Advances in Electronic Ceramics

A special issue of Ceramics (ISSN 2571-6131).

Deadline for manuscript submissions: 31 December 2024 | Viewed by 18593

Special Issue Editors


E-Mail Website
Guest Editor
School of Instrumentation Science and Engineering, Harbin Institute of Technology, Harbin 150080, China
Interests: ferroelectric; piezoelectric; dielectric; electroceramics; MLCC; LTCC
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Materials Engineering, NED University of Engineering&Technology, Karachi, Pakistan
Interests: functional materials; multiferroics; electroceramics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Electronic ceramics are characterized by their unique properties, making them indispensable in various applications, including integrated circuits, microwave communication, packaging ceramics, energy storage, energy generation, and optoelectronics. In recent years, electronic ceramics have undergone significant developments driven by the increasing demands of modern technology.

These advances have profoundly impacted various industries, as electronic ceramics have become fundamental components of a wide range of electronic devices.

These advancements are underpinned by a comprehensive understanding of the relationship between processing, structure, microstructure, and properties. By intentionally introducing dopants into pristine materials, researchers can precisely manipulate the band structure of electronic ceramics, enabling fine-tuned control and customization of their properties. To further foster the growth of electronic ceramics and address current and future challenges in the field, a Special Issue titled "Advanced in Electronic Ceramics" has been launched. This dedicated platform focuses on topics such as synthesis procedures, crystal structures, and the functional characteristics of electronic ceramics. It aims to facilitate the progression of electronic ceramics and their pivotal role in the ever-evolving landscape of technology.

Prof. Dr. Dawei Wang
Prof. Dr. Fayaz Hussain
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Ceramics is an international peer-reviewed open access quarterly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • powder synthesis
  • ceramic processing
  • electronic ceramics
  • piezoelectric ceramics
  • ferroelectric ceramics
  • dielectric ceramics
  • thermoelectric ceramics
  • multiferroic ceramics
  • ceramics for energy storage
  • ceramics for energy harvesting

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 5518 KiB  
Article
Comparing the Efficacies of Electrospun ZnO and TiO2 Nanofibrous Interlayers for Electron Transport in Perovskite Solar Cells
by Abdullah Zafar, Waqar Iqbal, Shahzaib Khan, Aiyeshah Alhodaib and Mahvish Fatima
Ceramics 2024, 7(4), 1742-1757; https://doi.org/10.3390/ceramics7040111 - 13 Nov 2024
Viewed by 417
Abstract
ZnO and TiO2 are both well-known electron transport materials. Their comparison of performance is considered advantageous and novel. Therefore, a viable electrospinning route was considered for the development of highly polycrystalline TiO2 and ZnO nanofibers as an electron transport material (ETM) [...] Read more.
ZnO and TiO2 are both well-known electron transport materials. Their comparison of performance is considered advantageous and novel. Therefore, a viable electrospinning route was considered for the development of highly polycrystalline TiO2 and ZnO nanofibers as an electron transport material (ETM) for perovskite solar cells. The materials were well-characterized in terms of different analytical techniques. The X-ray diffraction detected polycrystalline structural properties corresponding to TiO2 and ZnO. Morphological analysis by scanning electron microscopy revealed that the nanofibers are long, uniform, and polycrystalline, having a diameter in the nanometer range. Optoelectronic properties showed that TiO2 and ZnO exhibit absorption values in the ultraviolet and visible ranges, and band gap values for TiO2 and ZnO were 3.3 and 3.2 eV, respectively. TiO2 bandgap and semiconductor nature were more compatible with Electron Transport Layer (ETL) compared to ZnO. Electrical studies revealed that TiO2 nanofibers have enhanced values of conductivity and sheet carrier mobility compared to ZnO nanofibers. Therefore, higher photovoltaic conversion efficiency was achieved for TiO2 nanofibers (10.4%) compared to ZnO (8.5%). Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

25 pages, 6320 KiB  
Article
Tunable Optical Properties and Relaxor Behavior in Ni/Ba Co-Doped NaNbO3 Ceramics: Pathways Toward Multifunctional Applications
by Tawfik Chaabeni, Zohra Benzarti, Najmeddine Abdelmoula and Slim Zghal
Ceramics 2024, 7(4), 1670-1694; https://doi.org/10.3390/ceramics7040107 - 8 Nov 2024
Viewed by 545
Abstract
In this study, Ni/Ba co-doped NaNbO3 ceramics (NBNNOx) were synthesized using a solid-state method to explore the effects of Ni2+ and Ba2+ ion substitution on the structural, optical, and dielectric properties of NaNbO3. X-ray diffraction (XRD) [...] Read more.
In this study, Ni/Ba co-doped NaNbO3 ceramics (NBNNOx) were synthesized using a solid-state method to explore the effects of Ni2+ and Ba2+ ion substitution on the structural, optical, and dielectric properties of NaNbO3. X-ray diffraction (XRD) confirmed that the ceramics retained an orthorhombic structure, with crystallinity improving as the doping content (x) increased. Significant lattice distortions induced by the Ni/Ba co-doping were observed, which were essential for preserving the perovskite structure. Raman spectroscopy revealed local structural distortions, influencing optical properties and promoting relaxor behavior. Diffuse reflectance measurements revealed a significant decrease in band gap energy from 3.34 eV for undoped NaNbO3 to 1.08 eV at x = 0.15, highlighting the impact of co-doping on band gap tunability. Dielectric measurements indicated relaxor-like behavior at room temperature for x = 0.15, characterized by frequency-dependent anomalies in permittivity and dielectric loss, likely due to ionic disorder and structural distortions. These findings demonstrate the potential of Ni/Ba co-doped NaNbO3 ceramics for lead-free perovskite solar cells and other functional devices, where tunable optical and dielectric properties are highly desirable. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

15 pages, 3542 KiB  
Article
Effect of (Ba1/3Nb2/3)4+ Substitution on Microstructure, Bonding Properties and Microwave Dielectric Properties of Ce2Zr3(MoO4)9 Ceramics
by Huamin Gao, Xiangyu Xu, Xinwei Liu, Xiaoyu Zhang, Mingling Li, Jialun Du and Haitao Wu
Ceramics 2024, 7(3), 1172-1186; https://doi.org/10.3390/ceramics7030077 - 29 Aug 2024
Viewed by 538
Abstract
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional [...] Read more.
In this study, Ce2[Zr1−x(Ba1/3Nb2/3)x]3(MoO4)9 (0.02 ≤ x ≤ 0.1, CZ1−xNx) ceramics were sintered at 600 °C and 700 °C using the traditional solid-state method. An analysis conducted through XRD and Rietveld refinement confirmed that all the CZ1−xNx ceramics displayed a single phase with a trigonal structure (space group R-3c). The observed increases in cell volume with increasing x values indicate the successful substitution of (Ba1/3Nb2/3)4+. The high densification of the synthesized phase was validated by the density and SEM results. Additionally, the P-V-L theory demonstrates a strong correlation between the Ce-O bond and εr, as well as τf, and between the Mo-O bond and Q×f. Notably, the CZ0.98N0.02 ceramics demonstrated superior performance at 675 °C, exhibiting εr = 10.41, Q×f = 53,296 GHz, and τf = −23.45 ppm/°C. Finally, leveraging CZ0.98N0.02 ceramics as substrate materials enabled the design of a patch antenna suitable for the 5G communication band, demonstrating its significant potential in this field. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

10 pages, 3052 KiB  
Article
Excellent Energy Storage and Photovoltaic Performances in Bi0.45Na0.45Ba0.1TiO3-Based Lead-Free Ferroelectricity Thin Film
by Jianhua Wu, Tiantian Zhang, Xing Gao, Lei Ning, Yanhua Hu, Xiaojie Lou, Yunying Liu, Ningning Sun and Yong Li
Ceramics 2024, 7(3), 1043-1052; https://doi.org/10.3390/ceramics7030068 - 1 Aug 2024
Viewed by 825
Abstract
Inorganic dielectric films have attracted extensive attention in the field of microelectronic and electrical devices because of their wide operating temperature range, small size, and easy integration. Here, we designed and prepared eco-friendly (1-x)Bi0.45Na0.45Ba0.1TiO3-xBi(Mg1/3 [...] Read more.
Inorganic dielectric films have attracted extensive attention in the field of microelectronic and electrical devices because of their wide operating temperature range, small size, and easy integration. Here, we designed and prepared eco-friendly (1-x)Bi0.45Na0.45Ba0.1TiO3-xBi(Mg1/3Nb2/3)O3 multifunctional ferroelectric thin films for energy storage and photovoltaic. The results show that Bi(Mg1/3Nb2/3)O3 can effectively improve the energy storage performance. At x = 0.05, the energy storage density and efficiency are as high as 73.1 J/cm3 and 86.2%, respectively, and can operate stably in a wide temperature range. The breakdown field strength of the thin films increased significantly, and the analysis showed that the addition of Bi(Mg1/3Nb2/3)O3 caused a change in the internal conduction mechanism. At the same time, the generation of polar nanoregions increases the relaxation characteristics, thus improving the energy storage properties. In addition, the thin film material also has excellent ferroelectric photovoltaic properties. This work represents a new design paradigm that can serve as an effective strategy for developing advanced multi-functional materials. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

12 pages, 12511 KiB  
Article
Energy Storage Performance of Na0.5Bi0.5TiO3–CaHfO3 Lead-Free Ceramics Regulated by Defect Engineering
by Zhuo Li, Jing Zhang, Zixuan Wang, Xiaotian Wei, Dingjie Long, Xin Zhao and Yanhui Niu
Ceramics 2024, 7(3), 1002-1013; https://doi.org/10.3390/ceramics7030065 - 28 Jul 2024
Viewed by 948
Abstract
Over the past decades, Na0.5Bi0.5TiO3 (NBT)-based ceramics have received increasing attention in energy storage applications due to their high power density and relatively large maximum polarization. However, their high remnant polarization (Pr) and low breakdown field [...] Read more.
Over the past decades, Na0.5Bi0.5TiO3 (NBT)-based ceramics have received increasing attention in energy storage applications due to their high power density and relatively large maximum polarization. However, their high remnant polarization (Pr) and low breakdown field strength are detrimental for their practical applications. In this paper, a new solid solution (1−x)Na0.5Bi0.5TiO3–xCaHfO3 (x = 0.04, 0.08, 0.12, 0.16) was constructed by introducing CaHfO3 into NBT, and thus was prepared using a conventional solid-state reaction. With the addition of CaHfO3, the disorder of the structure increased, A-site vacancies formed, and thus oxygen vacancies were suppressed due to the replacement of the Na+ by Ca2+, resulting in the enhanced relaxation behavior and the reduced Pr, the refined grain, and improved breakdown strength. Furthermore, an optimal recoverable energy storage density (Wrec) of 1.2 J/cm3 was achieved in 0.92Na0.5Bi0.5TiO3–0.08CaHfO3 ceramics under the breakdown strength of 140 kV/cm, which is mainly attributed to the resultant defect of Na+ vacancy. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

17 pages, 5559 KiB  
Article
Exploring Enhanced Structural and Dielectric Properties in Ag-Doped Sr(NiNb)0.5O3 Perovskite Ceramic for Advanced Energy Storage
by Faouzia Tayari, Majdi Benamara, Madan Lal, Manel Essid, Priyanka Thakur, Deepak Kumar, S. Soreto Teixeira, M. P. F. Graça and Kais Iben Nassar
Ceramics 2024, 7(3), 958-974; https://doi.org/10.3390/ceramics7030062 - 10 Jul 2024
Cited by 3 | Viewed by 1094
Abstract
The ceramic Sr(NiNb)0.5O3, incorporating silver doping in the A site, was synthesized using a sol–gel route and subjected to comprehensive analysis through various experimental techniques. X-ray diffraction data analysis indicates a rhombohedral crystal structure. Scanning electron microscopy (SEM) examination [...] Read more.
The ceramic Sr(NiNb)0.5O3, incorporating silver doping in the A site, was synthesized using a sol–gel route and subjected to comprehensive analysis through various experimental techniques. X-ray diffraction data analysis indicates a rhombohedral crystal structure. Scanning electron microscopy (SEM) examination reveals densely packed grains with minimal surface porosity. A thorough investigation of electrical properties, encompassing dielectric constant, loss tangent, electrical impedance, modulus, conductivity, etc., was conducted across a wide frequency range (103–106 Hz) and temperature range (260–340 K). This analysis provided valuable insights into structure–property relationships and conduction mechanisms. The discussion highlights the significance of interface effects, space charge polarization, and Maxwell–Wagner dielectric relaxation in achieving the material’s high dielectric constant at low frequencies and elevated temperatures. Examination of temperature dependence through Nyquist plots elucidates the contributions of grain behavior to the material’s resistive and capacitive properties. The dielectric permittivity, dissipation of energy, and electrical characteristics like impedance, modulus and conductivity are notably influenced by the frequency of the applied electric field and temperature. Overall, the material exhibits promising potential for industrial applications such as energy storage, given its intriguing properties. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

14 pages, 4588 KiB  
Article
Origin of Temperature Coefficient of Resonance Frequency in Rutile Ti1−xZrxO2 Microwave Ceramics
by Izaz Khan, Aneela Khan, Raz Muhammad, Minmin Mao, Dandan Han, Kaixin Song, Wen Lei and Dawei Wang
Ceramics 2024, 7(2), 698-711; https://doi.org/10.3390/ceramics7020046 - 23 May 2024
Cited by 1 | Viewed by 1096
Abstract
In this study, we report the effect of Zr4+ doping on the optical energy gap and microwave dielectric properties of rutile TiO2. Rietveld analysis explicitly confirmed that Zr4+ occupies the octahedral site, forming a single-phase tetragonal structure below the [...] Read more.
In this study, we report the effect of Zr4+ doping on the optical energy gap and microwave dielectric properties of rutile TiO2. Rietveld analysis explicitly confirmed that Zr4+ occupies the octahedral site, forming a single-phase tetragonal structure below the solubility limit (x < 0.10). Notably, at x = 0.025, a significant enhancement in Q × fo was observed. This enhancement was attributed to the reduction in dielectric loss, associated with a decrease in oxygen vacancies and a lower concentration of Ti3+ paramagnetic centers. This conclusion was supported by Raman and electron paramagnetic resonance spectroscopy, respectively. The origin of high τf in rutile Ti1−xZrxO2 is explained on the basis of the octahedral distortion/tetragonality ratio, covalency, and bond strength. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

9 pages, 3570 KiB  
Article
Nanosized Tungsten Powder Synthesized Using the Nitridation–Decomposition Method
by Qing-Yin He, Ben-Li Zhao and Shi-Kuan Sun
Ceramics 2024, 7(2), 680-688; https://doi.org/10.3390/ceramics7020044 - 11 May 2024
Cited by 1 | Viewed by 1181
Abstract
A facile, one-step nitridation–decomposition method was developed for the synthesis of nanosized tungsten powder with a high surface area. This approach involved the nitridation of WO3 in NH3 to form mesoporous tungsten nitride (W2N), followed by in situ decomposition [...] Read more.
A facile, one-step nitridation–decomposition method was developed for the synthesis of nanosized tungsten powder with a high surface area. This approach involved the nitridation of WO3 in NH3 to form mesoporous tungsten nitride (W2N), followed by in situ decomposition of W2N to directly yield single-phase W particles. The phase and morphology evolution during the synthesis were systematically investigated and compared with the carbothermal reduction of WO3. It was revealed that powdered tungsten product with single-phase particles was obtained after nitridation at 800 °C combined with in situ decomposition at 1000 °C, displaying an average particle size of 15 nm and a large specific surface area of 6.52 m2/g. Furthermore, the proposed method avoided the limitations associated with intermediate phase formation and coarsening observed in carbothermal reduction, which resulted in the growth of W particles up to ~4.4 μm in size. This work demonstrates the potential of the nitridation–decomposition approach for the scalable and efficient synthesis of high-quality, fine-grained tungsten powder. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

13 pages, 1960 KiB  
Article
The Origin of the Low-Temperature Minimum of Electrical Resistivity in Strontium Ferromolybdate Ceramics
by Gunnar Suchaneck, Evgenii Artiukh and Gerald Gerlach
Ceramics 2024, 7(2), 491-503; https://doi.org/10.3390/ceramics7020032 - 1 Apr 2024
Viewed by 1491
Abstract
In this work, we analyze the electrical behavior of strontium ferromolybdate below room temperature. We demonstrate that in SFMO ceramics, SFMO thin films deposited by pulsed laser deposition including (100) and (111) textured thin films, as well as in nonstoichiometric SFMO ceramics, an [...] Read more.
In this work, we analyze the electrical behavior of strontium ferromolybdate below room temperature. We demonstrate that in SFMO ceramics, SFMO thin films deposited by pulsed laser deposition including (100) and (111) textured thin films, as well as in nonstoichiometric SFMO ceramics, an intergrain tunneling mechanism of charge carrier conduction leads to a decrease in resistivity with increasing temperature in the low-temperature region. This intergrain tunneling can be attributed to fluctuation-induced tunneling. On the other hand, bulk metallic resistivity of the grains, which increases with temperature, becomes dominant at higher temperatures and magnetic fluxes. The interplay of these conduction mechanisms leads to a resistivity minimum, i.e., a resistivity upturn below the temperature of minimum resistivity. Several mechanisms have been discussed in the literature to describe the low-temperature upturn in resistivity. Based on available literature data, we propose a revised model describing the appearance of a low-temperature resistivity minimum in SFMO ceramics by an interplay of fluctuation-induced tunneling and metallic conductivity. Additionally, we obtained that in the region of metallic conductivity at higher temperatures and magnetic fluxes, the pre-factor Rm of the temperature-dependent term of metallic conductivity written as a power law decreases exponentially with the temperature exponent m of this power law. Here, the value of m is determined by the charge scattering mechanism. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

12 pages, 3362 KiB  
Article
Zero-Temperature Coefficient of Resonant Frequency in [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-Ca0.6(La0.9Y0.1)0.2667TiO3 Ultra-Low-Loss Composite Dielectrics
by Yuan-Bin Chen and Jie Peng
Ceramics 2024, 7(2), 466-477; https://doi.org/10.3390/ceramics7020030 - 26 Mar 2024
Viewed by 1362
Abstract
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6 [...] Read more.
Investigating the microwave dielectric properties of ceramics prepared through the conventional solid-state route, such as x[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-(1−x)Ca0.6(La0.9Y0.1)0.2667TiO3, reveals notable characteristics. [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 shows a permittivity (εr) of approximately 20, a high quality factor (Q × f) ranging between 250,000 and 560,000 GHz, and a temperature coefficient of resonant frequency (τf) of approximately −65 ppm/°C. To enhance the temperature stability, Ca0.6(La0.9Y0.1)0.2667TiO3 featuring a τf value of +374 ppm/°C was incorporated into the [(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02 composition. τf demonstrated an increase with rising Ca0.6(La0.9Y0.1)0.2667TiO3 content, reaching zero at x = 0.95. A ceramic composition of 0.95[(Mg0.6Zn0.4)0.95Co0.05]1.02TiO3.02-0.05Ca0.6(La0.9Y0.1)0.2667TiO3, incorporating 3wt.% BaCu(B2O5) as sintering aids, exhibited outstanding microwave dielectric properties: εr~22.5, Q × f~195,000 (at 9 GHz), and τf~0.1ppm/°C, with a sintering temperature at 950 °C. This material is proposed as a prospective candidate for 6G band components and GPS antennas. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

10 pages, 2278 KiB  
Article
Effects of Replacing Co2+ with Zn2+ on the Dielectric Properties of Ba [Zn1/3(Nb1/2Ta1/2)2/3]O3 Ceramics with High Dielectric Constant and High Quality Factor
by Yuan-Bin Chen, Yu Fan, Shiuan-Ho Chang and Shaobing Shen
Ceramics 2024, 7(1), 426-435; https://doi.org/10.3390/ceramics7010027 - 17 Mar 2024
Viewed by 1678
Abstract
In this study, we used solid-state synthesis to prepare Ba[(ZnxCo1−x)1/3(Nb0.5Ta0.5)2/3]O3 microwave ceramics for mobile communications. Compared with Ba[Zn1/3(Nb0.5Ta0.5)2/3]O3, in the [...] Read more.
In this study, we used solid-state synthesis to prepare Ba[(ZnxCo1−x)1/3(Nb0.5Ta0.5)2/3]O3 microwave ceramics for mobile communications. Compared with Ba[Zn1/3(Nb0.5Ta0.5)2/3]O3, in the prepared materials, Co2+ substitution with Zn2+ improved the Q × f value and enabled densification and sintering at a lower temperature. We used X-ray diffraction (XRD) and scanning electron microscopy (SEM) to analyze the obtained microstructure. Ba[(ZnxCo1−x)1/3(Nb0.5Ta0.5)2/3]O3 was found to have a 1:2 ordered hexagonal structure, and its Q × f value increased with the increase in sintering temperature. In this work, excellent microwave dielectric properties—τf = −0.7 ppm/°C, εr = 34.5, and Q × f = 110,000 GHz—were obtained by sintering Ba[(Zn0.3Co0.7)1/3(Nb0.5Ta0.5)2/3]O3 at 1400 °C for 5 h. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

10 pages, 5883 KiB  
Article
Effect of Thickness on Ferroelectric Properties of Bi3.25La0.75Ti3O12 Thin Films
by Wenfeng Yue, Yali Cai, Quansheng Guo, Dawei Wang and Tingting Jia
Ceramics 2024, 7(1), 29-38; https://doi.org/10.3390/ceramics7010003 - 6 Jan 2024
Viewed by 2057
Abstract
The pursuit of low-power/low-voltage operation in devices has prompted a keen interest in the mesoscale effects within ferroelectric thin films. The downsizing of ferroelectrics can significantly influence performance; for instance, the remanent polarization and coercive field are susceptible to alterations based on thickness. [...] Read more.
The pursuit of low-power/low-voltage operation in devices has prompted a keen interest in the mesoscale effects within ferroelectric thin films. The downsizing of ferroelectrics can significantly influence performance; for instance, the remanent polarization and coercive field are susceptible to alterations based on thickness. In this study, randomly oriented Bi3.25La0.75Ti3O12 thin films were fabricated on Pt/Ti/SiO2/Si substrates using the sol–gel method, and SEM observations revealed rod-like grains in all thin films. The investigation delved into the correlation between dielectric and ferroelectric properties with thin film thickness. The thin film exhibited an increased remanent polarization and a reduced coercive electric field. Additionally, the ferroelectric domain structure was scrutinized through PFM, and the resistor properties of the BLT4 thin film were studied, which shows the potential of BLT thin films in non-volatile memory and memristor. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

8 pages, 2232 KiB  
Communication
Oxygen-Bonding State and Oxygen-Reduction Reaction Mechanism of Pr0.7Ca0.3Mn1−xCoxO3−d (x = 0, 0.1, 0.2, 0.3)
by Kanghee Jo, Seungjae Lee and Heesoo Lee
Ceramics 2023, 6(4), 2386-2393; https://doi.org/10.3390/ceramics6040146 - 15 Dec 2023
Cited by 1 | Viewed by 1596
Abstract
We investigated the effects of Co doping on Pr0.7Ca0.3MnO3−d in the perspective of an oxygen-bonding state change. In all compositions, Pr0.7Ca0.3Mn1−xCoxO3−d (PCMCx, x = 0, 0.1, 0.2, 0.3) showed [...] Read more.
We investigated the effects of Co doping on Pr0.7Ca0.3MnO3−d in the perspective of an oxygen-bonding state change. In all compositions, Pr0.7Ca0.3Mn1−xCoxO3−d (PCMCx, x = 0, 0.1, 0.2, 0.3) showed an orthorhombic structure, and the lattice gradually contracted with increasing Co content. The doped Co was mostly present as 2+ and 3+, which decreased the average oxidation value of the B site and created oxygen vacancies for charge compensation. However, as the Co content increased, the proportion of Co3+ increased, and the content of oxygen vacancies gradually decreased. In addition, the ratio of adsorbed oxygen in PCMC0.1 was the highest, and the B-O covalency was enhanced. Accordingly, the electrochemical reaction of oxygen with the cathode material in PCMC0.1 could occur most easily, showing the smallest polarization resistance among the Co-doped Pr0.7Ca0.3MnO3−d. We can confirm the formation of oxygen vacancies via Co doping and the effect of B-O covalency on the oxygen-reduction reaction of Pr0.7Ca0.3MnO3−d. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 5735 KiB  
Review
Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors
by Sairatun Nesa Soheli, Zhilun Lu, Dongyang Sun and Islam Shyha
Ceramics 2024, 7(2), 712-734; https://doi.org/10.3390/ceramics7020047 - 23 May 2024
Viewed by 2231
Abstract
The burgeoning significance of antiferroelectric (AFE) materials, particularly as viable candidates for electrostatic energy storage capacitors in power electronics, has sparked substantial interest. Among these, lead-free sodium niobate (NaNbO3) AFE materials are emerging as eco-friendly and [...] Read more.
The burgeoning significance of antiferroelectric (AFE) materials, particularly as viable candidates for electrostatic energy storage capacitors in power electronics, has sparked substantial interest. Among these, lead-free sodium niobate (NaNbO3) AFE materials are emerging as eco-friendly and promising alternatives to lead-based materials, which pose risks to human health and the environment, attributed to their superior recoverable energy density and dielectric breakdown strength. This review offers an insightful overview of the fundamental principles underlying antiferroelectricity and the applications of AFE materials. It underscores the recent advancements in lead-free NaNbO3-based materials, focusing on their crystal structures, phase transitions, and innovative strategies devised to tailor their electrostatic energy storage performance. Finally, this review delineates the prevailing challenges and envisages future directions in the realm of NaNbO3-based electrostatic energy storage capacitors, with the goal of fostering further advancements in this pivotal field. Full article
(This article belongs to the Special Issue Advances in Electronic Ceramics)
Show Figures

Graphical abstract

Back to TopTop