Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics
Abstract
:1. Introduction
2. Experimental Procedures
3. Results and Discussions
4. Summary
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balunarayanan, R.; Aiswarya, S.; Sreekala, C.; Menon, S.K. Nano Cylindrical Dielectric Resonator Antenna Using Titanium dioxide for Wi-Fi Applications. Proceddings of the 2021 Fourth International Conference on Electrical, Computer and Communication Technologies (ICECCT), Coimbatore, India, 15–17 September 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Cohn, S.B. Microwave bandpass filters containing high-Q dielectric resonators. IEEE Trans. Microw. Theory Tech. 1968, 16, 218–227. [Google Scholar] [CrossRef]
- Kanehara, K.; Hoshina, T.; Takeda, H.; Tsurumi, T. Terahertz permittivity of rutile TiO2 single crystal measured by anisotropic far-infrared ellipsometry. J. Ceram. Soc. Jpn. 2015, 123, 303–306. [Google Scholar] [CrossRef]
- Mett, R.R.; Sidabras, J.W.; Anderson, J.R.; Klug, C.S.; Hyde, J.S. Rutile dielectric loop-gap resonator for X-band EPR spectroscopy of small aqueous samples. J. Magn. Reson. 2019, 307, 106585. [Google Scholar] [CrossRef] [PubMed]
- Hanaor, D.A.; Sorrell, C.C. Review of the anatase to rutile phase transformation. J. Mater. Sci. 2011, 46, 855–874. [Google Scholar] [CrossRef]
- Thongyong, N.; Chanlek, N.; Srepusharawoot, P.; Thongbai, P. Origins of giant dielectric properties with low loss tangent in rutile (Mg1/3Ta2/3)0.01Ti0.99O2 ceramic. Molecules 2021, 26, 6952. [Google Scholar] [CrossRef]
- Thanamoon, N.; Chanlek, N.; Moontragoon, P.; Srepusharawoot, P.; Thongbai, P. Microstructure, low loss tangent, and excellent temperature stability of Tb + Sb-doped TiO2 with high dielectric permittivity. Results Phys. 2022, 37, 105536. [Google Scholar] [CrossRef]
- Peng, P.; Chen, C.; Cui, B.; Li, J.; Xu, D.; Tang, B. Influence of the electric field on flash-sintered (Zr + Ta) co-doped TiO2 colossal permittivity ceramics. Ceram. Int. 2022, 48, 6016–6023. [Google Scholar] [CrossRef]
- Thanamoon, N.; Chanlek, N.; Srepusharawoot, P.; Swatsitang, E.; Thongbai, P. Microstructural Evolution and High-Performance Giant Dielectric Properties of Lu3+/Nb5+ Co-Doped TiO2 Ceramics. Molecules 2021, 26, 7041. [Google Scholar] [CrossRef]
- Yang, C.; Wei, X.; Hao, J. Disappearance and recovery of colossal permittivity in (Nb + Mn) co-doped TiO2. Ceram. Int. 2018, 44, 12395–12400. [Google Scholar] [CrossRef]
- Hsu, T.-H.; Huang, C.-L. Microwave dielectric properties of ultra-low-temperature-sintered TiO2 as a τ f compensator. Appl. Phys. A 2023, 129, 20. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, Z.; Zhou, Y.; Peng, B.; Zhang, X.; Li, L. Temperature-dependent dielectric properties, thermally-stimulated relaxations and defect-property correlations of TiO2 ceramics for wireless passive temperature sensing. J. Eur. Ceram. Soc. 2016, 36, 1923–1930. [Google Scholar] [CrossRef]
- Grabstanowicz, L.R.; Gao, S.; Li, T.; Rickard, R.M.; Rajh, T.; Liu, D.-J.; Xu, T. Facile oxidative conversion of TiH2 to high-concentration Ti3+-self-doped rutile TiO2 with visible-light photoactivity. Inorg. Chem. 2013, 52, 3884–3890. [Google Scholar] [CrossRef] [PubMed]
- Templeton, A.; Wang, X.; Penn, S.J.; Webb, S.J.; Cohen, L.F.; Alford, N.M. Microwave dielectric loss of titanium oxide. J. Am. Ceram. Soc. 2000, 83, 95–100. [Google Scholar] [CrossRef]
- Noh, J.H.; Jung, H.S.; Lee, J.-K.; Kim, J.-R.; Hong, K.S. Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering. J. Eur. Ceram. Soc. 2007, 27, 2937–2940. [Google Scholar] [CrossRef]
- Weng, Z.; Wu, C.; Xiong, Z.; Feng, Y.; AminiRastabi, H.; Song, C.; Xue, H. Low temperature sintering and microwave dielectric properties of TiO2 ceramics. J. Eur. Ceram. Soc. 2017, 37, 4667–4672. [Google Scholar] [CrossRef]
- Pullar, R.C.; Penn, S.J.; Wang, X.; Reaney, I.M.; Alford, N.M. Dielectric loss caused by oxygen vacancies in titania ceramics. J. Eur. Ceram. Soc. 2009, 29, 419–424. [Google Scholar] [CrossRef]
- Ding, Y.H.; Liu, L.; Yang, Z.J.; Li, L.; Chen, X.M. Structure and microwave dielectric characteristics of Hf1–xTixO2 ceramics. J. Am. Ceram. Soc. 2022, 105, 1127–1135. [Google Scholar] [CrossRef]
- Mao, S.; Yang, J.; Gong, M.; Ao, L.; Fang, Z.; Kashif, K.; Qu, C.; Zhang, X.; Yang, H.; Xiong, Z.; et al. The improved microwave dielectric characteristics of TiO2 ceramics produced by Mn2+ and W6+ co-substitution. J. Mater. Sci. Mater. Electron. 2022, 33, 27041–27052. [Google Scholar] [CrossRef]
- Kim, E.S.; Kang, D.H. Relationships between crystal structure and microwave dielectric properties of (Zn1/3B2/35+)xTi1−xO2 (B5+ = Nb, Ta) ceramics. Ceram. Int. 2008, 34, 883–888. [Google Scholar] [CrossRef]
- Fukuda, K.; Awai, R.K. Microwave characteristics of TiO2-Bi2O3 dielectric resonator. Jpn. J. Appl. Phys. 1993, 32, 4584. [Google Scholar] [CrossRef]
- Wu, X.; Jing, Y.; Li, Y.; Su, H. Novel Tri-rutile Ni0.5Ti0.5TaO4 Microwave Dielectric Ceramics: Crystal Structure Chemistry, Raman Vibration Mode, and Chemical Bond Characteristic In-Depth Studies. J. Phys. Chem. C 2022, 126, 14680–14692. [Google Scholar] [CrossRef]
- Souza, J.V.C.; Castro, P.J.; Nono, M.d.C.d.A.; Mineiro, S.L. Microstructure, crystalline phase, and dielectric property analyses of TiO2 composition with ZrO2 addition. Mater. Sci. Forum. 2010, 660, 641–645. [Google Scholar] [CrossRef]
- Larson, A.C.; Von Dreele, R.B. General Structure Analysis System; Report LAUR 86-748; Los Alamos National Laboratory: Los Alamos, NM, USA, 2004.
- Toby, B.H. EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 2001, 34, 210–213. [Google Scholar] [CrossRef]
- Krupka, J. Frequency domain complex permittivity measurements at microwave frequencies. Meas. Sci. Technol. 2006, 17, R55. [Google Scholar] [CrossRef]
- Wang, J.; Yu, Y.; Li, S.; Guo, L.; Wang, E.; Cao, Y. Doping behavior of Zr4+ ions in Zr4+-doped TiO2 nanoparticles. J. Phys. Chem. C 2013, 117, 27120–27126. [Google Scholar] [CrossRef]
- Chang, S.-M.; Doong, R.-A. Characterization of Zr-doped TiO2 nanocrystals prepared by a nonhydrolytic sol−gel method at high temperatures. J. Phys. Chem. B. 2006, 110, 20808–20814. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Gnatyuk, Y.; Smirnova, N.; Korduban, O.; Eremenko, A. Effect of zirconium incorporation on the stabilization of TiO2 mesoporous structure. Surf. Interface Anal. 2010, 42, 1276–1280. [Google Scholar] [CrossRef]
- Yu, J.C.; Lin, J.; Kwok, R.W. Ti1–xZrxO2 Solid Solutions for the Photocatalytic Degradation of Acetone in Air. J. Phys. Chem. B. 1998, 102, 5094–5098. [Google Scholar] [CrossRef]
- Swamy, V.; Muddle, B.C.; Dai, Q. Size-dependent modifications of the Raman spectrum of rutile TiO2. Appl. Phys. Lett. 2006, 89, 163118. [Google Scholar] [CrossRef]
- Zhang, Y.; Harris, C.X.; Wallenmeyer, P.; Murowchick, J.; Chen, X. Asymmetric lattice vibrational characteristics of rutile TiO2 as revealed by laser power dependent Raman spectroscopy. J. Phys. Chem. C 2013, 117, 24015–24022. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Y.; Lu, J.; Chen, J.; Gao, L.; Omran, M.; Chen, G. Microwave drying method investigation for the process and kinetics of drying characteristics of high-grade rutile TiO2. Ceram. Int. 2023, 49, 15618–15628. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, H.; Wang, T.; Xiao, Y.; Nian, W.; Fan, J. Enhanced relative permittivity in niobium and europium co-doped TiO2 ceramics. J. Eur. Ceram. Soc. 2018, 38, 3847–3852. [Google Scholar] [CrossRef]
- Yu, C. Dielectric Materials for High Power Energy Storage; Queen Mary University of London: London, UK, 2017. [Google Scholar]
- Di Valentin, C.; Pacchioni, G.; Selloni, A. Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 2009, 113, 20543–20552. [Google Scholar] [CrossRef]
- Chester, P. Cross-Doping Agents for Rutile Masers. J. Appl. Phys. 1961, 32, 866–868. [Google Scholar] [CrossRef]
- Kiwi, J.; Suss, J.; Szapiro, S. EPR spectra of niobium-doped TiO2 and imiplications for water photocleavage processes. Chem. Phy. Lett. 1984, 106, 135–138. [Google Scholar] [CrossRef]
- Chiesa, M.; Paganini, M.C.; Livraghi, S.; Giamello, E. Charge trapping in TiO2 polymorphs as seen by Electron Paramagnetic Resonance spectroscopy. Phys. Chem. Chem. Phys. 2013, 15, 9435–9447. [Google Scholar] [CrossRef] [PubMed]
- Fresno, F.; Hernández-Alonso, M.D.; Tudela, D.; Coronado, J.M.; Soria, J. Photocatalytic degradation of toluene over doped and coupled (Ti, M) O2 (M = Sn or Zr) nanocrystalline oxides: Influence of the heteroatom distribution on deactivation. Appl. Catal. B 2008, 84, 598–606. [Google Scholar] [CrossRef]
- Kumar, C.P.; Gopal, N.O.; Wang, T.C.; Wong, M.-S.; Ke, S.C. EPR investigation of TiO2 nanoparticles with temperature-dependent properties. J. Phys. Chem. B 2006, 110, 5223–5229. [Google Scholar] [CrossRef]
- Livraghi, S.; Maurelli, S.; Paganini, M.C.; Chiesa, M.; Giamello, E. Probing the local environment of Ti3+ ions in TiO2 (rutile) by 17O HYSCORE. Angew. Chem. Int. Ed. 2011, 50, 8038–8040. [Google Scholar] [CrossRef]
- Zhong, M.; Li, J.; Shao, J.; Cao, Y.; Li, K.; Zhao, W. An investigation into the enhanced permittivity properties of Zr co-doped (Ga0.5Nb0.5)0.03Ti0.97O2 ceramics. Ceram. Int. 2019, 45, 14983–14990. [Google Scholar] [CrossRef]
- Chao, S.; Petrovsky, V.; Dogan, F. Effects of sintering temperature on the microstructure and dielectric properties of titanium dioxide ceramics. J. Mater. Sci. 2010, 45, 6685–6693. [Google Scholar] [CrossRef]
- Zhang, J.; Li, L.; Liu, D.; Zhang, J.; Hao, Y.; Zhang, W. Multi-layer and open three-dimensionally ordered macroporous TiO2–ZrO2 composite: Diversified design and the comparison of multiple mode photocatalytic performance. Mater. Des. 2015, 86, 818–828. [Google Scholar] [CrossRef]
- Khan, R.U.; Khan, I.; Ali, B.; Muhammad, R.; Samad, A.; Shah, A.; Song, K.; Wang, D. Structural, dielectric, optical, and electrochemical performance of Li4Mo5O17 for ULTCC applications. Mater. Res. Bull. 2023, 160, 112142. [Google Scholar] [CrossRef]
- Lee, S.; Woodford, W.H.; Randall, C.A. Band gap energy of perovskite structured ABO3 compounds. In Proceedings of the 2008 17th IEEE International Symposium on the Applications of Ferroelectrics, Santa Fe, NM, USA, 24–27 February 2008; Volume 1, p. 1. [Google Scholar]
- Yadav, P.; Sinha, E. Structural, photophysical and microwave dielectric properties of α-ZnMoO4 phosphor. J. Alloys Compd. 2019, 795, 446–452. [Google Scholar] [CrossRef]
- Du, F.; Yu, S. Preparation and Characterization of Zr–N-Codoped TiO2 Nano-Photocatalyst and Its Activity Enhanced-Mechanism. J. Nanosci. Nanotechnol. 2014, 14, 6965–6969. [Google Scholar] [CrossRef] [PubMed]
- Duan, B.; Zhou, Y.; Huang, C.; Huang, Q.; Chen, Y.; Xu, H.; Shen, S. Impact of Zr-doped TiO2 photocatalyst on formaldehyde degradation by Na addition. Ind. Eng. Chem. Res. 2018, 57, 14044–14051. [Google Scholar] [CrossRef]
- Hadi, E.H.; Sabur, D.A.; Chiad, S.S.; Fadhil, N. Physical properties of nanostructured li-doped ZrO2 thin films. J. Green Eng. 2020, 10, 8390–8400. [Google Scholar]
- Tomar, L.J.; Chakrabarty, B. Synthesis, structural and optical properties of TiO2-ZrO2 nanocomposite by hydrothermal method. Adv. Mater. Lett. 2013, 4, 64–67. [Google Scholar] [CrossRef]
- Juma, A.; Acik, I.O.; Oluwabi, A.; Mere, A.; Mikli, V.; Danilson, M.; Krunks, M. Zirconium doped TiO2 thin films deposited by chemical spray pyrolysis. Appl. Surf. Sci. 2016, 387, 539–545. [Google Scholar] [CrossRef]
- Padmamalini, N.; Ambujam, K. Structural and dielectric properties of ZrO2–TiO2–V2O5 nanocomposite prepared by CO-precipitation calcination method. Mater. Sci. Semicond. 2016, 41, 246–251. [Google Scholar] [CrossRef]
- Zhao, E.; Hao, J.; Xue, X.; Si, M.; Guo, J.; Wang, H. Rutile TiO2 microwave dielectric ceramics prepared via cold sintering assisted two step sintering. J. Eur. Ceram. Soc. 2021, 41, 3459–3465. [Google Scholar] [CrossRef]
- Shannon, R.D. Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 1993, 73, 348–366. [Google Scholar] [CrossRef]
- Oh, Y.; Bharambe, V.; Mummareddy, B.; Martin, J.; McKnight, J.; Abraham, M.A.; Walker, J.M.; Rogers, K.; Conner, B.; Cortes, P.; et al. Microwave dielectric properties of zirconia fabricated using NanoParticle Jetting™. Addit. Manuf. 2019, 27, 586–594. [Google Scholar] [CrossRef]
- Ravichandran, R.; Wang, A.X.; Wager, J.F. Solid state dielectric screening versus band gap trends and implications. Opt. Mater. 2016, 60, 181–187. [Google Scholar] [CrossRef]
- Hervé, P.; Vandamme, L. General relation between refractive index and energy gap in semiconductors. Infrared Phy. Techn. 1994, 35, 609–615. [Google Scholar] [CrossRef]
- Fang, Z.-X.; Tang, B.; Li, E.; Zhang, S.-R. High-Q microwave dielectric properties in the Na0.5Sm0.5TiO3+Cr2O3 ceramics by one synthetic process. J. Alloys Compd. 2017, 705, 456–461. [Google Scholar] [CrossRef]
- Fang, Z.; Yang, H.; Yang, H.; Xiong, Z.; Zhang, X.; Zhao, P.; Tang, B. Ilmenite-type MgTiO3 ceramics by complex (Mn1/2W1/2)4+ cation co-substitution producing improved microwave characteristics. Ceram. Int. 2021, 47, 21388–21397. [Google Scholar] [CrossRef]
- Yu, S.; Tang, B.; Zhang, S.; Zhou, X. The effect of Mn addition on phase development, microstructure and microwave dielectric properties of ZrTi2O6–ZnNb2O6 ceramics. Mater. Lett. 2012, 80, 124–126. [Google Scholar] [CrossRef]
- Pang, L.X.; Wang, H.; Zhou, D.; Yao, X. Sintering behavior, structures, and microwave dielectric properties of (LixNb3x)Ti1−4xO2. J. Am. Ceram. Soc. 2008, 91, 2947–2951. [Google Scholar] [CrossRef]
- Kim, E.S.; Chun, B.S.; Freer, R.; Cernik, R.J. Effects of packing fraction and bond valence on microwave dielectric properties of A2+ B6+ O4 (A2+: Ca, Pb, Ba; B6+: Mo, W) ceramics. J. Eur. Ceram. Soc. 2010, 30, 1731–1736. [Google Scholar] [CrossRef]
- Reaney, I.M.; Iddles, D. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Lee, H.-J.; Hong, K.-S.; Kim, S.-J.; Kim, I.-T. Dielectric Properties of MNb2O6 Compounds (Where M = Ca, Mn, Co, Ni, or Zn). Mater. Res. Bull. 1997, 32, 847–855. [Google Scholar] [CrossRef]
- Bosman, A.J.; Havinga, E.E. Temperature dependence of dielectric constants of cubic ionic compounds. Phys. Rev. 1963, 129, 1593. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Yang, H.; Chen, Y.; Yuan, Y.; Li, E. Effects of ZrO2 substitution on crystal structure and microwave dielectric properties of Zn0.15Nb0.3(Ti1–xZrx)0.55O2 ceramics. Ceram. Int. 2018, 44, 22710–22717. [Google Scholar] [CrossRef]
- Brown, I.t.; Shannon, R. Empirical bond-strength–bond-length curves for oxides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1973, 29, 266–282. [Google Scholar] [CrossRef]
- Brown, I.t.; Wu, K.K. Empirical parameters for calculating cation–oxygen bond valences. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1976, 32, 1957–1959. [Google Scholar] [CrossRef]
- Ding, Y.H.; Wang, X.; Guo, R.Z.; Li, L.; Chen, X.M. Improvement of τf in HfTiO4 microwave dielectric ceramics with Zr-and Sn-substitution. J. Am. Ceram. Soc. 2024, 107, 2337–2347. [Google Scholar] [CrossRef]
- Choi, J.W.; Van Dover, R. Correlation between temperature coefficient of resonant frequency and tetragonality ratio. J. Am. Ceram. Soc. 2006, 89, 1144–1146. [Google Scholar] [CrossRef]
- Kim, E.S.; Kang, D.H.; Kim, S.J. Effect of crystal structure on microwave dielectric properties of (Ni1/3B2/3)1–xTixO2 (B = Nb and Ta). Jpn. J. Appl. Phys. 2007, 46, 7101. [Google Scholar] [CrossRef]
x Values | 0 | 0.025 | 0.05 | 0.075 | 0.1 | |
---|---|---|---|---|---|---|
a = b (Å) | 4.5890 (7) | 4.5923 (2) | 4.6001 (5) | 4.6061 (5) | 4.6137 (9) | |
c (Å) | 2.9579 (8) | 2.9635 (7) | 2.9732 (6) | 2.9811 (1) | 2.9882 (8) | |
α = β = γ (°) | 90 | 90 | 90 | 90 | 90 | |
c/a | 0.6445 | 0.6453 | 0.6463 | 0.6471 | 0.6476 | |
Vcell (Å)3 | 62.29 | 62.45 | 62.92 | 63.26 | 63.61 | |
Rwp (%) | 11.36 | 14.12 | 12.06 | 11.98 | 12.97 | |
Rp (%) | 8.82 | 10.91 | 9.17 | 9.21 | 10.09 | |
χ2 | 1.49 | 2.14 | 1.66 | 1.71 | 1.96 | |
Atomic positions (x, y, z) | Ti | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) |
O | (0.3025, 0.3025, 0) | (0.3053, 0.3053, 0) | (0.3026, 0.3026, 0) | (0.3050, 0.3050, 0) | (0.2956, 0.2956, 0) | |
Zr | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) | (0, 0, 0) |
x | ST (°C) | Relative Density (%) | εr | αtheo (Å3) | Q × fo (GHz) | τf (ppm/°C) | Packing Fraction (%) | Bandgap Energy (eV) |
---|---|---|---|---|---|---|---|---|
0 | 1300 | 93 | 96 | 6.95 | 9500 | 417 | 70.6 | 2.92 |
0.025 | 1375 | 91 | 99 | 6.81 | 32,360 | 424 | 70.4 | 2.84 |
0.05 | 1375 | 89 | 101 | 6.96 | 29,710 | 432 | 70.0 | 2.81 |
0.075 | 1400 | 89 | 103 | 6.97 | 21,050 | 429 | 69.6 | 2.62 |
0.1 | 1400 | -- | 99 | 6.98 | 18,800 | 453 | 69.3 | 2.68 |
x | Bond Type | R (Å) | R1 | N | s | fc | Covalency (%) | Degree of Covalency (%) |
---|---|---|---|---|---|---|---|---|
0 | Ti−O | 1.9601 | 1.806 | 5.2 | 0.6532 | 0.2511 | 38.441 | 38.441 |
0.025 | Ti−O | 1.9633 | 1.806 | 5.2 | 0.6477 | 0.2477 | 38.255 | 38.496 |
Zr−O | 1.950 | 6 | 0.9600 | 0.4596 | 47.874 | |||
0.05 | Ti−O | 1.9664 | 1.806 | 5.2 | 0.6424 | 0.2446 | 38.077 | 38.554 |
Zr−O | 1.950 | 6 | 0.9509 | 0.4528 | 47.616 | |||
0.075 | Ti−O | 1.9699 | 1.806 | 5.2 | 0.6365 | 0.2411 | 37.876 | 38.585 |
Zr−O | 1.950 | 6 | 0.9408 | 0.4453 | 47.327 | |||
0.1 | Ti−O | 1.9710 | 1.806 | 5.2 | 0.6346 | 0.2400 | 37.814 | 38.756 |
Zr−O | 1.950 | 6 | 0.9377 | 0.4429 | 47.237 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Khan, A.; Muhammad, R.; Mao, M.; Han, D.; Song, K.; Lei, W.; Wang, D. Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics. Ceramics 2024, 7, 698-711. https://doi.org/10.3390/ceramics7020046
Khan I, Khan A, Muhammad R, Mao M, Han D, Song K, Lei W, Wang D. Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics. Ceramics. 2024; 7(2):698-711. https://doi.org/10.3390/ceramics7020046
Chicago/Turabian StyleKhan, Izaz, Aneela Khan, Raz Muhammad, Minmin Mao, Dandan Han, Kaixin Song, Wen Lei, and Dawei Wang. 2024. "Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics" Ceramics 7, no. 2: 698-711. https://doi.org/10.3390/ceramics7020046
APA StyleKhan, I., Khan, A., Muhammad, R., Mao, M., Han, D., Song, K., Lei, W., & Wang, D. (2024). Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics. Ceramics, 7(2), 698-711. https://doi.org/10.3390/ceramics7020046