Impact of Micropulse and Radio Frequency Coupling in an Atmospheric Pressure Plasma Jet on the Synthesis of Gold Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Setup
2.3. Synthesis of Gold Nanoparticles
2.4. Characterization Techniques
3. Results and Discussions
3.1. Plasma Characterization
3.2. Influence of Process Conditions on Gold Nanoparticles Size and Shape
3.3. Implications of Dual Frequency on Gold Nanoparticle Production
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ealia, S.A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- Das, M.; Shim, K.H.; An, S.S.A.; Yi, D.K. Review on gold nanoparticles and their applications. Toxicol. Environ. Health Sci. 2011, 3, 193–205. [Google Scholar] [CrossRef]
- García-Álvarez, R.; Chen, L.; Nedilko, A.; Sánchez-Iglesias, A.; Rix, A.; Lederle, W.; Pathak, V.; Lammers, T.; von Plessen, G.; Kostarelos, K.; et al. Optimizing the Geometry of Photoacoustically Active Gold Nanoparticles for Biomedical Imaging. ACS Photonics 2020, 7, 646–652. [Google Scholar] [CrossRef]
- Siddique, S.; Chow, J.C.L. Gold Nanoparticles for Drug Delivery and Cancer Therapy. Appl. Sci. 2020, 10, 3824. [Google Scholar] [CrossRef]
- Priecel, P.; Salami, H.A.; Padilla, R.H.; Zhong, Z.; Lopez-Sanchez, J.A. Anisotropic gold nanoparticles: Preparation and applications in catalysis. Chin. J. Catal. 2016, 37, 1619–1650. [Google Scholar] [CrossRef]
- Zhang, G. Functional gold nanoparticles for sensing applications. Nanotechnol. Rev. 2013, 2, 269–288. [Google Scholar] [CrossRef]
- Huang, X.; Lan, T.; Zhang, B.; Ren, J. Gold nanoparticle–enzyme conjugates based FRET for highly sensitive determination of hydrogen peroxide, glucose and uric acid using tyramide reaction. Analyst 2012, 137, 3659–3666. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Li, J.; Li, Y. A review of plasma–liquid interactions for nanomaterial synthesis. J. Phys. D Appl. Phys. 2015, 48, 424005. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.E.; Graham, W.G.; Graves, D.B.; Hofman-Caris, R.C.H.M.; Maric, D.; Reid, J.P.; Ceriani, E.; et al. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Kim, S.M.; Kim, G.S.; Lee, S.Y. Effects of PVP and KCl concentrations on the synthesis of gold nanoparticles using a solution plasma processing. Mater. Lett. 2008, 62, 4354–4356. [Google Scholar] [CrossRef]
- Chen, Q.; Kaneko, T.; Hatakeyama, R. Rapid synthesis of water-soluble gold nanoparticles with control of size and assembly using gas–liquid interfacial discharge plasma. Chem. Phys. Lett. 2012, 521, 113–117. [Google Scholar] [CrossRef]
- Saito, G.; Akiyama, T. Nanomaterial synthesis using plasma generation in liquid. J. Nanomater. 2016, 2015, 123696. [Google Scholar] [CrossRef]
- Treesukkasem, N.; Chokradjaroen, C.; Theeramunkong, S.; Saito, N.; Watthanaphanit, A. Synthesis of Au Nanoparticles in Natural Matrices by Liquid-Phase Plasma: Effects on Cytotoxic Activity against Normal and Cancer Cell Lines. ACS Appl. Nano Mater. 2019, 2, 8051–8062. [Google Scholar] [CrossRef]
- Xuan, L.T.Q.; Nguyen, L.N.; Dao, N.T. Synthesis of stabilizer-free, homogeneous gold nanoparticles by cold atmospheric-pressure plasma jet and their optical sensing property. Nanotechnology 2022, 33, 105603. [Google Scholar] [CrossRef] [PubMed]
- Liguori, A.; Gallingani, T.; Padmanaban, D.B.; Laurita, R.; Velusamy, T.; Jain, G.; Macias-Montero, M.; Mariotti, D.; Gherardi, M. Synthesis of Copper-Based Nanostructures in Liquid Environments by Means of a Non-equilibrium Atmospheric Pressure Nanopulsed Plasma Jet. Plasma Chem. Plasma Process. 2018, 38, 1209–1222. [Google Scholar] [CrossRef]
- Kondeti, V.S.S.K.; Gangal, U.; Yatom, S.; Bruggeman, P.J.; Mogab, C.J.; Adams, A.C.; Flamm, D.L.; Laroussi, M.; Lu, X.; Keidar, M.; et al. Ag+ reduction and silver nanoparticle synthesis at the plasma–liquid interface by an RF driven atmospheric pressure plasma jet: Mechanisms and the effect of surfactant. J. Vac. Sci. Technol. A 2017, 35, 061302. [Google Scholar] [CrossRef]
- Habib, T.; Caiut, J.M.A.; Caillier, B. Synthesis of silver nanoparticles by atmospheric pressure plasma jet. Nanotechnology 2022, 33, 325603. [Google Scholar] [CrossRef]
- Meyer, S.A. Electrical Pulse Generator. U.S. Patent US4613779A, 23 September 1986. Available online: https://patents.google.com/patent/US4613779A/en (accessed on 22 August 2023).
- Patelli, A.; Falzacappa, E.V.; Scopece, P.; Pierobon, R.; Vezzu, S. Method for Generating an Atmospheric Plasma Jet and Atmospheric Plasma Minitorch Device. U.S. Patent WO2015071746A1, 21 May 2015. Available online: https://patents.google.com/patent/WO2015071746A1/en (accessed on 22 August 2023).
- Johnson, P.B.; Christy, R.W. Optical Constants of the Noble Metals. Phys. Rev. B 1972, 6, 4370–4379. [Google Scholar] [CrossRef]
- Voráč, J.; Synek, P.; Potočňáková, L.; Hnilica, J.; Kudrle, V. Batch processing of overlapping molecular spectra as a tool for spatio-temporal diagnostics of power modulated microwave plasma jet. Plasma Sources Sci. Technol. 2017, 26, 025010. [Google Scholar] [CrossRef]
- Wang, R.; Shen, Y.; Zhang, C.; Yan, P.; Shao, T. Comparison between helium and argon plasma jets on improving the hydrophilic property of PMMA surface. Appl. Surf. Sci. 2016, 367, 401–406. [Google Scholar] [CrossRef]
- Rezaei, F.; Gorbanev, Y.; Chys, M.; Nikiforov, A.; Van Hulle, S.W.H.; Cos, P.; Bogaerts, A.; De Geyter, N. Investigation of plasma-induced chemistry in organic solutions for enhanced electrospun PLA nanofibers. Plasma Process. Polym. 2018, 15, 1700226. [Google Scholar] [CrossRef]
- Xiong, Q.; Nikiforov, A.Y.; González, M.; Leys, C.; Lu, X.P. Characterization of an atmospheric helium plasma jet by relative and absolute optical emission spectroscopy. Plasma Sources Sci. Technol. 2012, 22, 015011. [Google Scholar] [CrossRef]
- Nascimento, F.D.; Kostov, K.G.; Machida, M.; Flacker, A. Properties of DBD plasma jets using powered electrode with and without contact with the plasma. IEEE Trans. Plasma Sci. 2021, 49, 1293–1301. [Google Scholar] [CrossRef]
- Nakajima, J.; Sekiguchi, H. Synthesis of ammonia using microwave discharge at atmospheric pressure. Thin Solid Films 2008, 516, 4446–4451. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Iza, F.; Brandenburg, R. Foundations of atmospheric pressure non-equilibrium plasmas. Plasma Sources Sci. Technol. 2017, 26, 123002. [Google Scholar] [CrossRef]
- Bischoff, L.; Hübner, G.; Korolov, I.; Donko, Z.; Hartmann, P.; Gans, T.; Held, J.; der Gathen, V.S.-V.; Liu, Y.; Mussenbrock, T.; et al. Experimental and computational investigations of electron dynamics in micro atmospheric pressure radio-frequency plasma jets operated in He/N2 mixtures. Plasma Sources Sci. Technol. 2018, 27, 125009. [Google Scholar] [CrossRef]
- Robert, R.; Hagelaar, G.; Sadeghi, N.; Magnan, R.; Stafford, L.; Massines, F. Role of excimer formation and induced photoemission on the Ar metastable kinetics in atmospheric pressure Ar–NH3 dielectric barrier discharges. Plasma Sources Sci. Technol. 2022, 31, 065010. [Google Scholar] [CrossRef]
- Magnan, R.; Hagelaar, G.J.M.; Chaker, M.; Massines, F. Atmospheric pressure dual RF–LF frequency discharge: Transition from α to α–γ-mode. Plasma Sources Sci. Technol. 2020, 30, 015010. [Google Scholar] [CrossRef]
- Pimpang, P.; Choopun, S. Monodispersity and stability of gold nanoparticles stabilized by using polyvinyl alcohol. Chiang Mai J. Sci. 2011, 38, 31–38. [Google Scholar]
- Cai, J.; Griffin, E.; Guarochico-Moreira, V.H.; Barry, D.; Xin, B.; Yagmurcukardes, M.; Zhang, S.; Geim, A.K.; Peeters, F.M.; Lozada-Hidalgo, M. Wien effect in interfacial water dissociation through proton-permeable graphene electrodes. Nat. Commun. 2022, 13, 5776. [Google Scholar] [CrossRef]
- Zhang, B.; Xu, Y.; Zheng, Y.; Dai, L.; Zhang, M.; Yang, J.; Chen, Y.; Chen, X.; Zhou, J. A Facile Synthesis of Polypyrrole/Carbon Nanotube Composites with Ultrathin, Uniform and Thickness-Tunable Polypyrrole Shells. Nanoscale Res. Lett. 2011, 6, 431. [Google Scholar] [CrossRef] [PubMed]
- Belmonte, T.; Nominé, A.V.; Noël, C.; Gries, T.; Milichko, V.; Belmahi, M.; Awaji, M.Y. Submerged Discharges in Liquids for Nanoobject Synthesis: Expectations and Capabilities. Plasma Chem. Plasma Process. 2023, 1–56. [Google Scholar] [CrossRef]
- Yamashita, Y.; Miyahara, R.; Sakamoto, K. Chapter 28—Emulsion and Emulsification Technology. In Cosmetic Science and Technology; Sakamoto, K., Lochhead, R.Y., Maibach, H.I., Yamashita, Y., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 489–506. [Google Scholar] [CrossRef]
- Xu, Y.-Z.; Zhang, Y.-R.; Zheng, J.-F.; Guo, C.; Niu, Z.-J.; Li, Z.-L. Assembly of Aggregated Colloidal Gold Nanoparticles on Gold Electrodes by In Situ Produced H+ Ions for SERS Substrates. Int. J. Electrochem. Sci. 2011, 6, 664–672. [Google Scholar] [CrossRef]
- Park, S.; Choe, W.; Lee, H.; Park, J.Y.; Kim, J.; Moon, S.Y.; Cvelbar, U. Stabilization of liquid instabilities with ionized gas jets. Nature 2021, 592, 49–53. [Google Scholar] [CrossRef]
- Wang, R.; Zuo, S.; Wu, D.; Zhang, J.; Zhu, W.; Becker, K.H.; Fang, J. Microplasma-Assisted Synthesis of Colloidal Gold Nanoparticles and Their Use in the Detection of Cardiac Troponin I (cTn-I). Plasma Process. Polym. 2015, 12, 380–391. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, T.; Ceroni, L.; Patelli, A.; Caiut, J.M.A.; Caillier, B. Impact of Micropulse and Radio Frequency Coupling in an Atmospheric Pressure Plasma Jet on the Synthesis of Gold Nanoparticles. Plasma 2023, 6, 623-636. https://doi.org/10.3390/plasma6040043
Habib T, Ceroni L, Patelli A, Caiut JMA, Caillier B. Impact of Micropulse and Radio Frequency Coupling in an Atmospheric Pressure Plasma Jet on the Synthesis of Gold Nanoparticles. Plasma. 2023; 6(4):623-636. https://doi.org/10.3390/plasma6040043
Chicago/Turabian StyleHabib, Tatiana, Ludovica Ceroni, Alessandro Patelli, José Mauricio Almeida Caiut, and Bruno Caillier. 2023. "Impact of Micropulse and Radio Frequency Coupling in an Atmospheric Pressure Plasma Jet on the Synthesis of Gold Nanoparticles" Plasma 6, no. 4: 623-636. https://doi.org/10.3390/plasma6040043
APA StyleHabib, T., Ceroni, L., Patelli, A., Caiut, J. M. A., & Caillier, B. (2023). Impact of Micropulse and Radio Frequency Coupling in an Atmospheric Pressure Plasma Jet on the Synthesis of Gold Nanoparticles. Plasma, 6(4), 623-636. https://doi.org/10.3390/plasma6040043