Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Emulsion Preparation
2.2.1. Preparation of Coarse Emulsion
2.2.2. Preparation of Fine Emulsion
2.2.3. Storage Conditions
2.3. Determination of Mictrostructure
2.4. Measurement and Analysis of Particle Size Distribution
2.5. Rheological Characterization
2.6. Creaming Index
2.7. Differential Scanning Calorimetry
2.8. X-ray Diffraction Measurements
2.9. Statistical Analysis
3. Results
3.1. Dispersion Characterization after Production
3.1.1. Particle Size Distribution
3.1.2. Particle Morphology and Dispersion Microstructure
3.1.3. Dispersion Viscosity and Flow Behavior
3.2. Storage Behavior of Dispersions
3.2.1. Macrostructure and Creaming Index
3.2.2. Particle Size
3.2.3. Melting Behavior
3.2.4. Polymorphism
4. Discussion
4.1. Influence of Phospholipid Addition and Cooling Procedure on Morphology, Particle Size and Visosity before Storage
4.2. Influence of Phospholipid Addition and Cooling Procedure on Dispersion Stability during Storage
4.2.1. Assessment of Creaming Behavior and Changes in Micro- and Macrostructure Depending on Phospholipid Addition and Cooling Procedure
4.2.2. Assessment of Changes in Particle Size Macrostructure Depending on Phospholipid Addition and Cooling Procedure
4.2.3. Assessment of Polymorphic Transitions and Dispersion Crystallinity Depending on Phospholipid Addition and Cooling Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Components [%] | LIPOID PC 18:0/18:0 | LIPOID PE 18:0/18:0 |
---|---|---|
Phosphatidylcholine | ≥99.0 | n. sp. |
Phosphatidylethanolamine | n. sp. | ≥98.0 |
Lysophospholipids | ≤0.5 | ≤0.5 |
Triacylglycerols | ≤0.3 | ≤0.3 |
C16:0 | n. sp. | n. sp. |
C18:0 | ≥98.0 | min. 98.0 |
Source | Synthetic | Synthetic |
References
- Müller, R.H.; Shegokar, R.; Keck, C.M. 20 years of lipid nanoparticles (SLN and NLC): Present state of development and industrial applications. Curr. Drug Discov. Technol. 2011, 8, 207–227. [Google Scholar] [CrossRef]
- Müller, R.H.; Petersen, R.D.; Hommoss, A.; Pardeike, J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv. Drug Deliv. Rev. 2007, 59, 522–530. [Google Scholar] [CrossRef]
- Pardeike, J.; Hommoss, A.; Müller, R.H. Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int. J. Pharm. 2009, 366, 170–184. [Google Scholar] [CrossRef]
- McClements, D.J. Crystals and crystallization in oil-in-water emulsions: Implications for emulsion-based delivery systems. Adv. Colloid Interface Sci. 2012, 174, 1–30. [Google Scholar] [CrossRef]
- Dickinson, E.; Euston, S.R.; Woskett, C.M. Competitive adsorption of food macromolecules and surfactants at the oil-water interface. In Surfactants and Macromolecules: Self-Assembly at Interfaces and in Bulk; Lindman, B., Rosenholm, J.B., Stenius, P., Eds.; Steinkopff: Darmstadt, Germany, 1990; pp. 65–75. ISBN 978-3-7985-0838-5. [Google Scholar]
- Mulder, H.; Walstra, P. The Milk Fat Globule; Commonwealth Agricultural Bureaux Farnham Royal: Buckinghamshire, UK, 1974; ISBN 0851982891. [Google Scholar]
- McClements, D.J. Food Emulsions; CRC Press: Boca Raton, FL, USA, 2004; ISBN 9780429123894. [Google Scholar]
- Boode, K.; Walstra, P. Partial coalescence in oil-in-water emulsions 1. Nature of the aggregation. Colloids Surf. A Physicochem. Eng. Asp. 1993, 81, 121–137. [Google Scholar] [CrossRef]
- Awad, T.S.; Helgason, T.; Kristbergsson, K.; Decker, E.A.; Weiss, J.; McClements, D.J. Effect of Cooling and Heating Rates on Polymorphic Transformations and Gelation of Tripalmitin Solid Lipid Nanoparticle (SLN) Suspensions. Food Biophys. 2008, 3, 155–162. [Google Scholar] [CrossRef]
- Walstra, P. Overview of Emulsion and Foam Stability. In Food Emulsions and Foams: Interfaces, Interactions and Stability; Dickinson, E., Ed.; Woodhead Publishing Ltd: Cambridge, UK, 1987; pp. 242–257. ISBN 978-1-85573-785-3. [Google Scholar]
- Vanapalli, S.A.; Palanuwech, J.; Coupland, J.N. Stability of emulsions to dispersed phase crystallization: Effect of oil type, dispersed phase volume fraction, and cooling rate. Colloids Surf. A Physicochem. Eng. Asp. 2002, 204, 227–237. [Google Scholar] [CrossRef]
- Bunjes, H.; Westesen, K.; Koch, M.H.J. Crystallization tendency and polymorphic transitions in triglyceride nanoparticles. Int. J. Pharm. 1996, 129, 159–173. [Google Scholar] [CrossRef]
- Di Bari, V.; Macnaughtan, W.; Norton, J.; Sullo, A.; Norton, I. Crystallisation in water-in-cocoa butter emulsions: Role of the dispersed phase on fat crystallisation and polymorphic transition. Food Struct. 2017, 12, 82–93. [Google Scholar] [CrossRef]
- Fredrick, E.; Walstra, P.; Dewettinck, K. Factors governing partial coalescence in oil-in-water emulsions. Adv. Colloid Interface Sci. 2010, 153, 30–42. [Google Scholar] [CrossRef]
- Goibier, L.; Lecomte, S.; Leal-Calderon, F.; Faure, C. The effect of surfactant crystallization on partial coalescence in O/W emulsions. J. Colloid Interface Sci. 2017, 500, 304–314. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.; Ly, T.T.; Liu, L.; Karbstein, H.P. Melt Emulsions: Influence of the Cooling Procedure on Crystallization and Recrystallization of Emulsion Droplets and their Influence on Dispersion Viscosity upon Storage. Chem.-Ing.-Tech. 2022, 94, 356–364. [Google Scholar] [CrossRef]
- Beverung, C.J.; Radke, C.J.; Blanch, H.W. Protein adsorption at the oil/water interface: Characterization of adsorption kinetics by dynamic interfacial tension measurements. Biophys. Chem. 1999, 81, 59–80. [Google Scholar] [CrossRef] [PubMed]
- Bergfreund, J.; Bertsch, P.; Fischer, P. Adsorption of proteins to fluid interfaces: Role of the hydrophobic subphase. J. Colloid Interface Sci. 2021, 584, 411–417. [Google Scholar] [CrossRef]
- Mitropoulos, V.; Mütze, A.; Fischer, P. Mechanical properties of protein adsorption layers at the air/water and oil/water interface: A comparison in light of the thermodynamical stability of proteins. Adv. Colloid Interface Sci. 2014, 206, 195–206. [Google Scholar] [CrossRef]
- Bos, M.A.; van Vliet, T. Interfacial rheological properties of adsorbed protein layers and surfactants: A review. Adv. Colloid Interface Sci. 2001, 91, 437–471. [Google Scholar] [CrossRef]
- Heiden-Hecht, T.; Drusch, S. Impact of Saturation of Fatty Acids of Phosphatidylcholine and Oil Phase on Properties of β-Lactoglobulin at the Oil/Water Interface. Food Biophys. 2022, 17, 171–180. [Google Scholar] [CrossRef]
- Coultate, T.P. FOOD The Chemistry of Its Components, 4th ed.; Royal Society of Chemistry: Cambridge, UK, 2002; ISBN 978-0-85404-615-7. [Google Scholar]
- Karbstein, H.; Schubert, H. Developments in the continuous mechanical production of oil-in-water macro-emulsions. Chem. Eng. Process. Process Intensif. 1995, 34, 205–211. [Google Scholar] [CrossRef]
- Karbstein, H.; Schubert, H. Einflußparameter auf die Auswahl einer Maschine zum Erzeugen feindisperser O/W-Emulsionen. Chem.-Ing.-Tech. 1995, 67, 616–619. [Google Scholar] [CrossRef]
- Stang, M.; Karbstein, H.; Schubert, H. Adsorption kinetics of emulsifiers at oil—Water interfaces and their effect on mechanical emulsification. Chem. Eng. Process. Process Intensif. 1994, 33, 307–311. [Google Scholar] [CrossRef]
- Heiden-Hecht, T.; Taboada, M.L.; Brückner-Gühmann, M.; Karbstein, H.P.; Gaukel, V.; Drusch, S. Towards an improved understanding of spray-dried emulsions: Impact of the emulsifying constituent combination on characteristics and storage stability. Int. Dairy J. 2021, 121, 105134. [Google Scholar] [CrossRef]
- Bylaite, E.; Nylander, T.; Venskutonis, R.; Jönsson, B. Emulsification of caraway essential oil in water by lecithin and beta-lactoglobulin: Emulsion stability and properties of the formed oil-aqueous interface. Colloids Surf. B Biointerfaces 2001, 20, 327–340. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Dalgleish, D.G. Comparison of the effects of three different phosphatidylcholines on casein-stabilized oil-in-water emulsions. J. Am. Oil Chem. Soc. 1996, 73, 437–442. [Google Scholar] [CrossRef]
- Fang, Y.; Dalgleish, D.G. Interactions between Sodium Caseinate and Dioleoylphosphatidylcholine on Oil–Water Interfaces and in Solution. Food Colloids; Elsevier: Amsterdam, The Netherlands, 2004; pp. 67–76. ISBN 9781855737839. [Google Scholar]
- McClements, D.J.; Dungan, S.R.; German, J.B.; Simoneau, C.; Kinsella, J.E. Droplet Size and Emulsifier Type Affect Crystallization and Melting of Hydrocarbon-in-Water Emulsions. J. Food Sci. 1993, 58, 1148–1151. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J. Saturated phospholipids promote crystallization but slow down polymorphic transitions in triglyceride nanoparticles. J. Control Release 2005, 107, 229–243. [Google Scholar] [CrossRef]
- Günther, E.; Schmid, T.; Mehling, H.; Hiebler, S.; Huang, L. Subcooling in hexadecane emulsions. Int. J. Refrig. 2010, 33, 1605–1611. [Google Scholar] [CrossRef]
- Abramov, S.; Ahammou, A.; Karbstein, H.P. Influence of external forces during supercooling on dispersion stability during melt emulsification. Chem. Eng. Technol. 2018, 41, 768–775. [Google Scholar] [CrossRef]
- Abramov, S.; Shah, K.; Weißenstein, L.; Karbstein, H. Effect of Alkane Chain Length on Crystallization in Emulsions during Supercooling in Quiescent Systems and under Mechanical Stress. Processes 2018, 6, 6. [Google Scholar] [CrossRef] [Green Version]
- Bayard, M.; Cansell, M.; Leal-Calderon, F. Crystallization of emulsified anhydrous milk fat: The role of confinement and of minor compounds. A DSC study. Food Chem. 2022, 373, 131605. [Google Scholar] [CrossRef] [PubMed]
- Palanuwech, J.; Coupland, J.N. Effect of surfactant type on the stability of oil-in-water emulsions to dispersed phase crystallization. Colloids Surf. A Physicochem. Eng. Asp. 2003, 223, 251–262. [Google Scholar] [CrossRef]
- Awad, T.; Sato, K. Acceleration of crystallisation of palm kernel oil in oil-in-water emulsion by hydrophobic emulsifier additives. Colloids and Surfaces B: Biointerfaces 2002, 25, 45–53. [Google Scholar] [CrossRef]
- Truong, T.; Bansal, N.; Sharma, R.; Palmer, M.; Bhandari, B. Effects of emulsion droplet sizes on the crystallisation of milk fat. Food Chem. 2014, 145, 725–735. [Google Scholar] [CrossRef]
- Relkin, P.; Sourdet, S.; Fosseux, P.-Y. Fat crystallization in complex food emulsions: Effects of adsorbed milk proteins and of a whipping process. J. Therm. Anal. Calorim. 2003, 71, 187–195. [Google Scholar] [CrossRef]
- Garti, N.; Sato, K. Crystallization and Polymorphism of Fats and Fatty Acids; Marcel Dekker: New York, NY, USA, 1988. [Google Scholar]
- Larsson, K. Classification of glyceride crystal forms. Acta Chem. Scand. 1966, 20, 2255–2260. [Google Scholar] [CrossRef] [Green Version]
- Himawan, C.; Starov, V.M.; Stapley, A.G.F. Thermodynamic and kinetic aspects of fat crystallization. Adv. Colloid Interface Sci. 2006, 122, 3–33. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Ueno, S.; Yano, J. Molecular interactions and kinetic properties of fats. Prog. Lipid Res. 1999, 38, 91–116. [Google Scholar] [CrossRef]
- Gunstone, F. The Chemistriy of Oils and Fats: Sources, Composition, Properties and Uses; John Wiley & Sons: Hoboken, NJ, USA, 2009. [Google Scholar]
- Acevedo, N.C.; Marangoni, A.G. Functionalization of Non-interesterified Mixtures of Fully Hydrogenated Fats Using Shear Processing. Food Bioprocess Technol. 2014, 7, 575–587. [Google Scholar] [CrossRef]
- Marangoni, A.G.; McGauley, S.E. Relationship between Crystallization Behavior and Structure in Cocoa Butter. Cryst. Growth Des. 2003, 3, 95–108. [Google Scholar] [CrossRef]
- Chapman, G.M.; Akehurst, E.E.; Wright, W.B. Cocoa butter and confectionery fats. Studies using programmed temperature X-ray diffraction and differential scanning calorimetry. J. Am. Oil Chem. Soc. 1971, 48, 824–830. [Google Scholar] [CrossRef]
- Reiner, J.; Peyronel, F.; Weiss, J.; Marangoni, A.G. Monitoring the Polymorphic Transformation of a Palm Kernel-Based Emulsion Using Ultrasound. Food Bioprocess Technol. 2018, 11, 797–808. [Google Scholar] [CrossRef]
- Lopez, C.; Bourgaux, C.; Lesieur, P.; Ollivon, M. Coupling of time-resolved synchrotron X-ray diffraction and DSC to elucidate the crystallisation properties and polymorphism of triglycerides in milk fat globules. Lait 2007, 87, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Westesen, K.; Siekmann, B.; Koch, M.H.J. Investigations on the physical state of lipid nanoparticles by synchrotron radiation X-ray diffraction. Int. J. Pharm. 1993, 93, 189–199. [Google Scholar] [CrossRef]
- Siekmann, B.; Westesen, K. Thermoanalysis of the recrystallization process of melt-homogenized glyceride nanoparticles. Colloids Surf. B Biointerfaces 1994, 3, 159–175. [Google Scholar] [CrossRef]
- Arbeitsgemeinschaft für Pharmazeutische Verfahrenstechnik; Association de Pharmacie Galénique Industrielle. Complex Fats as Matrix Constitutions in Lipid Nanoparticles. In Proceedings of the 1st World Meeting of APGI/APV, Budapest, Hungary, 9–11 May 1995. [Google Scholar]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Effect of Particle Size on Colloidal Solid Triglycerides. Langmuir 2000, 16, 5234–5241. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Effects of surfactants on the crystallization and polymorphism of lipid nanoparticles. In Molecular Organisation on Interfaces; Lagaly, G., Ed.; Springer: Berlin, Heidelberg, 2006; pp. 7–10. ISBN 978-3-540-43637-9. [Google Scholar]
- Aronhime, J.S.; Sarig, S.; Garti, N. Dynamic control of polymorphic transformation in triglycerides by surfactants: The button syndrome. J. Am. Oil Chem. Soc. 1988, 65, 1144–1150. [Google Scholar] [CrossRef]
- Bunjes, H.; Koch, M.H.J.; Westesen, K. Influence of emulsifiers on the crystallization of solid lipid nanoparticles. J. Pharm. Sci. 2003, 92, 1509–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordillo-Galeano, A.; Mora-Huertas, C.E. Solid lipid nanoparticles and nanostructured lipid carriers: A review emphasizing on particle structure and drug release. Eur. J. Pharm. Biopharm. 2018, 133, 285–308. [Google Scholar] [CrossRef] [PubMed]
- Tippetts, M.; Martini, S. Effect of cooling rate on lipid crystallization in oil-in-water emulsions. Food Res. Int. 2009, 42, 847–855. [Google Scholar] [CrossRef]
- Salminen, H.; Helgason, T.; Aulbach, S.; Kristinsson, B.; Kristbergsson, K.; Weiss, J. Influence of co-surfactants on crystallization and stability of solid lipid nanoparticles. J. Colloid Interface Sci. 2014, 426, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Liu, C.; Jin, L.; Zhang, R.; Siebert, H.-C.; Wang, Z.; Prakash, S.; Yin, X.; Li, J.; Hou, D.; et al. Influence of Long-Chain/Medium-Chain Triglycerides and Whey Protein/Tween 80 Ratio on the Stability of Phosphatidylserine Emulsions (O/W). ACS Omega 2020, 5, 7792–7801. [Google Scholar] [CrossRef]
- Romo-Uribe, A. Wide-angle X-ray diffraction and small-angle X-ray scattering studies of elastomer blends and composites. In Elastomer Blends and Composites; Elsevier: Amsterdam, The Netherlands, 2022; pp. 209–242. ISBN 9780323858328. [Google Scholar]
- D’Souza, V.; deMan, J.M.; deMan, L. Short spacings and polymorphic forms of natural and commercial solid fats: A review. J. Am. Oil Chem. Soc. 1990, 67, 835–843. [Google Scholar] [CrossRef]
- Mazzanti, G.; Guthrie, S.E.; Sirota, E.B.; Marangoni, A.G.; Idziak, S.H.J. Effect of Minor Components and Temperature Profiles on Polymorphism in Milk Fat. Cryst. Growth Des. 2004, 4, 1303–1309. [Google Scholar] [CrossRef]
- Guttman, S.; Ocko, B.M.; Deutsch, M.; Sloutskin, E. From faceted vesicles to liquid icoshedra: Where topology and crystallography meet. Curr. Opin. Colloid Interface Sci. 2016, 22, 35–40. [Google Scholar] [CrossRef] [Green Version]
- Cholakova, D.; Valkova, Z.; Tcholakova, S.; Denkov, N.; Smoukov, S.K. “Self-Shaping” of Multicomponent Drops. Langmuir 2017, 33, 5696–5706. [Google Scholar] [CrossRef] [PubMed]
- Reiner, J.; Martin, D.; Ott, F.; Harnisch, L.; Gaukel, V.; Karbstein, H.P. Influence of the Triglyceride Composition, Surfactant Concentration and Time–Temperature Conditions on the Particle Morphology in Dispersions. Colloids Interfaces 2023, 7, 22. [Google Scholar] [CrossRef]
- Robinson, C.D. Some factors influencing sedimentation. Ind. Eng. Chem. 1926, 18, 869–871. [Google Scholar] [CrossRef]
- McClements, D.J.; Dungan, S.R.; German, J.B.; Kinsella, J.E. Factors which affect oil exchange between oil-in-water emulsion droplets stabilized by whey protein isolate: Protein concentration, droplet size and ethanol. Colloids Surf. A Physicochem. Eng. Asp. 1993, 81, 203–210. [Google Scholar] [CrossRef]
- Helgason, T.; Awad, T.S.; Kristbergsson, K.; McCLEMENTS, D.J.; Weiss, J. Influence of Polymorphic Transformations on Gelation of Tripalmitin Solid Lipid Nanoparticle Suspensions. J. Am. Oil Chem. Soc. 2008, 85, 501–511. [Google Scholar] [CrossRef]
- Samtlebe, M.; Yucel, U.; Weiss, J.; Coupland, J.N. Stability of Solid Lipid Nanoparticles in the Presence of Liquid Oil Emulsions. J. Am. Oil Chem. Soc. 2012, 89, 609–617. [Google Scholar] [CrossRef]
- Helgason, T.; Awad, T.S.; Kristbergsson, K.; McClements, D.J.; Weiss, J. Effect of surfactant surface coverage on formation of solid lipid nanoparticles (SLN). J. Colloid Interface Sci. 2009, 334, 75–81. [Google Scholar] [CrossRef]
- Johansson, D.; Bergenståhl, B. Sintering of fat crystal networks in oil during post-crystallization processes. J. Am. Oil Chem. Soc. 1995, 72, 911–920. [Google Scholar] [CrossRef]
Sample Name | Cooling Rate | Softisan® 154 | β-lg | LIPOID PC 18:0/18:0 | LIPOID PE 18:0/18:0 |
---|---|---|---|---|---|
Ref slow | slow | 5 wt% | 0.5 wt% | ||
Ref moderate | moderate | ||||
Ref fast | fast | ||||
Chol 0.05 slow | slow | 5 wt% | 0.5 wt% | 0.05 wt% | |
Chol 0.05 moderate | moderate | ||||
Chol 0.05 fast | fast | ||||
Chol 0.1 slow | slow | 5 wt% | 0.5 wt% | 0.1 wt% | |
Chol 0.1 moderate | moderate | ||||
Chol 0.1 fast | fast | ||||
Eta 0.05 slow | slow | 5 wt% | 0.5 wt% | 0.05 wt% | |
Eta 0.05 moderate | moderate | ||||
Eta 0.05 fast | fast | ||||
Eta 0.1 slow | slow | 5 wt% | 0.5 wt% | 0.1 wt% | |
Eta 0.1 moderate | moderate | ||||
Eta 0.1 fast | fast |
Specific Melting Enthalpy per Unit Mass of Fat, ∆hm, in J/g | |||
---|---|---|---|
t0 | t8 | t11 | |
Ref slow (0.01–0.1 K/min) | 216.6 ± 74.7 | 128.3 ± 9.5 | 129.9 ± 9.3 |
Ref fast (10 K/min) | 204.6± 42.6 | 124.2 ± 3.0 | 131.5 ± 0.5 |
Chol 0.05 slow (0.01–0.1 K/min) | 137.5 ± 1.2 | 134.4 ± 1.6 | 144.9 ± 5.7 |
Chol 0.05 fast (10 K/min) | 135.5 ± 12.0 | 122.6 ± 2.5 | 148.5 ± 3.7 |
Chol 0.1 slow (0.01–0.1 K/min) | 146.0 ± 9.0 | 134.5 ± 18.7 | 146.8 ± 10.1 |
Chol 0.1 fast (10 K/min) | 139.5 ± 8.6 | 144.2 ± 6.6 | 135.9 ± 25.8 |
Eta 0.05 slow (0.01–0.1 K/min) | 92.9 ± 9.9 | 68.4 ± 12.1 | 100.3 ± 20.3 |
Eta 0.05 fast (10 K/min) | 155.0 ± 47.6 | 112.4 ± 17.5 | 130.6 ± 12.4 |
Eta 0.1 slow (0.01–0.1 K/min) | 52.2 ± 16.7 | 39.5 ± 9.0 | 33.2 ± 0.1 |
Eta 0.1 fast (10 K/min) | 54.1 ± 14.2 | 67.7 ± 24.6 | 39.0 ± 16.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reiner, J.; Schüler, C.; Gaukel, V.; Karbstein, H.P. Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin. Colloids Interfaces 2023, 7, 45. https://doi.org/10.3390/colloids7020045
Reiner J, Schüler C, Gaukel V, Karbstein HP. Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin. Colloids and Interfaces. 2023; 7(2):45. https://doi.org/10.3390/colloids7020045
Chicago/Turabian StyleReiner, Jasmin, Charlotte Schüler, Volker Gaukel, and Heike Petra Karbstein. 2023. "Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin" Colloids and Interfaces 7, no. 2: 45. https://doi.org/10.3390/colloids7020045
APA StyleReiner, J., Schüler, C., Gaukel, V., & Karbstein, H. P. (2023). Effects of Cooling Rate and Emulsifier Combination on the Colloidal Stability of Crystalline Dispersions Stabilized by Phospholipids and β-Lactoglobulin. Colloids and Interfaces, 7(2), 45. https://doi.org/10.3390/colloids7020045