) Recycling, Status and Developments in Europe. In Proceedings of the International Glass Fiber Symposium, Aachen, Germany, 29–30 October 2018. [Google Scholar]
- Tournié, A.; Ricciardi, P.; Colomban, P. Glass Corrosion Mechanisms: A Multiscale Analysis. Solid State Ion. 2008, 179, 2142–2154. [Google Scholar] [CrossRef]
- Bledzki, A.; Spaude, R.; Ehrenstein, G.W. Corrosion Phenomena in Glass Fibres and Glass Fibre Reinforced Thermosetting Resins. Compos. Sci. Technol. 1985, 23, 263–285. [Google Scholar] [CrossRef]
- Iler, R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica; Wiley: New York, NY, USA, 1979; p. 896. ISBN 978-0-471-02404-0. [Google Scholar]
- Wierderhorn, S.M.; Bolz, L.H. Stress corrosion and static fatigue of glass. J. Am. Ceram. Soc. 1970, 53, 543–548. [Google Scholar] [CrossRef]
- Krauklis, A.E. Modular Paradigm for Composites: Modeling Hydrothermal Degradation of Glass Fibers. Fibers 2021, 9, 83. [Google Scholar] [CrossRef]
- Krauklis, A.E. Environmental Aging of Constituent Materials in Fiber-Reinforced Polymer Composites. Ph.D. Thesis, NTNU, Trondheim, Norway, 2019; p. 203. [Google Scholar]
- Krauklis, A.E.; Echtermeyer, A.T. Dissolving Cylinder Zero-Order Kinetic Model for Predicting Hygrothermal Aging of Glass Fiber Bundles and Fiber-Reinforced Composites. In Proceedings of the 4th International Glass Fiber Symposium, Aachen, Germany, 29–30 October 2018; Gries, T., Pico, D., Lüking, A., Becker, T., Eds.; pp. 66–72, ISBN 978-3-95886-249-4. [Google Scholar]
- Echtermeyer, A.T.; Krauklis, A.E.; Gagani, A.I.; Sæter, E. Zero Stress Aging of Glass and Carbon Fibers in Water and Oil—Strength Reduction Explained by Dissolution Kinetics. Fibers 2019, 7, 107. [Google Scholar] [CrossRef] [Green Version]
- Echtermeyer, A.T.; Gagani, A.I.; Krauklis, A.E.; Mazan, T. Multiscale Modelling of Environmental Degradation—First Steps. In Durability of Composites in a Marine Environment 2. Solid Mechanics and its Applications; Davies, P., Rajapakse, Y.D.S., Eds.; Springer: Cham, Switzerland, 2018; Volume 245, pp. 135–149. ISBN 978-3-319-65145-3. [Google Scholar]
- McGeorge, D.; Echtermeyer, A.T.; Leong, K.H.; Melve, B.; Robinson, M.; Fischer, K.P. Repair of floating offshore units using bonded fibre composite materials. Compos. Part A 2009, 40, 1364–1380. [Google Scholar] [CrossRef]
- Grabovac, I.; Whittaker, D. Application of bonded composites in the repair of ships structures—A 15-year service experience. Compos. Part A 2009, 40, 1381–1398. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Ozola-Davidane, R.; Gagani, A.I.; Starkova, O. Modelling of Environmental Ageing of Polymers and Polymer Composites—Modular and Multiscale Methods. Polymers 2022, 14, 216. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Gagani, A.I.; Vegere, K.; Kalnina, I.; Klavins, M.; Echtermeyer, A.T. Dissolution Kinetics of R-Glass Fibres: Influence of Water Acidity, Temperature, and Stress Corrosion. Fibers 2019, 7, 22. [Google Scholar] [CrossRef] [Green Version]
- Krauklis, A. The Effect of Strong Acids on Glass Fibre Reinforced Composites. In SINTEF Report 102017059-3-12; SINTEF: Oslo, Norway, 2019. [Google Scholar]
- Rømhild, S.; Bergman, G.; Comiono, P. Corrosion Resistance of Glass Fibre Materials—A Crucial Property for Reliability and Durability of FRP Structures in Aggressive Environments. Paper Presented at the CORROSION 2004, New Orleans, LA, USA, 28 March 2004. [Google Scholar]
- Kouassi, S.; Andji, J.; Bonnet, J.; Rossignol, S. Dissolution of waste glasses in high alkaline solutions. Ceram Silik 2010, 54, 235–240. [Google Scholar]
- Bashir, S.T.; Yang, L.; Liggat, J.J.; Thomason, J.L. Kinetics of dissolution of glass fibre in hot alkaline solution. J. Mater. Sci. 2017, 53, 1710–1722. [Google Scholar] [CrossRef] [Green Version]
- Trejos, T.; Montero, S.; Almirall, J.R. Analysis and comparison of glass fragments by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) and ICP-MS. Anal. Bioanal. Chem. 2003, 376, 1255–1264. [Google Scholar] [CrossRef]
- Buscaglia, J.A. Elemental analysis of small glass fragments in forensic science. Anal. Chim. Acta 1994, 288, 17–24. [Google Scholar] [CrossRef]
- Stoecklein, W.; Becker, S. Paint and Glass. In Proceedings of the 13th Interpol Forensic Science Symposium, Lyon, France, 16–19 October 2001. [Google Scholar]
- von Wuthenau, K. Torben Segelke Anita Kuschnereit Markus Fischer. Glass authentication: Laser ablation-inductively coupled plasma mass spectrometry (LA-ICP-MS) for origin discrimination of glass bottles. Talanta 2021, 235, 122686. [Google Scholar] [CrossRef] [PubMed]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Long-Term Hydrolytic Degradation of the Sizing-Rich Composite Interphase. Coatings 2019, 9, 263. [Google Scholar] [CrossRef] [Green Version]
- Krauklis, A.E.; Echtermeyer, A.T. Long-Term Dissolution of Glass Fibers in Water Described by Dissolving Cylinder Zero-Order Kinetic Model: Mass Loss and Radius Reduction. Open Chem. 2018, 16, 1189–1199. [Google Scholar] [CrossRef]
- Eastes, W.; Potter, R.M.; Hadley, J.G. Estimating in vitro Glass Fiber Dissolution Rate from Composition. Inhal. Toxicol. 2000, 12, 269–280. [Google Scholar] [CrossRef]
- Hughes, J.; Catterick, T.; Southeard, G. The quantitative analysis of glass by atomic absorption spectroscopy. Forensic Sci. 1976, 8, 217–227. [Google Scholar] [CrossRef]
- Wagner, B.; Nowak, A.; Bulska, E.; Kunicki-Goldfinger, J.; Schalm, O.; Janssens, K. Complementary analysis of historical glass by scanning electron microscopy with energy dispersive X-ray spectroscopy and laser ablation inductively coupled plasma mass spectrometry. Microchim. Acta 2008, 162, 415–424. [Google Scholar] [CrossRef]
- Coleman, R.; Weston, N. A case concerning neutron activation analysis of glass. J. Forensic Sci. Soc. 1968, 8, 32–33. [Google Scholar] [CrossRef]
- Schell, J.S.U.; Renggli, M.; van Lenthe, G.H.; Müller, R.; Ermanni, P. Micro-computed tomography determination of glass fibre reinforced polymer meso-structure. Compos. Sci. Technol. 2006, 66, 2016–2022. [Google Scholar] [CrossRef]
- Dunkers, J.P.; Phelan, F.R.; Sanders, D.P.; Everett, M.J.; Green, W.H.; Hunston, D.L. The application of optical coherence tomography to problems in polymer matrix composites. Opt. Laser Eng. 2001, 35, 135–147. [Google Scholar] [CrossRef]
- Michalske, T.A.; Freiman, S.W. A Molecular Mechanism for Stress Corrosion in Vitreous Silica. J. Am. Ceram. Soc. 1983, 66, 284–288. [Google Scholar] [CrossRef]
- Delage, F.; Ghaleb, D.; Dussossoy, J.L.; Chevallier, O.; Vernaz, E. A mechanistic model for understanding nuclear waste glass dissolution. J. Nucl. Mater. 1992, 190, 191–197. [Google Scholar] [CrossRef]
- Geisler-Wierwille, T.; Nagel, T.J.; Kilburn, M.R.; Janssen, A.; Icenhower, J.; Fonseca, R.O.C.; Grange, M.L.; Nemchin, A.A. The Mechanism of Borosilicate Glass Corrosion Revisited. Geochim. Cosmochim. Acta 2015, 158, 112–129. [Google Scholar] [CrossRef]
- Icenhower, J.; Steefel, C.I. Dissolution Rate of Borosilicate Glass SON68: A Method of Quantification Based upon Interferometry and Implications for Experimental and Natural Weathering Rates of Glass. Geochim. Cosmochim. Acta 2015, 157, 147–163. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Jivkov, A.P.; Li, W.; Liang, W.; Wang, Y.; Xu, H.; Han, X. A mechanistic model for long-term nuclear waste glass dissolution integrating chemical affinity and interfacial diffusion barrier. J. Nucl. Mater. 2017, 486, 70–85. [Google Scholar] [CrossRef] [Green Version]
- Geisler, T.; Dohmen, L.; Lenting, C.; Fritzsche, M.B.K. Real-time in situ observations of reaction and transport phenomena during silicate glass corrosion by fluid-cell Raman spectroscopy. Nat. Mater. 2019, 18, 342–348. [Google Scholar] [CrossRef]
- Grambow, B.; Müller, R. First-order dissolution rate law and the role of surface layers in glass performance assessment. J. Nucl. Mater. 2001, 298, 112–124. [Google Scholar] [CrossRef]
- Hunter, F.M.I.; Hoch, A.R.; Heath, T.G.; Baston, G.M.N. Report RWM005105, AMEC/103498/02 Issue 2: Review of Glass Dissolution Models and Application to UK Glasses; AMEC: Oxfordshire, UK, 2015. [Google Scholar]
- Grambow, B. A General Rate Equation for Nuclear Waste Glass Corrosion. Mat. Res. Soc. Symp. Proc. 1985, 44, 15–27. [Google Scholar] [CrossRef]
- White, J.R. Polymer Ageing: Physics, Chemistry or Engineering? Time to Reflect. Comptes Rendus Chim. 2006, 9, 1396–1408. [Google Scholar] [CrossRef]
- Badia, J.D.; Gil-Castell, O.; Ribes-Greus, A. Long-Term Properties and End-of-Life of Polymers from Renewable Resources. Polym. Degrad. Stab. 2017, 137, 35–57. [Google Scholar] [CrossRef]
- Putnis, C.V.; Ruiz-Agudo, E. The mineral–water interface: Where minerals react with the environment. Elements 2013, 9, 177–182. [Google Scholar] [CrossRef]
- Starkova, O.; Gagani, A.I.; Karl, C.W.; Rocha, I.B.C.M.; Burlakovs, J.; Krauklis, A.E. Modelling of Environmental Ageing of Polymers and Polymer Composites—Durability Prediction Methods. Polymers 2022, 14, 907. [Google Scholar] [CrossRef]
- Wang, M.; Xu, X.; Ji, J.; Yang, Y.; Shen, J.; Ye, M. The hygrothermal aging process and mechanism of the novolac epoxy resin. Compos. Part B 2016, 107, 1–8. [Google Scholar] [CrossRef]
- Halpin, J.C. Effects of Environmental Factors on Composite Materials. In Technical Report AFML-TR-67–423; Air Force Materials Laboratory: Dayton, OH, USA, 1969. [Google Scholar]
- International Standard ISO 2078:1993 (Revised in 2014), Textile Glass—Yarns—Designation. 2014. Available online: https://www.iso.org/standard/6865.html (accessed on 11 February 2019).
- 3B Fibreglass Technical Data Sheet. HiPer-tex W2020 Rovings, Belgium. 2012. Available online: https://www.3b-fibreglass.com/ (accessed on 24 July 2018).
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Near-Infrared Spectroscopic Method for Monitoring Water Content in Epoxy Resins and Fiber-Reinforced Composites. Materials 2018, 11, 586. [Google Scholar] [CrossRef] [Green Version]
- ASTM D3171/D3171-15; Standard Test Methods for Constituent Content of Composite Materials. ASTM International: West Conshohocken, PA, USA, 2015.
- Gagani, A.I.; Fan, Y.; Muliana, A.H.; Echtermeyer, A.T. Micromechanical modeling of anisotropic water diffusion in glass fiber epoxy reinforced composites. J. Compos. Mater. 2017, 52, 2321–2335. [Google Scholar] [CrossRef]
- Crank, J. The Mathematics of Diffusion; Oxford University Press: Oxford, UK, 1956. [Google Scholar]
- Gagani, A.I.; Krauklis, A.E.; Echtermeyer, A.T. Orthotropic fluid diffusion in composite marine structures. Experimental procedure, analytical and numerical modelling of plates, rods and pipes. Compos. Part A Appl. Sci. Manuf. 2018, 115, 196–205. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Prediction of Orthotropic Hygroscopic Swelling of Fiber-Reinforced Composites from Isotropic Swelling of Matrix Polymer. J. Compos. Sci. 2019, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, B.D.; Broutman, L.J. Analysis and Performance of Fibre Composites, 2nd ed.; John Wiley and Sons, Inc.: Hoboken, NJ, USA, 1990; pp. 339–359. ISBN 978-0-471-51152-6. [Google Scholar]
- Krauklis, A.E.; Ozola, R.; Burlakovs, J.; Rugele, K.; Kirillov, K.; Trubaca-Boginska, A.; Rubenis, K.; Stepanova, V.; Klavins, M. FeOOH and Mn8O10Cl3 Modified Zeolites for As(V) Removal in Aqueous Medium. J. Chem. Technol. Biotechnol. 2017, 92, 1948–1960. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Echtermeyer, A.T. Mechanism of Yellowing: Carbonyl Formation during Hygrothermal Aging in a Common Amine Epoxy. Polymers 2018, 10, 1017. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomason, J.L. Glass Fiber Sizings: A Review of the Scientific Literature; Thomason, J.L., Ed.; Blurb, Inc.: Middletown, DE, USA, 2012; p. 127. ISBN 978-0-9573814-1-4. [Google Scholar]
- Kim, D.H. Linear Driving Force Formulas for Diffusion and Reaction in Porous Catalysts. AlChE J. 1989, 35, 343–346. [Google Scholar] [CrossRef]
- Von Damm, K.L.; Edmond, J.M.; Grant, B.; Measures, C.I.; Walden, B.; Weiss, R.F. Chemistry of submarine hydrothermal solutions at 21° N, East Pacific Rise. Geochim. Cosmochim. Acta 1985, 49, 2197–2220. [Google Scholar] [CrossRef]
- Holland, H.D. The Chemistry of the Atmosphere and Oceans; Wiley: New York, NY, USA, 1978; p. 351. ISBN 978-0471035091. [Google Scholar]
- Chakraverty, A.P.; Mohanty, U.K.; Mishra, S.C.; Satapathy, A. Sea Water Ageing of GFRP Composites and the Dissolved Salts. IOP Conf. Ser. Mater. Sci. Eng. 2015, 75, 12–29. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Gagani, A.I.; Echtermeyer, A.T. Hygrothermal Aging of Amine Epoxy: Reversible Static and Fatigue Properties. Open Eng. 2018, 8, 447–454. [Google Scholar] [CrossRef]
- Krauklis, A.E.; Akulichev, A.G.; Gagani, A.I.; Echtermeyer, A.T. Time–Temperature–Plasticization Superposition Principle: Predicting Creep of a Plasticized Epoxy. Polymers 2019, 11, 1848. [Google Scholar] [CrossRef] [Green Version]
- Fuseini, M.; Zaghloul, M.M.Y.; Elkady, M.F.; El-Shazly, A.H. Evaluation of synthesized polyaniline nanofibres as corrosion protection film coating on copper substrate by electrophoretic deposition. J. Mater. Sci 2022, 57, 6085–6101. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Influence of Stress Level and Fibre Volume Fraction on Fatigue Performance of Glass Fibre-Reinforced Polyester Composites. Polymers 2022, 14, 2662. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Statistical and qualitative analyses of the kinetic models using electrophoretic deposition of polyaniline. J. Ind. Eng. Chem. 2022. [Google Scholar] [CrossRef]
- Gagani, A.I.; Monsås, A.B.; Krauklis, A.E.; Echtermeyer, A.T. The effect of temperature and water immersion on the interlaminar shear fatigue of glass fiber epoxy composites using the I-beam method. Compos. Sci. Technol. 2019, 181, 107703. [Google Scholar] [CrossRef]
- Khelifi, W.; Bencedira, S.; Azab, M.; Riaz, M.S.; Abdallah, M.; Abdel Baki, Z.; Krauklis, A.E.; Aouissi, H.A. Conservation Environments’ Effect on the Compressive Strength Behaviour of Wood–Concrete Composites. Materials 2022, 15, 3572. [Google Scholar] [CrossRef] [PubMed]
- Zaghloul, M.M.Y.; Zaghloul, M.Y.M.; Zaghloul, M.M.Y. Experimental and modeling of mechanical-electrical behavior of polypropylene composites filled with graphite and MWCNT fillers. Polym. Test. 2017, 63, 467–474. [Google Scholar] [CrossRef]
- Gagani, A.I.; Krauklis, A.E.; Sæter, E.; Vedvik, N.P.; Echtermeyer, A.T. A novel method for testing and determining ILSS for marine and offshore composites. Compos. Struct. 2019, 220, 431–440. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Developments in polyester composite materials—An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
Geometry [mm] | 20 × 20 × 1.5 |
---|---|
Loss on ignition (LOI) | 0.0064 |
Composite density [g/cm3] | 1.93 |
Glass density [g/cm3] | 2.54 |
Polymer density [g/cm3] | 1.1 |
Sizing density [g/cm3] | 1.1 |
Fiber volume fraction | 0.5950 |
Void volume fraction | 0.0044 |
Polymer volume fraction | 0.3920 |
Sizing/interphase volume fraction | 0.0087 |
Fiber mass fraction | 0.7723 |
Polymer mass fraction | 0.2227 |
Sizing/interphase mass fraction | 0.0049 |
pH | References | ||||
---|---|---|---|---|---|
R-GF | |||||
1.679 ± 0.010 | (3.10 ± 0.44) × 10−7 | (1.25 ± 0.09) × 10−7 | (1.70 ± 0.19) × 10−6 | (1.16 ± 0.08) × 10−6 | [16] |
4.005 ± 0.010 | (2.59 ± 0.33) × 10−8 | (1.70 ± 0.11) × 10−8 | (8.48 ± 1.21) × 10−8 | (6.24 ± 0.36) × 10−8 | [16] |
5.650 ± 0.010 | (6.67 ± 1.03) × 10−9 | (2.30 ± 0.16) × 10−9 | (1.82 ± 0.29) × 10−8 | (4.05 ± 0.29) × 10−9 | [16] |
7.000 ± 0.010 | (3.64 ± 0.53) × 10−8 | (2.55 ± 0.19) × 10−8 | (5.46 ± 0.82) × 10−8 | (4.85 ± 0.38) × 10−8 | [16] |
10.012 ± 0.010 | (8.97 ± 1.27) × 10−8 | (4.56 ± 0.32) × 10−8 | (1.39 ± 0.16) × 10−7 | (1.11 ± 0.07) × 10−7 | [16] |
Hoop R-GFRP | |||||
1.679 ± 0.010 | (2.58 ± 0.44) × 10−8 | (1.80 ± 0.12) × 10−8 | (1.19 ± 0.18) × 10−7 | (1.10 ± 0.08) × 10−7 | This work |
4.005 ± 0.010 | (8.80 ± 1.27) × 10−10 | (8.12 ± 0.69) × 10−10 | (4.60 ± 0.69) × 10−9 | (3.50 ± 0.32) × 10−9 | This work |
5.650 ± 0.010 | (1.92 ± 0.32) × 10−10 | (1.32 ± 0.10) × 10−10 | (2.95 ± 0.41) × 10−9 | (5.35 ± 0.42) × 10−10 | This work |
7.000 ± 0.010 | (9.00 ± 1.10) × 10−10 | (8.20 ± 0.53) × 10−10 | (5.32 ± 0.71) × 10−9 | (4.28 ± 0.28) × 10−9 | This work |
10.012 ± 0.010 | (1.47 ± 0.25) × 10−8 | (7.44 ± 0.71) × 10−9 | (2.28 ± 0.35) × 10−8 | (1.78 ± 0.11) × 10−8 | This work |
Transverse R-GFRP | |||||
1.679 ± 0.010 | (4.98 ± 0.72) × 10−8 | (2.03 ± 0.12) × 10−8 | (2.76 ± 0.42) × 10−7 | (1.91 ± 0.13) × 10−7 | This work |
4.005 ± 0.010 | (1.80 ± 0.29) × 10−9 | (1.70 ± 0.11) × 10−9 | (7.00 ± 1.08) × 10−9 | (6.00 ± 0.47) × 10−9 | This work |
5.650 ± 0.010 | (7.71 ± 0.92) × 10−10 | (2.40 ± 0.19) × 10−10 | (5.66 ± 0.79) × 10−9 | (5.87 ± 0.41) × 10−10 | This work |
7.000 ± 0.010 | (2.00 ± 0.24) × 10−9 | (1.90 ± 0.12) × 10−9 | (5.80 ± 0.78) × 10−9 | (4.80 ± 0.35) × 10−9 | This work |
10.012 ± 0.010 | (1.46 ± 0.21) × 10−8 | (7.51 ± 0.53) × 10−9 | (2.30 ± 0.33) × 10−8 | (1.82 ± 0.14) × 10−8 | This work |
T (°C) | References | ||||
---|---|---|---|---|---|
R-GF | |||||
20 ± 1 | (1.46 ± 0.23) × 10−9 | (2.60 ± 0.18) × 10−10 | (1.04 ± 0.12) × 10−8 | (1.42 ± 0.11) × 10−9 | [16] |
40 ± 1 | (2.62 ± 0.37) × 10−9 | (1.08 ± 0.08) × 10−9 | (1.37 ± 0.19) × 10−8 | (2.72 ± 0.19) × 10−9 | [16] |
60 ± 1 | (6.67 ± 1.03) × 10−9 | (2.30 ± 0.16) × 10−9 | (1.82 ± 0.29) × 10−8 | (4.05 ± 0.29) × 10−9 | [16] |
80 ± 1 | (2.19 ± 0.31) × 10−8 | (8.91 ± 0.73) × 10−9 | (4.24 ± 0.59) × 10−8 | (1.47 ± 0.11) × 10−8 | [16] |
Hoop R-GFRP | |||||
20 ± 1 | (6.96 ± 0.97) × 10−11 | (3.64 ± 0.28) × 10−11 | (9.02 ± 0.12) × 10−10 | (2.05 ± 0.16) × 10−10 | This work |
40 ± 1 | (1.71 ± 0.22) × 10−10 | (8.02 ± 0.58) × 10−11 | (1.78 ± 0.27) × 10−9 | (3.49 ± 0.23) × 10−10 | This work |
60 ± 1 | (1.92 ± 0.32) × 10−10 | (1.32 ± 0.10) × 10−10 | (2.95 ± 0.41) × 10−9 | (5.35 ± 0.42) × 10−10 | This work |
80 ± 1 | (5.78 ± 0.91) × 10−10 | (4.68 ± 0.33) × 10−10 | (2.26 ± 0.35) × 10−9 | (1.03 ± 0.11) × 10−9 | This work |
Transverse R-GFRP | |||||
20 ± 1 | (2.97 ± 0.42) × 10−10 | (3.97 ± 0.28) × 10−11 | (1.35 ± 0.19) × 10−9 | (2.12 ± 0.17) × 10−10 | This work |
40 ± 1 | (3.46 ± 0.48) × 10−10 | (1.41 ± 0.12) × 10−10 | (1.52 ± 0.21) × 10−9 | (3.52 ± 0.31) × 10−10 | This work |
60 ± 1 | (7.71 ± 0.92) × 10−10 | (2.40 ± 0.19) × 10−10 | (5.66 ± 0.79) × 10−9 | (5.87 ± 0.41) × 10−10 | This work |
80 ± 1 | (1.10 ± 0.22) × 10−9 | (8.02 ± 0.56) × 10−10 | (3.15 ± 0.42) × 10−9 | (1.70 ± 0.12) × 10−9 | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krauklis, A.E.; Aouissi, H.A.; Bencedira, S.; Burlakovs, J.; Zekker, I.; Bute, I.; Klavins, M. Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites. J. Compos. Sci. 2022, 6, 210. https://doi.org/10.3390/jcs6070210
Krauklis AE, Aouissi HA, Bencedira S, Burlakovs J, Zekker I, Bute I, Klavins M. Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites. Journal of Composites Science. 2022; 6(7):210. https://doi.org/10.3390/jcs6070210
Chicago/Turabian StyleKrauklis, Andrey E., Hani Amir Aouissi, Selma Bencedira, Juris Burlakovs, Ivar Zekker, Irina Bute, and Maris Klavins. 2022. "Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites" Journal of Composites Science 6, no. 7: 210. https://doi.org/10.3390/jcs6070210
APA StyleKrauklis, A. E., Aouissi, H. A., Bencedira, S., Burlakovs, J., Zekker, I., Bute, I., & Klavins, M. (2022). Influence of Environmental Parameters and Fiber Orientation on Dissolution Kinetics of Glass Fibers in Polymer Composites. Journal of Composites Science, 6(7), 210. https://doi.org/10.3390/jcs6070210