Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors
Abstract
:1. Introduction
2. Fundamentals of AFEs
2.1. Definition of AFEs
2.2. Applications of AFEs
3. Dielectric Capacitors for Energy Storage
4. Structural Characteristics of -Based Ceramics
4.1. Crystal Structures of NaNbO3
4.2. Phase Transitions in NaNbO3
4.3. Phase Manipulation in NaNbO3-Based Ceramics
5. Tailoring Energy Storage Performance in -Based Ceramics
5.1. Incorporation of MnO2
5.2. Chemical Doping
5.3. Improving Energy Storage Properties of NaNbO3-Based Ceramics: Comprehensive Strategy Summaries
5.3.1. Microstructure Modification
5.3.2. Electrical Property Tuning
5.3.3. Phase Engineering
6. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feteira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for high-energy density capacitors: Current status and future perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Cao, Y.; Zhu, K.; Yan, F.; Shi, C.; Bai, H.; Ge, G.; Yang, J.; Yang, W.; Li, G. Ultrahigh energy harvesting properties in temperature-insensitive eco-friendly high-performance KNN-based textured ceramics. J. Mater. Chem. A 2022, 10, 7978–7988. [Google Scholar] [CrossRef]
- Yan, F.; Bai, H.; Ge, G.; Lin, J.; Zhu, K.; Li, G.; Qian, J.; Shen, B.; Zhai, J.; Liu, Z. Boosting Energy Storage Performance of Lead-Free Ceramics via Layered Structure Optimization Strategy. Small 2022, 18, 2202575. [Google Scholar] [CrossRef] [PubMed]
- Kusko, A.; Dedad, J. Short-term, long-term, energy storage methods for standby electric power systems. In Proceedings of the Fourtieth IAS Annual Meeting. Conference Record of the 2005 Industry Applications Conference, Hong Kong, China, 2–6 October 2005; pp. 2672–2678. [Google Scholar]
- Yao, K.; Chen, S.; Rahimabady, M.; Mirshekarloo, M.S.; Yu, S.; Tay, F.E.H.; Sritharan, T.; Lu, L. Nonlinear dielectric thin films for high-power electric storage with energy density comparable with electrochemical supercapacitors. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2011, 58, 1968–1974. [Google Scholar] [PubMed]
- Gomez Vidales, A.; Sridhar, D.; Meunier, J.-L.; Omanovic, S. Nickel oxide on directly grown carbon nanofibers for energy storage applications. J. Appl. Electrochem. 2020, 50, 1217–1229. [Google Scholar] [CrossRef]
- Gomez Vidales, A.; Kim, J.; Omanovic, S. Ni0.6−xMo0.4−xIrx-oxide as an electrode material for supercapacitors: Investigation of the influence of iridium content on the charge storage/delivery. J. Solid State Electrochem. 2019, 23, 2129–2139. [Google Scholar] [CrossRef]
- Bhalerao, S.; Ambhore, N.; Kadam, M. Polymer matrix composite in high voltage applications: A review. Biointerface Res. Appl. Chem 2022, 12, 8343–8352. [Google Scholar]
- Christen, T.; Carlen, M.W. Theory of Ragone plots. J. Power Sources 2000, 91, 210–216. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, F.; Hao, H.; Cheng, Z.; Liu, H.; Li, J.-F.; Zhang, S. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 2019, 102, 72–108. [Google Scholar] [CrossRef]
- Sherrill, S.A.; Banerjee, P.; Rubloff, G.W.; Lee, S.B. High to ultra-high power electrical energy storage. Phys. Chem. Chem. Phys. 2011, 13, 20714–20723. [Google Scholar] [CrossRef]
- Whittingham, M.S. Materials challenges facing electrical energy storage. Mrs Bull. 2008, 33, 411–419. [Google Scholar] [CrossRef]
- Jaffe, B. Antiferroelectric ceramics with field-enforced transitions: A new nonlinear circuit element. Proc. IRE 1961, 49, 1264–1267. [Google Scholar] [CrossRef]
- Ulrich, R.; Schaper, L.; Nelms, D.; Leftwich, M. Comparison of paraeletric and ferroelectric materials for applications as dielectrics in thin film integrated capacitors. Int. J. Microcircuits Electron. Packag. 2000, 23, 172–181. [Google Scholar]
- Park, S.-E.; Shrout, T.R. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 1997, 82, 1804–1811. [Google Scholar] [CrossRef]
- Love, G.R. Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 1990, 73, 323–328. [Google Scholar] [CrossRef]
- Krohns, S.; Lunkenheimer, P. Ferroelectric polarization in multiferroics. Phys. Sci. Rev. 2019, 4, 20190015. [Google Scholar] [CrossRef]
- Gao, J.; Li, Q.; Zhang, S.; Li, J.-F. Lead-free antiferroelectric AgNbO3: Phase transitions and structure engineering for dielectric energy storage applications. J. Appl. Phys. 2020, 128, 070903. [Google Scholar] [CrossRef]
- Tolédano, P.; Guennou, M. Theory of antiferroelectric phase transitions. Phys. Rev. B 2016, 94, 014107. [Google Scholar] [CrossRef]
- Li, P.-F.; Liao, W.-Q.; Tang, Y.-Y.; Ye, H.-Y.; Zhang, Y.; Xiong, R.-G. Unprecedented ferroelectric–antiferroelectric–paraelectric phase transitions discovered in an organic–inorganic hybrid perovskite. J. Am. Chem. Soc. 2017, 139, 8752–8757. [Google Scholar] [CrossRef]
- Xu, C.; Liu, Z.; Chen, X.; Yan, S.; Cao, F.; Dong, X.; Wang, G. Pulse discharge properties of PLZST antiferroelectric ceramics compared with ferroelectric and linear dielectrics. AIP Adv. 2017, 7, 115108. [Google Scholar] [CrossRef]
- Sawaguchi, E.; Maniwa, H.; Hoshino, S. Antiferroelectric structure of lead zirconate. Phys. Rev. 1951, 83, 1078. [Google Scholar] [CrossRef]
- Yang, D.; Gao, J.; Shu, L.; Liu, Y.-X.; Yu, J.; Zhang, Y.; Wang, X.; Zhang, B.-P.; Li, J.-F. Lead-free antiferroelectric niobates AgNbO3 and NaNbO3 for energy storage applications. J. Mater. Chem. A 2020, 8, 23724–23737. [Google Scholar] [CrossRef]
- Shirane, G.; Pepinsky, R. Phase Transitions in Antiferroelectric PbHfO3. Phys. Rev. 1953, 91, 812. [Google Scholar] [CrossRef]
- Haertling, G. Improved hot-pressed electrooptic ceramics in the (Pb, La)(Zr, Ti) O3 system. J. Am. Ceram. Soc. 1971, 54, 303–309. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, P.; Zhang, Y.; Kandula, K.R.; Xu, J.; Zhang, G.; Jiang, S. Low electric-field-induced strain and high energy storage efficiency in (Pb, Ba, La)(Zr, Sn, Ti) O3 antiferroelectric ceramics through regulating the content of La. Ceram. Int. 2020, 46, 18106–18113. [Google Scholar] [CrossRef]
- Dan, Y.; Zou, K.; Chen, G.; Yu, Y.; Zhang, Y.; Zhang, Q.; Lu, Y.; Zhang, Q.; He, Y. Superior energy-storage properties in (Pb, La)(Zr, Sn, Ti) O3 antiferroelectric ceramics with appropriate La content. Ceram. Int. 2019, 45, 11375–11381. [Google Scholar] [CrossRef]
- Xu, H.; Dan, Y.; Zou, K.; Chen, G.; Zhang, Q.; Lu, Y.; He, Y. Superior energy storage performance in Pb0.97La0.02(Zr0.50Sn0.43Ti0.07)O3 antiferroelectric ceramics. J. Mater. Res. Technol. 2019, 8, 3291–3296. [Google Scholar] [CrossRef]
- Isupov, V. Ferroelectric and antiferroelectric perovskites PbB′ 0.5 B′′ 0.5 O3. Ferroelectrics 2003, 289, 131–195. [Google Scholar] [CrossRef]
- Hao, X.; Zhao, Y.; Zhang, Q. Phase structure tuned electrocaloric effect and pyroelectric energy harvesting performance of (Pb0.97La0.02)(Zr, Sn, Ti) O3 antiferroelectric thick films. J. Phys. Chem. C 2015, 119, 18877–18885. [Google Scholar] [CrossRef]
- O’Connor, D.; Hou, D.; Ye, J.; Zhang, Y.; Ok, Y.S.; Song, Y.; Coulon, F.; Peng, T.; Tian, L. Lead-based paint remains a major public health concern: A critical review of global production, trade, use, exposure, health risk, and implications. Environ. Int. 2018, 121, 85–101. [Google Scholar] [CrossRef]
- Kumar, A.; Kumar, A.; MMS, C.-P.; Chaturvedi, A.K.; Shabnam, A.A.; Subrahmanyam, G.; Mondal, R.; Gupta, D.K.; Malyan, S.K.; Kumar, S.S. Lead toxicity: Health hazards, influence on food chain, and sustainable remediation approaches. Int. J. Environ. Res. Public Health 2020, 17, 2179. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Xu, Z. Recycling of non-metallic fractions from waste electrical and electronic equipment (WEEE): A review. Waste Manag. 2014, 34, 1455–1469. [Google Scholar] [CrossRef] [PubMed]
- Goosey, E.; Goosey, M. The materials of waste electrical and electronic equipment. In Waste Electrical and Electronic Equipment (WEEE) Handbook; Elsevier: Amsterdam, The Netherlands, 2019; pp. 231–262. [Google Scholar]
- Sun, Z.; Wang, Z.; Tian, Y.; Wang, G.; Wang, W.; Yang, M.; Wang, X.; Zhang, F.; Pu, Y. Progress, outlook, and challenges in lead-free energy-storage ferroelectrics. Adv. Electron. Mater. 2020, 6, 1900698. [Google Scholar] [CrossRef]
- Kumari, P.; Rai, R.; Sharma, S.; Shandilya, M.; Tiwari, A. State-of-the-art of lead free ferroelectrics: A critical review. Adv. Mater. Lett 2015, 6, 453–484. [Google Scholar] [CrossRef]
- Zhang, S.; Malič, B.; Li, J.-F.; Rödel, J. Lead-free ferroelectric materials: Prospective applications. J. Mater. Res. 2021, 36, 985–995. [Google Scholar] [CrossRef]
- Liu, Z.; Lu, T.; Ye, J.; Wang, G.; Dong, X.; Withers, R.; Liu, Y. Antiferroelectrics for energy storage applications: A review. Adv. Mater. Technol. 2018, 3, 1800111. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, Y.; Zhao, L.; Lee, K.-Y.; Liu, Q.; Studer, A.; Hinterstein, M.; Zhang, S.; Li, J.-F. Enhanced antiferroelectric phase stability in La-doped AgNbO3: Perspectives from the microstructure to energy storage properties. J. Mater. Chem. A 2019, 7, 2225–2232. [Google Scholar] [CrossRef]
- Gao, J.; Liu, Q.; Dong, J.; Wang, X.; Zhang, S.; Li, J.-F. Local structure heterogeneity in Sm-doped AgNbO3 for improved energy-storage performance. ACS Appl. Mater. Interfaces 2020, 12, 6097–6104. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Zhao, L.; Liu, Q.; Wang, X.; Zhang, S.; Li, J.F. Antiferroelectric-ferroelectric phase transition in lead-free AgNbO3 ceramics for energy storage applications. J. Am. Ceram. Soc. 2018, 101, 5443–5450. [Google Scholar] [CrossRef]
- Lu, Y.; Karaki, T.; Fujii, T. Hydrothermal synthesis of plate-like sodium niobate particles. Ceram. Int. 2015, 41, S174–S179. [Google Scholar] [CrossRef]
- Wang, J.; Wan, X.; Rao, Y.; Zhao, L.; Zhu, K. Hydrothermal synthesized AgNbO3 powders: Leading to greatly improved electric breakdown strength in ceramics. J. Eur. Ceram. Soc. 2020, 40, 5589–5596. [Google Scholar] [CrossRef]
- Vousden, P. The structure of ferroelectric sodium niobate at room temperature. Acta Crystallogr. 1951, 4, 545–551. [Google Scholar] [CrossRef]
- Kittel, C. Theory of antiferroelectric crystals. Phys. Rev. 1951, 82, 729. [Google Scholar] [CrossRef]
- Torres-Pardo, A.; Jiménez, R.; García-González, E.; González-Calbet, J.M. Phase coexistence in NaNb(1−x)TaxO3 materials with enhanced dielectric properties. J. Mater. Chem. 2012, 22, 14938–14943. [Google Scholar] [CrossRef]
- Koruza, J.; Malič, B.; Kosec, M. Microstructure evolution during sintering of sodium niobate. J. Am. Ceram. Soc. 2011, 94, 4174–4178. [Google Scholar] [CrossRef]
- Manan, A.; Rehman, M.U.; Ullah, A.; Ahmad, A.S.; Iqbal, Y.; Qazi, I.; Khan, M.A.; Shah, H.U.; Wazir, A.H. High energy storage density with ultra-high efficiency and fast charging–discharging capability of sodium bismuth niobate lead-free ceramics. J. Adv. Dielectr. 2021, 11, 2150018. [Google Scholar] [CrossRef]
- Gao, P.; Liu, Z.; Zhang, N.; Wu, H.; Bokov, A.A.; Ren, W.; Ye, Z.-G. New antiferroelectric perovskite system with ultrahigh energy-storage performance at low electric field. Chem. Mater. 2019, 31, 979–990. [Google Scholar] [CrossRef]
- Chauhan, A.; Patel, S.; Vaish, R.; Bowen, C.R. Anti-ferroelectric ceramics for high energy density capacitors. Materials 2015, 8, 8009–8031. [Google Scholar] [CrossRef] [PubMed]
- Setter, N. What is a ferroelectric—A materials designer perspective. Ferroelectrics 2016, 500, 164–182. [Google Scholar] [CrossRef]
- Berlincourt, D. Transducers using forced transitions between ferroelectric and antiferroelectric states. IEEE Trans. Sonics Ultrason 1966, 13, 116–124. [Google Scholar] [CrossRef]
- Berlincourt, D.; Krueger, H.; Jaffe, B. Stability of phases in modified lead zirconate with variation in pressure, electric field, temperature and composition. J. Phys. Chem. Solids 1964, 25, 659–674. [Google Scholar] [CrossRef]
- Wei, X.-K.; Dunin-Borkowski, R.E.; Mayer, J. Structural phase transition and in-situ energy storage pathway in nonpolar materials: A review. Materials 2021, 14, 7854. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wei, T.; Zhang, Q.; Ma, W.; Fan, P.; Salamon, D.; Zhang, S.-T.; Nan, B.; Tan, H.; Ye, Z.-G. A review on the development of lead-free ferroelectric energy-storage ceramics and multilayer capacitors. J. Mater. Chem. C 2020, 8, 16648–16667. [Google Scholar] [CrossRef]
- Yang, Z.; Du, H.; Jin, L.; Poelman, D. High-performance lead-free bulk ceramics for electrical energy storage applications: Design strategies and challenges. J. Mater. Chem. A 2021, 9, 18026–18085. [Google Scholar] [CrossRef]
- Engel, G.F. Design and materials of antiferroelectric capacitors for high density power electronic applications. In Proceedings of the CIPS 2016; 9th International Conference on Integrated Power Electronics Systems, Nuremberg, Germany, 8–10 March 2016; pp. 1–7. [Google Scholar]
- Hao, X.; Zhai, J.; Kong, L.B.; Xu, Z. A comprehensive review on the progress of lead zirconate-based antiferroelectric materials. Prog. Mater. Sci. 2014, 63, 1–57. [Google Scholar] [CrossRef]
- Tan, X.; Ma, C.; Frederick, J.; Beckman, S.; Webber, K.G. The antiferroelectric↔ ferroelectric phase transition in lead-containing and lead-free perovskite ceramics. J. Am. Ceram. Soc. 2011, 94, 4091–4107. [Google Scholar] [CrossRef]
- Zhou, Z.; Yang, Q.; Liu, M.; Zhang, Z.; Zhang, X.; Sun, D.; Nan, T.; Sun, N.; Chen, X. Antiferroelectric materials, applications and recent progress on multiferroic heterostructures. Spin 2015, 5, 1530001. [Google Scholar] [CrossRef]
- Chen, B.; Hasegawa, T.; Ohta, H.; Katayama, T. Antiferroelectric-to-ferroelectric phase transition in hexagonal rare-earth iron oxides. J. Mater. Chem. C 2022, 10, 5621–5626. [Google Scholar] [CrossRef]
- Prosandeev, S.; Prokhorenko, S.; Nahas, Y.; Yang, Y.; Xu, C.; Grollier, J.; Talbayev, D.; Dkhil, B.; Bellaiche, L. Hidden phases with neuromorphic responses and highly enhanced piezoelectricity in an antiferroelectric prototype. Phys. Rev. B 2022, 105, L100101. [Google Scholar] [CrossRef]
- Goh, Y.; Hwang, J.; Jeon, S. Excellent reliability and high-speed antiferroelectric HfZrO2 tunnel junction by a high-pressure annealing process and built-in bias engineering. ACS Appl. Mater. Interfaces 2020, 12, 57539–57546. [Google Scholar] [CrossRef]
- Ali, T.; Mertens, K.; Olivo, R.; Rudolph, M.; Oehler, S.; Kühnel, K.; Lehninger, D.; Müller, F.; Hoffmann, R.; Schramm, P. Impact of the Nonlinear Dielectric Hysteresis Properties of a Charge Trap Layer in a Novel Hybrid High-Speed and Low-Power Ferroelectric or Antiferroelectric HSO/HZO Boosted Charge Trap Memory. IEEE Trans. Electron Devices 2021, 68, 2098–2106. [Google Scholar] [CrossRef]
- Müller, J.; Polakowski, P.; Mueller, S.; Mikolajick, T. Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects. ECS J. Solid State Sci. Technol. 2015, 4, N30. [Google Scholar] [CrossRef]
- Ali, F.; Abbas, A.; Wu, G.; Daaim, M.; Akhtar, A.; Kim, K.H.; Yang, B. Novel Fluorite-Structured Materials for Solid-State Refrigeration. Small 2022, 18, 2200133. [Google Scholar] [CrossRef] [PubMed]
- Muller, J.; Boscke, T.S.; Schroder, U.; Mueller, S.; Brauhaus, D.; Bottger, U.; Frey, L.; Mikolajick, T. Ferroelectricity in simple binary ZrO2 and HfO2. Nano Lett. 2012, 12, 4318–4323. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Zhou, D.; Ali, M.; Ali, H.W.; Daaim, M.; Khan, S.; Hussain, M.M.; Sun, N. Recent progress on energy-related applications of HfO2-based ferroelectric and antiferroelectric materials. ACS Appl. Electron. Mater. 2020, 2, 2301–2317. [Google Scholar] [CrossRef]
- Randall, C.A.; Fan, Z.; Reaney, I.; Chen, L.Q.; Trolier-McKinstry, S. Antiferroelectrics: History, fundamentals, crystal chemistry, crystal structures, size effects, and applications. J. Am. Ceram. Soc. 2021, 104, 3775–3810. [Google Scholar] [CrossRef]
- Xu, H.; Guo, W.; Wang, J.; Ma, Y.; Han, S.; Liu, Y.; Lu, L.; Pan, X.; Luo, J.; Sun, Z. A metal-free molecular antiferroelectric material showing high phase transition temperatures and large electrocaloric effects. J. Am. Chem. Soc. 2021, 143, 14379–14385. [Google Scholar] [CrossRef]
- Kambale, K.; Mahajan, A.; Butee, S. Effect of grain size on the properties of ceramics. Met. Powder Rep. 2019, 74, 130–136. [Google Scholar] [CrossRef]
- Zhang, T.; Lei, Y.; Yin, J.; Du, J.; Yu, P. Effects of pores on dielectric breakdown of alumina ceramics under AC electric field. Ceram. Int. 2019, 45, 13951–13957. [Google Scholar] [CrossRef]
- Haddour, L.; Mesrati, N.; Goeuriot, D.; Tréheux, D. Relationships between microstructure, mechanical and dielectric properties of different alumina materials. J. Eur. Ceram. Soc. 2009, 29, 2747–2756. [Google Scholar] [CrossRef]
- Megaw, H.D. The seven phases of sodium niobate. Ferroelectrics 1974, 7, 87–89. [Google Scholar] [CrossRef]
- Lefkowitz, I.; Łukaszewicz, K.; Megaw, H. The high-temperature phases of sodium niobate and the nature of transitions in pseudosymmetric structures. Acta Crystallogr. 1966, 20, 670–683. [Google Scholar] [CrossRef]
- Xu, Y.; Hong, W.; Feng, Y.; Tan, X. Antiferroelectricity induced by electric field in NaNbO3-based lead-free ceramics. Appl. Phys. Lett. 2014, 104, 052903. [Google Scholar] [CrossRef]
- Mishra, S.; Choudhury, N.; Chaplot, S.; Krishna, P.; Mittal, R. Competing antiferroelectric and ferroelectric interactions in Na Nb O 3: Neutron diffraction and theoretical studies. Phys. Rev. B 2007, 76, 024110. [Google Scholar] [CrossRef]
- Lu, Z.; Sun, D.; Wang, G.; Zhao, J.; Zhang, B.; Wang, D.; Shyha, I. Energy storage properties in Nd-doped AgNbTaO3 lead-free antiferroelectric ceramics with Nb-site vacancies. J. Adv. Dielectr. 2023, 13, 2242006. [Google Scholar] [CrossRef]
- Lu, Z.; Zhu, Y.; Sun, D.; Wang, B.; Wang, D.; Day, S.; Wang, G. Phases study for AgNb (Ta, W)O3 lead-free antiferroelectric ceramics. Results Eng. 2023, 20, 101447. [Google Scholar] [CrossRef]
- Zhelnova, O.; Fesenko, O. Phase transitions and twinning in NaNbO3 crystals. Ferroelectrics 1987, 75, 469–475. [Google Scholar] [CrossRef]
- Wood, E.; Miller, R.; Remeika, J. The field-induced ferroelectric phase of sodium niobate. Acta Crystallogr. 1962, 15, 1273–1279. [Google Scholar] [CrossRef]
- Cross, L.E.; Nicholson, B.J. The optical and electrical properties of single crystals of sodium niobate. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1955, 46, 453–466. [Google Scholar] [CrossRef]
- Ulinzheev, A.; Leiderman, A.; Smotrakov, V.; Topolov, V.Y.; Fesenko, O. Phase transitions induced in NaNbO3 crystals by varying the direction of an external electric field. Phys. Solid State 1997, 39, 972–974. [Google Scholar] [CrossRef]
- Miller, R.C.; Wood, E.A.; Remeika, J.P.; Savage, A. Na (Nb1−xVx) O3 System and “Ferrielectricity”. J. Appl. Phys. 1962, 33, 1623–1630. [Google Scholar] [CrossRef]
- Cross, L. Electric double hysteresis in (KxNa1−x)NbO3 single crystals. Nature 1958, 181, 178–179. [Google Scholar] [CrossRef]
- Luo, N.; Ma, L.; Luo, G.; Xu, C.; Rao, L.; Chen, Z.; Cen, Z.; Feng, Q.; Chen, X.; Toyohisa, F. Well-defined double hysteresis loop in NaNbO3 antiferroelectrics. Nat. Commun. 2023, 14, 1776. [Google Scholar] [CrossRef] [PubMed]
- Chao, L.; Hou, Y.; Zheng, M.; Zhu, M. High dense structure boosts stability of antiferroelectric phase of NaNbO3 polycrystalline ceramics. Appl. Phys. Lett. 2016, 108, 212902. [Google Scholar] [CrossRef]
- Dungan, R.; Golding, R. Metastable ferroelectric sodium niobate. J. Am. Ceram. Soc. 1964, 47, 73–76. [Google Scholar] [CrossRef]
- Li, W.; Xia, X.; Zeng, J.; Zheng, L.; Li, G. Significant differences in NaNbO3 ceramics fabricated using Nb2O5 precursors with various crystal structures. Ceram. Int. 2020, 46, 3759–3766. [Google Scholar] [CrossRef]
- Koruza, J.; Groszewicz, P.; Breitzke, H.; Buntkowsky, G.; Rojac, T.; Malič, B. Grain-size-induced ferroelectricity in NaNbO3. Acta Mater. 2017, 126, 77–85. [Google Scholar] [CrossRef]
- Fan, Y.; Zhou, Z.; Liang, R.; Zhou, M.; Dong, X. The effect of A-site nonstoichiometry on the microstructure, electric properties, and phase stability of NaNbO3 polycrystalline ceramics. J. Eur. Ceram. Soc. 2019, 39, 4712–4718. [Google Scholar] [CrossRef]
- Zhang, M.-H.; Fulanović, L.; Egert, S.; Ding, H.; Groszewicz, P.B.; Kleebe, H.-J.; Molina-Luna, L.; Koruza, J. Electric-field-induced antiferroelectric to ferroelectric phase transition in polycrystalline NaNbO3. Acta Mater. 2020, 200, 127–135. [Google Scholar] [CrossRef]
- Johnston, K.E.; Griffin, J.M.; Walton, R.I.; Dawson, D.M.; Lightfoot, P.; Ashbrook, S.E. 93Nb NMR and DFT investigation of the polymorphs of NaNbO3. Phys. Chem. Chem. Phys. 2011, 13, 7565–7576. [Google Scholar] [CrossRef]
- Guo, H.; Shimizu, H.; Mizuno, Y.; Randall, C.A. Strategy for stabilization of the antiferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1 − x) NaNbO3-xSrZrO3 solid solution. J. Appl. Phys. 2015, 117, 214103. [Google Scholar] [CrossRef]
- Shimizu, H.; Guo, H.; Reyes-Lillo, S.E.; Mizuno, Y.; Rabe, K.M.; Randall, C.A. Lead-free antiferroelectric: X CaZrO3-(1 − x) NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans. 2015, 44, 10763–10772. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Shimizu, H.; Randall, C.A. Direct evidence of an incommensurate phase in NaNbO3 and its implication in NaNbO3-based lead-free antiferroelectrics. Appl. Phys. Lett. 2015, 107, 112904. [Google Scholar] [CrossRef]
- Shakhovoy, R.; Raevskaya, S.; Shakhovaya, L.; Suzdalev, A.D.; Raevski, I.; Yuzyuk, Y.I.; Semenchev, A.; El Marssi, M. Ferroelectric Q and antiferroelectric P phases’ coexistence and local phase transitions in oxygen-deficient NaNbO3 single crystal: Micro-Raman, dielectric and dilatometric studies. J. Raman Spectrosc. 2012, 43, 1141–1145. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R.; Xie, A.; Fu, J.; Zhang, D. Excellent energy-storage properties of NaNbO3-based lead-free antiferroelectric orthorhombic P-phase (Pbma) ceramics with repeatable double polarization-field loops. J. Eur. Ceram. Soc. 2019, 39, 3703–3709. [Google Scholar] [CrossRef]
- Ma, L.; Chen, Z.; Luo, G.; Che, Z.; Xu, C.; Shan, D.; Cen, Z.; Feng, Q.; Chen, X.; Fujita, T. High energy storage density in NaNbO3 antiferroelectrics with double hysteresis loop. J. Mater. 2023, in press. [CrossRef]
- Zhang, M.-H.; Ding, H.; Egert, S.; Zhao, C.; Villa, L.; Fulanović, L.; Groszewicz, P.B.; Buntkowsky, G.; Kleebe, H.-J.; Albe, K. Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxor states. Nat. Commun. 2023, 14, 1525. [Google Scholar] [CrossRef]
- Kondo, N.; Sakamoto, W.; Lee, B.-Y.; Iijima, T.; Kumagai, J.; Moriya, M.; Yogo, T. Improvement in ferroelectric properties of chemically synthesized lead-free piezoelectric (K, Na)(Nb, Ta)O3 thin films by Mn doping. Jpn. J. Appl. Phys. 2010, 49, 09MA04. [Google Scholar] [CrossRef]
- Guo, Y.; Xiao, P.; Wen, R.; Wan, Y.; Zheng, Q.; Shi, D.; Lam, K.H.; Liu, M.; Lin, D. Critical roles of Mn-ions in enhancing the insulation, piezoelectricity and multiferroicity of BiFeO3-based lead-free high temperature ceramics. J. Mater. Chem. C 2015, 3, 5811–5824. [Google Scholar] [CrossRef]
- Wechsler, B.; Klein, M.B. Thermodynamic point defect model of barium titanate and application to the photorefractive effect. JOSA B 1988, 5, 1711–1723. [Google Scholar] [CrossRef]
- Ding, H.; Zhang, M.H.; Koruza, J.; Molina-Luna, L.; Kleebe, H.J. Domain morphology of newly designed lead-free antiferroelectric NaNbO3-SrSnO3 ceramics. J. Am. Ceram. Soc. 2021, 104, 3715–3725. [Google Scholar] [CrossRef]
- Villa, L.; Albe, K. Role of doping and defect quenching in antiferroelectric NaNbO3 from first principles. Phys. Rev. B 2022, 106, 134101. [Google Scholar] [CrossRef]
- Berlincourt, D. Transducer using the electric field-forced antiferroelectric-ferroelectric transition. Ultrasonics 1968, 6, 48–51. [Google Scholar] [CrossRef]
- Zhou, M.; Liang, R.; Zhou, Z.; Dong, X. Superior energy storage properties and excellent stability of novel NaNbO3-based lead-free ceramics with A-site vacancy obtained via a Bi2O3 substitution strategy. J. Mater. Chem. A 2018, 6, 17896–17904. [Google Scholar] [CrossRef]
- Yang, L.; Kong, X.; Li, Q.; Lin, Y.-h.; Zhang, S.; Nan, C.-w. Excellent energy storage properties achieved in sodium niobate-based relaxor ceramics through doping tantalum. ACS Appl. Mater. Interfaces 2022, 14, 32218–32226. [Google Scholar] [CrossRef]
- Kobayashi, K.; Ryu, M.; Doshida, Y.; Mizuno, Y.; Randall, C.A. Novel High-Temperature Antiferroelectric-Based Dielectric NaNbO3–NaTaO3 Solid Solutions Processed in Low Oxygen Partial Pressures. J. Am. Ceram. Soc. 2013, 96, 531–537. [Google Scholar] [CrossRef]
- Yadav, A.; Fahad, M.; Satapathy, S.; Sarun, P. Effect of tantalum on the temperature dependent electrical characteristics of NaNb1−xTaxO3 (0.0 ≤ x ≤ 0.3) ceramics between 400 and 560 °C. J. Alloys Compd. 2019, 797, 902–911. [Google Scholar] [CrossRef]
- Zhu, L.-F.; Yan, Y.; Leng, H.; Li, X.; Cheng, L.-Q.; Priya, S. Energy-storage performance of NaNbO3 based multilayered capacitors. J. Mater. Chem. C 2021, 9, 7950–7957. [Google Scholar] [CrossRef]
- Chen, H.; Chen, X.; Shi, J.; Sun, C.; Dong, X.; Pang, F.; Zhou, H. Achieving ultrahigh energy storage density in NaNbO3–Bi (Ni0.5Zr0.5)O3 solid solution by enhancing the breakdown electric field. Ceram. Int. 2020, 46, 28407–28413. [Google Scholar] [CrossRef]
- Liang, C.; Wang, C.; Zhao, H.; Cao, W.; Huang, X.; Wang, C. Enhanced energy storage performance of NaNbO3-based ceramics via band and domain engineering. Ceram. Int. 2023, 49, 40326–40335. [Google Scholar] [CrossRef]
- Liu, G.; Chen, L.; Qi, H. Energy storage properties of NaNbO3-based lead-free superparaelectrics with large antiferrodistortion. Microstructures 2023, 3, 2023009. [Google Scholar]
- Liu, J.; Li, P.; Li, C.; Bai, W.; Wu, S.; Zheng, P.; Zhang, J.; Zhai, J. Synergy of a stabilized antiferroelectric phase and domain engineering boosting the energy storage performance of NaNbO3-based relaxor antiferroelectric ceramics. ACS Appl. Mater. Interfaces 2022, 14, 17662–17673. [Google Scholar] [CrossRef]
- Chen, H.; Wang, X.; Dong, X.; Pan, Y.; Wang, J.; Deng, L.; Dong, Q.; Zhang, H.; Zhou, H.; Chen, X. Adjusting the energy-storage characteristics of 0.95NaNbO3–0.05Bi(Mg0.5Sn0.5)O3 ceramics by doping linear perovskite materials. ACS Appl. Mater. Interfaces 2022, 14, 25609–25619. [Google Scholar] [CrossRef]
- Zhang, S.; Li, W.; Zhang, Y.; Tang, X.; Jiang, Y.; Guo, X. Excellent energy density and power density achieved in NaNbO3-based relaxor ferroelectric ceramics. Mater. Sci. Eng. B 2024, 299, 117025. [Google Scholar] [CrossRef]
- Yang, W.; Zeng, H.; Yan, F.; Qian, J.; Zhu, K.; Zhao, K.; Li, G.; Zhai, J. Microstructure-driven excellent energy storage NaNbO3-based lead-free ceramics. Ceram. Int. 2022, 48, 37476–37482. [Google Scholar] [CrossRef]
- Qi, H.; Li, W.; Wang, L.; Chen, L.; Liu, H.; Deng, S.; Chen, J. Large (anti) ferrodistortive NaNbO3-based lead-free relaxors: Polar nanoregions embedded in ordered oxygen octahedral tilt matrix. Mater. Today 2022, 60, 91–97. [Google Scholar] [CrossRef]
- Wang, X.; Chen, H.; Pan, Y.; Dong, Q.; Wang, J.; Chen, X.; Zhou, H. Dielectric ceramics with excellent energy storage properties were obtained by doping 0.92NaNbO3-0.08Bi (Ni0.5Zr0.5)O3 ceramics. J. Power Sources 2023, 566, 232934. [Google Scholar] [CrossRef]
- Xie, A.; Zuo, R.; Qiao, Z.; Fu, Z.; Hu, T.; Fei, L. NaNbO3-(Bi0.5Li0.5)TiO3 lead-free relaxor ferroelectric capacitors with superior energy-storage performances via multiple synergistic design. Adv. Energy Mater. 2021, 11, 2101378. [Google Scholar] [CrossRef]
- Li, H.; Pan, Z.; Chen, X.; Zhao, J.; Tang, L.; Liu, J.; Li, P.; Zhai, J. Stable relaxor ferroelectric phase of NaNbO3-based ceramic with superb energy storage performances. Mater. Today Phys. 2023, 38, 101208. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R.; Xie, A.; Tian, A.; Fu, J.; Zhang, Y.; Zhang, S. Ultrahigh Energy-Storage Density in NaNbO3-Based Lead-Free Relaxor Antiferroelectric Ceramics with Nanoscale Domains. Adv. Funct. Mater. 2019, 29, 1903877. [Google Scholar] [CrossRef]
- Lv, Z.; Lu, T.; Liu, Z.; Hu, T.; Hong, Z.; Guo, S.; Xu, Z.; Song, Y.; Chen, Y.; Zhao, X. NaNbO3-Based Multilayer Ceramic Capacitors with Ultrahigh Energy Storage Performance. Adv. Energy Mater. 2024, 14, 2304291. [Google Scholar] [CrossRef]
- Jiang, J.; Li, X.; Li, L.; Guo, S.; Zhang, J.; Wang, J.; Zhu, H.; Wang, Y.; Zhang, S.-T. Novel lead-free NaNbO3-based relaxor antiferroelectric ceramics with ultrahigh energy storage density and high efficiency. J. Mater. 2022, 8, 295–301. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, X.; Li, L.; Guo, S.; Huang, M.; Zhang, J.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S.-T. Ultrahigh energy storage density in lead-free relaxor antiferroelectric ceramics via domain engineering. Energy Storage Mater. 2021, 43, 383–390. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Sun, N.; Hao, X. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitors. Inorg. Chem. Front. 2020, 7, 756–764. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Hao, X. Ultra-high energy-storage density and fast discharge speed of (Pb0.98−xLa0.02Srx)(Zr0.9Sn0.1)0.995O3 antiferroelectric ceramics prepared via the tape-casting method. J. Mater. Chem. A 2019, 7, 11858–11866. [Google Scholar] [CrossRef]
- Feng, Y.; Zhen, Y.; Jiang, X.; Yang, Z.; Qin, Z.; Yang, W.; Qie, Y.; Geng, H. Optimized energy storage performance in NaNbO3-based ceramics via composition modification and micro-structure control. Ceram. Int. 2023, 49, 14135–14144. [Google Scholar] [CrossRef]
- Jiang, J.; Meng, X.; Li, L.; Zhang, J.; Guo, S.; Wang, J.; Hao, X.; Zhu, H.; Zhang, S.-T. Enhanced energy storage properties of lead-free NaNbO3-based ceramics via A/B-site substitution. Chem. Eng. J. 2021, 422, 130130. [Google Scholar] [CrossRef]
- Qiao, Z.; Li, T.; Qi, H.; Zuo, R. Excellent energy storage properties in NaNbO3-based lead-free ceramics by modulating antiferrodistortive of P phase. J. Alloys Compd. 2022, 898, 162934. [Google Scholar] [CrossRef]
- Yang, J.; Zhao, Y.; Zhu, L.; Hao, X. Enhanced electrocaloric effect of relaxor potassium sodium niobate lead-free ceramic via multilayer structure. Scr. Mater. 2021, 193, 97–102. [Google Scholar] [CrossRef]
- Jenko, D.; Benčan, A.; Malič, B.; Holc, J.; Kosec, M. Electron microscopy studies of potassium sodium niobate ceramics. Microsc. Microanal. 2005, 11, 572–580. [Google Scholar] [CrossRef]
- Zhang, T.; Karaki, T.; Fujii, T. The preparation of MnO2-doped NaNbO3-based lead-free ceramics with enhanced energy storage performance and attractive electrocaloric effect. Jpn. J. Appl. Phys. 2022, 61, SB1028. [Google Scholar] [CrossRef]
- Pan, Z.; Liu, B.; Zhai, J.; Yao, L.; Yang, K.; Shen, B. NaNbO3 two-dimensional platelets induced highly energy storage density in trilayered architecture composites. Nano Energy 2017, 40, 587–595. [Google Scholar] [CrossRef]
- Lanfredi, S.; Dessemond, L.; Rodrigues, A.C. Effect of porosity on the electrical properties of polycrystalline sodium niobate: I, electrical conductivity. J. Am. Ceram. Soc. 2003, 86, 291–298. [Google Scholar] [CrossRef]
- Lanfredi, S.; Rodrigues, A. Impedance spectroscopy study of the electrical conductivity and dielectric constant of polycrystalline LiNbO3. J. Appl. Phys. 1999, 86, 2215–2219. [Google Scholar] [CrossRef]
- Lanfredi, S.; Carvalho, J.; Hernandes, A.C. Electric and dielectric properties of Bi12TiO20 single crystals. J. Appl. Phys. 2000, 88, 283–287. [Google Scholar] [CrossRef]
- Harttar, M.A.M.; Rashid, M.W.A.; Azlan, U.A.A. Physical and electrical properties enhancement of rare-earth doped-potassium sodium niobate (KNN): A review. Ceram. –Silikáty 2015, 59, 158–163. [Google Scholar]
- Lanfredi, S.; Rodrigues, A.C.; Dessemond, L. Effect of porosity on the electrical properties of polycrystalline sodium niobate: II, dielectric behavior. J. Am. Ceram. Soc. 2003, 86, 2103–2110. [Google Scholar] [CrossRef]
- Lu, Z.; Wang, G.; Bao, W.; Li, J.; Li, L.; Mostaed, A.; Yang, H.; Ji, H.; Li, D.; Feteira, A. Superior energy density through tailored dopant strategies in multilayer ceramic capacitors. Energy Environ. Sci. 2020, 13, 2938–2948. [Google Scholar] [CrossRef]
- Wang, G.; Li, J.; Zhang, X.; Fan, Z.; Yang, F.; Feteira, A.; Zhou, D.; Sinclair, D.C.; Ma, T.; Tan, X. Ultrahigh energy storage density lead-free multilayers by controlled electrical homogeneity. Energy Environ. Sci. 2019, 12, 582–588. [Google Scholar] [CrossRef]
- Qi, H.; Zuo, R. Linear-like lead-free relaxor antiferroelectric (Bi0.5Na0.5)TiO3–NaNbO3 with giant energy-storage density/efficiency and super stability against temperature and frequency. J. Mater. Chem. A 2019, 7, 3971–3978. [Google Scholar] [CrossRef]
- Dong, X.; Li, X.; Chen, X.; Chen, H.; Sun, C.; Shi, J.; Pang, F.; Zhou, H. High energy storage density and power density achieved simultaneously in NaNbO3-based lead-free ceramics via antiferroelectricity enhancement. J. Mater. 2021, 7, 629–639. [Google Scholar] [CrossRef]
- Tao, H.; Yin, J.; Zhao, C.; Wu, J. Relaxor behavior of potassium sodium niobate ceramics by domain evolution. J. Eur. Ceram. Soc. 2021, 41, 335–343. [Google Scholar] [CrossRef]
- Li, F.; Zhang, S.; Damjanovic, D.; Chen, L.Q.; Shrout, T.R. Local structural heterogeneity and electromechanical responses of ferroelectrics: Learning from relaxor ferroelectrics. Adv. Funct. Mater. 2018, 28, 1801504. [Google Scholar] [CrossRef]
- Yao, F.Z.; Wang, K.; Jo, W.; Webber, K.G.; Comyn, T.P.; Ding, J.X.; Xu, B.; Cheng, L.Q.; Zheng, M.P.; Hou, Y.D. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 2016, 26, 1217–1224. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, B.; Wang, K.; Li, J.-F.; Xiao, D.; Zhu, J.; Wu, J. Practical high strain with superior temperature stability in lead-free piezoceramics through domain engineering. J. Mater. Chem. A 2018, 6, 23736–23745. [Google Scholar] [CrossRef]
- Xu, K.; Li, J.; Lv, X.; Wu, J.; Zhang, X.; Xiao, D.; Zhu, J. Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 2016, 28, 8519–8523. [Google Scholar] [CrossRef]
- Zheng, T.; Wu, H.; Yuan, Y.; Lv, X.; Li, Q.; Men, T.; Zhao, C.; Xiao, D.; Wu, J.; Wang, K. The structural origin of enhanced piezoelectric performance and stability in lead free ceramics. Energy Environ. Sci. 2017, 10, 528–537. [Google Scholar] [CrossRef]
- Tao, H.; Wu, H.; Liu, Y.; Zhang, Y.; Wu, J.; Li, F.; Lyu, X.; Zhao, C.; Xiao, D.; Zhu, J. Ultrahigh performance in lead-free piezoceramics utilizing a relaxor slush polar state with multiphase coexistence. J. Am. Chem. Soc. 2019, 141, 13987–13994. [Google Scholar] [CrossRef]
- Koruza, J.; Liu, H.; Höfling, M.; Zhang, M.-H.; Veber, P. (K, Na) NbO3-based piezoelectric single crystals: Growth methods, properties, and applications. J. Mater. Res. 2020, 35, 990–1016. [Google Scholar] [CrossRef]
- Liu, X.; Tan, X. Giant strains in non-textured (Bi1/2Na1/2) TiO3-based lead-free ceramics. Adv. Mater. 2016, 28, 574–578. [Google Scholar] [CrossRef]
- Machado, R.; Sepliarsky, M.; Stachiotti, M. Relative phase stability and lattice dynamics of NaNbO3 from first-principles calculations. Phys. Rev. B 2011, 84, 134107. [Google Scholar] [CrossRef]
-Based Materials | (%) | Thickness (mm) | Bulk/MLCC | Electrode and Size | Year | Ref. | |||
---|---|---|---|---|---|---|---|---|---|
330 | 3.3 | 0.01 | 42.4 | 0.10 | Bulk | Ag, 3.14 | 2023 | [99] | |
− | 400 | 3.7 | 0.009 | 82.1 | 0.029 | MLCC | Pt | 2021 | [111] |
500 | 4.90 | 0.010 | ~72.0 | 0.15 ± 0.01 | Bulk | Ag, 0.785 | 2020 | [112] | |
405 | 5.0 | 0.012 | 83.1 | ~0.11 | Bulk | Au, ~3.14 | 2023 | [113] | |
680 | 5.4 | 0.008 | 82 | ~0.1 | Bulk | Ag, ~3.14 | 2023 | [114] | |
560 | 5.52 | 0.010 | 83.3 | 0.1 | Bulk | Au | 2022 | [115] | |
0.95 | 646 | 6.35 | 0.010 | 80.0 | 0.15 ± 0.01 | Bulk | Ag, 0.785 | 2022 | [116] |
380 | 6.45 | 0.017 | 82.72 | - | Bulk | - | 2024 | [117] | |
450 | 6.5 | 0.014 | 94.0 | 0.08 | Bulk | Au, 1.77 | 2022 | [108] | |
560 | 6.68 | 0.012 | 90.5 | 0.15 | Bulk | Au, 3.14 | 2022 | [118] | |
650 | 8.56 | 0.013 | 82.0 | ∼0.1 | Bulk | Au, ~3.14 | 2022 | [119] | |
655 | 8.6 | 0.013 | 83.5 | 0.094 | Bulk | 3.14 | 2023 | [120] | |
480 | ~8.73 | ~0.018 | ~80.1 | 0.12 | Bulk | Ag, 3.14 | 2021 | [121] | |
800 | 9.1 | 0.011 | 80.1 | 0.035 | Bulk | Au, 3.14 | 2023 | [122] | |
680 | ~12.2 | ~0.018 | ~69.0 | 0.15 | Bulk | Ag, 7.07 | 2019 | [123] | |
700 | 12.65 | 0.018 | 88.5 | 0.0055 | MLCC | 70 Ag/30 Pd | 2024 | [124] | |
983 | 16.5 | 0.017 | 83.3 | 0.06–0.08 | Bulk | Ag, 0.785 | 2022 | [125] | |
995 | 18.5 | 0.019 | 78.7 | 0.06–0.08 | Bulk | Ag, 0.785 | 2021 | [126] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Soheli, S.N.; Lu, Z.; Sun, D.; Shyha, I. Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors. Ceramics 2024, 7, 712-734. https://doi.org/10.3390/ceramics7020047
Soheli SN, Lu Z, Sun D, Shyha I. Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors. Ceramics. 2024; 7(2):712-734. https://doi.org/10.3390/ceramics7020047
Chicago/Turabian StyleSoheli, Sairatun Nesa, Zhilun Lu, Dongyang Sun, and Islam Shyha. 2024. "Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors" Ceramics 7, no. 2: 712-734. https://doi.org/10.3390/ceramics7020047
APA StyleSoheli, S. N., Lu, Z., Sun, D., & Shyha, I. (2024). Lead-Free NaNbO3-Based Ceramics for Electrostatic Energy Storage Capacitors. Ceramics, 7(2), 712-734. https://doi.org/10.3390/ceramics7020047