Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Characterization and Swelling/Contraction of the PAA Gel Matrices
3.2. The Electroactive Gel Composites
3.2.1. The Composites’ Preparation Procedure
3.2.2. Swelling of the Electroactive Gel Composites
3.2.3. Conductivity and Mechanical Properties of the Composites
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Barbero, C.A. Functional materials made by combining hydrogels (cross-linked polyacrylamides) and conducting polymers (polyanilines)—A critical review. Polymers 2023, 15, 2240. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Fernández, J. Structural strategies for supramolecular hydrogels and their applications. Polymers 2023, 15, 1365. [Google Scholar] [CrossRef] [PubMed]
- Caccavo, D.; Cascone, S.; Lamberti, G.; Barba, A. Hydrogels: Experimental characterization and mathematical modelling of their mechanical and diffusive behaviour. Chem. Soc. Rev. 2018, 47, 2357–2373. [Google Scholar] [CrossRef] [PubMed]
- Sahiner, N.; Demirci, S. Conducting semi-interpenetrating polymeric composites via the preparation of poly(aniline), poly(thiophene), and poly(pyrrole) polymers within superporous poly(acrylic acid) cryogels. React. Funct. Polym. 2016, 105, 60–65. [Google Scholar] [CrossRef]
- Gareev, K.; Bagrets, V.; Golubkov, V.; Ivanitsa, M.; Khmelnitskiy, I.; Luchinin, V.; Mikhailova, O.; Testov, D. Synthesis and characterization of polyaniline-based composites for electromagnetic compatibility of electronic devices. Electronics 2020, 9, 734. [Google Scholar] [CrossRef]
- Tomczykowa, M.; Plonska-Brzezinska, M. Conducting polymers, hydrogels and their composites: Preparation, properties and bioapplications. Polymers 2019, 11, 350. [Google Scholar] [CrossRef] [Green Version]
- Kougkolos, G.; Golzio, M.; Laudebat, L.; Valdez-Nava, Z.; Flahaut, E. Hydrogels with electrically conductive nanomaterials for biomedical applications. J. Mater. Chem. B 2023, 11, 2036–2062. [Google Scholar] [CrossRef]
- Sharma, K.; Kumar, V.; Chaudhary, B.; Kaith, B.S.; Kalia, S.; Swart, H.C. Application of biodegradable superabsorbent hydrogel composite based on Gum ghatti-co-poly (acrylic acid-aniline) for controlled drug delivery. Polym. Degrad. Stab. 2016, 124, 101–111. [Google Scholar] [CrossRef]
- Liu, K.; Wei, S.; Song, L.; Liu, H.; Wang, T. Conductive hydrogels—A novel material: Recent advances and future perspectives. J. Agric. Food Chem. 2020, 68, 7269–7280. [Google Scholar] [CrossRef]
- Zhang, T.; Deng, H.; Xie, Z.; Liu, R.; Yang, J.; Liu, C.; Wang, X.; Fang, Q.; Xiong, Y. Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces. J. Mater. Sci. Technol. 2020, 52, 29–62. [Google Scholar] [CrossRef]
- Huang, Y.; Xiao, L.; Zhou, J.; Li, X.; Liu, J.; Zeng, M. Mechanical enhancement of graphene oxide-filled chitosan-based composite hydrogels by multiple mechanisms. J. Mater. Sci. 2020, 55, 14690–14701. [Google Scholar] [CrossRef]
- Chen, H.; Zhou, L.; Fang, Z.; Wang, S.; Yang, T.; Zhu, L.; Hou, X.; Wang, H.; Wang, Z. Piezoelectric nanogenerator based on in situ growth all-inorganic CsPbBr3 perovskite nanocrystals in PVDF fibers with long-term stability. Adv. Funct. Mater. 2021, 31, 2011073. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, T.; Zheng, Y.; Wang, E.; Wang, H.; Zhu, L.; Du, Z.; Hou, X.; Chou, K. The mechanism of a PVDF/CsPbBr3 perovskite composite fiber as a self-polarization piezoelectric nanogenerator with ultra-high output voltage. J. Mater. Chem. A 2022, 10, 21893–21904. [Google Scholar] [CrossRef]
- Xue, Y.; Yang, T.; Zheng, Y.; Wang, K.; Wang, E.; Wang, H.; Zhu, L.; Du, Z.; Chou, K.; Hou, X. Heterojunction engineering enhanced self-polarization of PVDF/CsPbBr3 /Ti3 C2 Tx composite fiber for ultra-high voltage piezoelectric nanogenerator. Adv. Sci. 2023, 11, e2300650. [Google Scholar] [CrossRef]
- Skotheim, T.A.; Reynolds, J. (Eds.) Conjugated Polymers: Theory, Synthesis, Properties, and Characterization; Handbook of Conducting Polymers, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2006; 1024p. [Google Scholar]
- Bel’nikevich, N.G.; Bobrova, N.V.; Elokhovskii, V.Y.; Zoolshoev, Z.F.; Smirnov, M.A.; Elyashevich, G.K. Effect of initiator on the structure of hydrogels of cross-linked polyacrylic acid. Russ. J. Appl. Chem. 2011, 84, 2106–2113. [Google Scholar] [CrossRef]
- Elyashevich, G.K.; Bel’nikevich, N.G.; Vesnebolotskaya, S.A. Swelling-contraction of sodium polyacrylate hydrogels in media with various pH values. Polym. Sci. Ser. A 2009, 51, 550–553. [Google Scholar] [CrossRef]
- Kramarenko, E.Y.; Philippova, O.E.; Khokhlov, A.R. Polyelectrolyte networks as highly sensitive polymers. Polym. Sci. Ser. C 2006, 48, 1–20. [Google Scholar] [CrossRef]
- Stejskal, J. Conducting polymer hydrogels. Chem. Pap. 2017, 71, 269–291. [Google Scholar] [CrossRef]
- Wang, H.H.; Lin, J.Y.; Shen, Z.X. Polyaniline (PANi) based electrode materials for energy storage and conversion. J. Sci. Adv. Mater. Devices 2016, 1, 225–255. [Google Scholar] [CrossRef] [Green Version]
- Wei, D.L.; Lin, X.; Li, L.; Shang, S.M.; Yuen, M.C.W.; Yan, G.P.; Yu, X.H. Controlled growth of polypyrrole hydrogels. Soft Matter 2013, 9, 2832–2836. [Google Scholar] [CrossRef]
- Vlasov, P.V.; Dmitriev, I.Y.; Elyashevich, G.K. The 3D electrode material based on polyacrylate hydrogels and conducting polyaniline. Smart Nanocompos. 2016, 7, 135–139. [Google Scholar]
Sample | pH | |||
---|---|---|---|---|
8.1 | 9.4 | 11.2 | 13.7 | |
PAA-15 | 6.6 | 6.6 | 14 | 240 |
PAA-20 | 6.9 | 5.5 | 14 | 180 |
PAA-25 | 6.6 | 7.2 | 12 | 160 |
Sample | pH | |||||
---|---|---|---|---|---|---|
1.3 | 3.4 | 6.4 | 9.4 | 11.2 | 13.4 | |
PAA-15 | 6 (6) | 18 (18) | 86 (89) | 334 (325) | 474 (450) | 26 (9) |
PAA-20 | 5 (5) | 10 (10) | 29 (29) | 127 (124) | 216 (202) | 20 (8) |
PAA-25 | 4 (4) | 8 (8) | 15 (15) | 66 (64) | 124 (120) | 13 (7) |
Sample | Degree of Crosslinking, Ns | Tensile Strength, σ, kPa | Elastic Modulus, G, kPa | Deformation at Destruction, ε, % |
---|---|---|---|---|
PAA-15 | 118 | no destruction | 12 | no destruction |
PAA-20 | 82 | no destruction | 18 | no destruction |
PAA-25 | 62 | 230 | 22 | 75 |
Sample | |||||
---|---|---|---|---|---|
PAA-15/PANI | PAA-20/PANI | PAA-25/PANI | PAA-15/PPy | PAA-20/PPy | PAA-25/PPy |
14.8 | 14.3 | 13.9 | 7.2 | 6.4 | 2.4 |
pH | Sample | |||||
---|---|---|---|---|---|---|
PAA-15/PANI | PAA-15/PPy | PAA-20/PANI | PAA-20/PPy | PAA-25/PANI | PAA-25/PPy | |
1.3 | 5 (5) | 4 (4) | 4 (4) | 4 (4) | 4 (4) | 3 (4) |
6.9 | 16 (17) | 10 (11) | 9 (9) | 8 (9) | 6 (7) | 5 (6) |
9.4 | 15 (332) | 4 (39) | 8 (126) | 4 (36) | 6 (65) | 4 (33) |
11.2 | 6 (94) | 3 (62) | 4 (24) | 44 (160) | 3 (80) | 31 (40) |
13.4 | 25 (16) | 18 (10) | 18 (13) | 17 (9) | 17 (13) | 18 (9) |
pH | Sample | |||||
---|---|---|---|---|---|---|
PAA-15/PANI | PAA-20/PANI | PAA-25/PANI | PAA-15/PPy | PAA-20/PPy | PAA-25/PPy | |
1.3 | −1.2 | −1.5 | −2.5 | −8 | −7.5 | −9 |
6.9 | −3.3 | −2.8 | −3.6 | −16 | −12 | −12 |
9.4 | −13 | −13 | −12 | −15 | −15 | −14 |
11.2 | +10 | +9 | +8 | +13 | +11 | +9 |
13.4 | +162 | +120 | +110 | +263 | +202 | +173 |
Sample | Conductivity, S/cm (Dry Gel) | Conductivity, S/cm (Swollen Gel) | Tensile Strength, σ, kPa | Elastic Modulus, G, kPa | Deformation at Destruction, εb, % |
---|---|---|---|---|---|
PAA-15/PANI | 3.6 × 10−5 | 1.3 × 10−2 | - | 15 | - |
PAA-20/PANI | 2.0 × 10−5 | 1.1 × 10−2 | 231 | 25 | 73 |
PAA-25/PANI | 1.7 × 10−6 | 0.8 × 10−2 | 285 | 31 | 70 |
Sample | Conductivity, S/cm (Dry Gel) | Conductivity, S/cm (Swollen Gel) | Tensile Strength, σ, kPa | Elastic Modulus, G, kPa | Deformation at Destruction, ε, % |
---|---|---|---|---|---|
PAA-15/PPy | 4.4 × 10−5 | 7.5 × 10−3 | 51 | 13 | 54 |
PAA-20/PPy | 3.5 × 10−5 | 7.0 × 10−3 | 90 | 24 | 53 |
PAA-25/PPy | 2.7 × 10−5 | 6.5 × 10−3 | 130 | 28 | 57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elyashevich, G.; Rosova, E.; Zoolshoev, Z.; Saprykina, N.; Kuryndin, I. Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers. J. Compos. Sci. 2023, 7, 261. https://doi.org/10.3390/jcs7060261
Elyashevich G, Rosova E, Zoolshoev Z, Saprykina N, Kuryndin I. Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers. Journal of Composites Science. 2023; 7(6):261. https://doi.org/10.3390/jcs7060261
Chicago/Turabian StyleElyashevich, Galina, Elena Rosova, Zoolsho Zoolshoev, Natalia Saprykina, and Ivan Kuryndin. 2023. "Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers" Journal of Composites Science 7, no. 6: 261. https://doi.org/10.3390/jcs7060261
APA StyleElyashevich, G., Rosova, E., Zoolshoev, Z., Saprykina, N., & Kuryndin, I. (2023). Reversibility of Swelling, pH Sensitivity, Electroconductivity, and Mechanical Properties of Composites Based on Polyacrylic Acid Hydrogels and Conducting Polymers. Journal of Composites Science, 7(6), 261. https://doi.org/10.3390/jcs7060261