Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. Microstructural Characterization
3.3. Dielectric and Piezoelectric Characteristics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pyatakov, A.P.; Zvezdin, A.K. Magnetoelectric and multiferroic media. Phys. Uspekhi 2012, 55, 557–581. [Google Scholar] [CrossRef]
- Zhai, J.; Xing, Z.; Dong, S.; Li, J.; Viehland, D. Detection of pico-Tesla magnetic fields using magneto-electric sensors at room temperature. Appl. Phys. Lett. 2006, 88, 062510. [Google Scholar] [CrossRef]
- Tehrani, S.; Slaughter, J.M.; Deherrera, M.; Engel, B.N.; Rizzo, N.D.; John Salter, J.; Durlam, M.; Dave, R.W.; Janesky, J.; Butcher, B.; et al. Magnetoresistive random access memory using magnetic tunnel junctions. Proc. IEEE 2003, 91, 703–714. [Google Scholar] [CrossRef]
- Borders, W.A.; Akima, H.; Fukami, S.; Moriya, S.; Kurihara, S.; Horio, Y.; Sato, S.; Ohno, H. Analogue spin-orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 2016, 10, 013007. [Google Scholar] [CrossRef]
- Rojac, T.; Bencan, A.; Malic, B.; Tutuncu, G.; Jones, J.L.; Daniels, J.E.; Damjanovic, D. BiFeO3 ceramics: Processing, Electrical, and Electromechanical Properties. J. Am. Ceram. Soc. 2014, 97, 1993–2011. [Google Scholar] [CrossRef]
- Catalan, G.; Scott, J.F. Physics and applications of bismuth ferrite. Adv. Mater. 2009, 21, 2463–2485. [Google Scholar] [CrossRef]
- Boldyrev, N.A.; Sitalo, E.I.; Shilkina, L.A.; Nazarenko, A.V.; Ushakov, A.D.; Shur, V.Y.; Reznichenko, L.A.; Glazunova, E.V. Structure and Relaxor Behavior of (0.5 − x)BiFeO3-0.5PbFe0.5Nb0.5O3-xPbTiO3 Ternary Ceramics. Ceramics 2023, 6, 1735–1748. [Google Scholar] [CrossRef]
- Tian, Y.; Xue, F.; Fu, Q.; Zhou, L.; Wang, C.; Gou, H.; Zhang, M. Structural and physical properties of Ti-doped BiFeO3 nanoceramics. Ceram. Int. 2018, 44, 4287–4291. [Google Scholar] [CrossRef]
- Khasbulatov, S.V.; Pavelko, A.A.; Shilkina, L.A.; Reznichenko, L.A.; Gadjiev, G.G.; Bakmaev, A.G.; Magomedov, M.-R.M.; Omarov, Z.M.; Aleshin, V.A. Phase composition, microstructure, and thermophysical and dielectric properties of multiferroic Bi1−xDyxFeO3. Thermophys. Aeromech. 2016, 23, 445–450. [Google Scholar] [CrossRef]
- Ahart, M.; Somayazulu, M.; Cohen, R.E.; Ganesh, P.; Dera, P.; Mao, H.; Hemley, R.J.; Ren, Y.; Liermann, P.; Wu, Z. Origin of morphotropic phase boundaries in ferroelectrics. Nature 2008, 451, 545–548. [Google Scholar] [CrossRef]
- Jaffe, B.; Cook, W.R., Jr.; Jaffe, H. Piezoelectric Ceramics; Academic Press: New York, NY, USA, 1971. [Google Scholar]
- Kumar, M.M.; Srinivas, A.; Suryanarayana, S.V. Structure property relations in BiFeO3/BaTiO3 solid solutions. J. Appl. Phys. 2000, 87, 855–862. [Google Scholar] [CrossRef]
- Tong, K.; Zhou, C.; Wang, J.; Li, Q.; Yang, L.; Xu, J.; Zeng, W.; Chen, G.; Yuan, C.; Rao, G. Enhanced piezoelectricity and high-temperature sensitivity of Zn-modified BF-BT ceramics by in situ and ex situ measuring. Ceram. Int. 2017, 43, 3734–3740. [Google Scholar] [CrossRef]
- Li, Q.; Wei, J.; Cheng, J.; Chen, J. High temperature dielectric, ferroelectric and piezoelectric properties of Mn-modified BiFeO3-BaTiO3 lead-free ceramics. J. Mater. Sci. 2017, 52, 229–237. [Google Scholar] [CrossRef]
- Xun, B.-W.; Wang, N.; Zhang, B.-P.; Chen, X.-Y.; Zheng, Y.-Q.; Jin, W.-S.; Mao, R.; Liang, K. Enhanced piezoelectric properties of 0.7BiFeO3-0.3BaTiO3 lead-free piezoceramics with high Curie temperature by optimizing Bi self-compensation. Ceram. Int. 2019, 45, 24382–24391. [Google Scholar] [CrossRef]
- Zhou, Q.; Zhou, C.; Yang, H.; Yuan, C.; Chen, G.; Cao, L.; Fan, Q. Piezoelectric and ferroelectric properties of Ga modified BiFeO3–BaTiO3 lead-free ceramics with high Curie temperature. J. Mater. Sci. Mater. Electron. 2014, 25, 196–201. [Google Scholar] [CrossRef]
- Chen, J.; Cheng, J. High Electric-Induced Strain and Temperature-Dependent Piezoelectric Properties of 0.75BF–0.25BZT Lead-Free Ceramics. J. Am. Ceram. Soc. 2016, 99, 536–542. [Google Scholar] [CrossRef]
- Xun, B.; Tang, Y.-C.; Chen, J.Y.; Zhang, B.P. Enhanced resistance in Bi(Fe1-xScx)O3-0.3BaTiO3 lead-free piezoelectric ceramics: Facile analysis and reduction of oxygen vacancy. J. Eur. Ceram. Soc. 2019, 39, 4085–4095. [Google Scholar] [CrossRef]
- Sehirlioglu, A.; Sayir, A.; Dynys, F. High temperature properties of BiScO3-PbTiO3 piezoelectric ceramics. Appl. Phys. 2009, 106, 014102. [Google Scholar] [CrossRef]
- Zhou, C.; Yang, H.; Zhou, Q.; Chen, G.; Li, W.; Wang, H. Effects of Bi excess on the structure and electrical properties of high-temperature BiFeO3–BaTiO3 piezoelectric ceramics. J. Mater. Sci. Mater. Electron. 2013, 24, 1685–1689. [Google Scholar] [CrossRef]
- Zhang, Y.-R.; Li, J.-F.; Zhang, B.-P.; Peng, C.-E. Piezoelectric and ferroelectric properties of Bi-compensated (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics. J. Appl. Phys. 2008, 103, 074109. [Google Scholar] [CrossRef]
- Wang, X.X.; Tang, X.G.; Kwok, K.W.; Chan, H.L.W.; Choy, C.L. Effect of excess Bi2O3 on the electrical properties and microstructure of (Bi1/2Na1/2)TiO3 ceramics. Appl. Phys. A Mater. Sci. Process. 2005, 80, 1071–1075. [Google Scholar] [CrossRef]
- Boldyrev, N.A.; Pavlenko, A.V.; Shilkina, L.A.; Nazarenko, A.V.; Reznichenko, L.A.; Miller, A.I. Structure, microstructure, and dielectric responses of (1−x)BiFeO3-xBaTiO3 solid solutions. Bull. Russ. Acad. Sci. Phys. 2016, 80, 1303–1305. [Google Scholar] [CrossRef]
- Urusov, V.S. Theory of Isomorphic Miscibility; M.: Science: Moscow, Russia, 1977. [Google Scholar]
- Mirkin, L.I. Handbook of X-Ray Structural Analysis of Polycrystals; State Publishing House of Physics and Mathematics Literature: Moscow, Russia, 1961. [Google Scholar]
- Bokiy, G.B. Introduction to Crystal Chemistry; M.: MSU Publishing House: Moscow, Russia, 1954. [Google Scholar]
- Pauling, L. General Chemistry; W.H. Freeman and company: San Francisco, CA, USA, 1970. [Google Scholar]
- Shilkina, L.A.; Talanov, M.V.; Shevtsova, S.I.; Grin’, P.G.; Kozakov, A.T.; Dudkina, S.I.; Nikol’skii, A.V.; Reznichenko, L.A. Isomorphism problems in lead-barium titanate. J. Alloys Compd. 2020, 829, 154589. [Google Scholar] [CrossRef]
- Guinier, A. X-Ray Diffraction of Crystals; Publishing House of Physics and Mathematics Literature: Moscow, Russia, 1961. [Google Scholar]
- Ustinov, A.I.; Olikhovskaya, L.A.; Shmyt’ko, I.M. X-ray diffraction in polydomain crystals modulated by transverse waves of atomic displacements. 2. Two-wave modulation of crystals. Crystallogr. Rep. 2000, 45, 374–379. [Google Scholar] [CrossRef]
- West, A.R. Solid State Chemistry and Its Applications; John Wiley & Sones: Chichester, UK; New York, NY, USA; Brisbane, Australia; Toronto, ON, Canada; Singapore, 1991. [Google Scholar]
Modificator | Composition | d33, pC/N | TC, K |
---|---|---|---|
Zn2+ | 0.7Bi0.4Zn0.6FeO3-0.3BaTiO3 [13] | 160 | 723 |
Mn4+ | 0.71BiFeO3-0.29BaTiO3 + 1.2 mol%MnO2 [14] | 169 | 779 |
Bi3+ | 0.7Bi1.02FeO3-0.3BaTiO3 [15] | 214 | 801 |
Ga3+ | 0.7Bi(Fe0.98Ga0.02)O3-0.29BaTiO3 [16] | 157 | 740 |
Zr4+ | 0.75BiFeO3-0.25Ba(Zr0.1Ti0.9)O3 [17] | 138 | 729 |
Sc3+ | 0.7Bi(Fe0.98Sc0.02)O3-0.3BaTiO3 [18] | 165 | 778 |
Bi3+ | 0.71BiFeO3-0.29BaTiO3 [this work] | 120 | 650–750 |
Sample | ρexp, g/cm3 | ρrel, % |
---|---|---|
BF-0.29BT | 7.03 | 91.06 |
BF-0.3BT | 7.00 | 90.67 |
BF-0.31BT | 7.03 | 91.66 |
BF-0.32BT | 7.05 | 92.40 |
BF-0.33BT | 7.04 | 92.63 |
BF-0.29BTm | 7.28 | 94.33 |
BF-0.3BTm | 7.28 | 94.32 |
BF-0.31BTm | 7.24 | 94.45 |
BF-0.32BTm | 7.17 | 94.17 |
BF-0.33BTm | 7.21 | 94.90 |
Cation | f [25] | R, Å [26] | ΔR/Rmin × 100, % | EN [27] | ΔEN |
---|---|---|---|---|---|
Ba2+ | 54 | 1.54 for CN 12 | 15 | 0.9 | 1.0 |
Bi3+ | 80 | 1.34 for CN 12 | 1.9 | ||
Ti4+ | 18 | 0.64 for CN 6 | 4 | 1.5 | 0.3 |
Fe3+ | 23 | 0.67 for CN6 | 1.8 |
Diffraction Reflection and Composition | Wave Number | k | Λ, Å | N | Relation Between the Wave Numbers k |
---|---|---|---|---|---|
200 BF-0.31BT | 0.00104 | 963 | 241 | ||
0.00314 | 318 | 79.6 | |||
0.00424 | 235 | 59 | |||
111 BF-0.31BTm | |||||
0.0018 | 556 | 80.5 | |||
0.00359 | 278 | 40 | |||
0.00539 | 185.6 | 27 | |||
0.00036 | 2781 | 403 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boldyrev, N.A.; Esin, E.S.; Shilkina, L.A.; Dudkina, S.I.; Nagaenko, A.V.; Reznichenko, L.A. Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3. Ceramics 2025, 8, 7. https://doi.org/10.3390/ceramics8010007
Boldyrev NA, Esin ES, Shilkina LA, Dudkina SI, Nagaenko AV, Reznichenko LA. Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3. Ceramics. 2025; 8(1):7. https://doi.org/10.3390/ceramics8010007
Chicago/Turabian StyleBoldyrev, Nikita A., Egor S. Esin, Lidia A. Shilkina, Svetlana I. Dudkina, Alexander V. Nagaenko, and Larisa A. Reznichenko. 2025. "Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3" Ceramics 8, no. 1: 7. https://doi.org/10.3390/ceramics8010007
APA StyleBoldyrev, N. A., Esin, E. S., Shilkina, L. A., Dudkina, S. I., Nagaenko, A. V., & Reznichenko, L. A. (2025). Effect of Superstoichiometric Bismuth Addition on the Structure and Dielectric Characteristics of the Solid Solutions (1−x)BiFeO3-xBaTiO3. Ceramics, 8(1), 7. https://doi.org/10.3390/ceramics8010007