Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DBD Plasma Generation
2.3. DBD Plasma Polymerization of NaSS Monomer
2.4. IR and FT-IR Characterization and Analysis
2.5. Hydrophilicity Test Analysis
2.6. Methylene Blue Removal Analysis
3. Results
3.1. Characterization of PSS Using Infrared Spectroscopy
3.2. Formation and Hydrophilic Property of PSS/MBAA and PSS/DVB Polymer Network
3.3. Methylene Blue Water Pollutant Removal
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Brandenburg, R. Dielectric Barrier Discharges: Progress on Plasma Sources and on the Understanding of Regimes and Single Filaments. Plasma Sources Sci. Technol. 2017, 26, 053001. [Google Scholar] [CrossRef]
- Subedi, D.P.; Joshi, U.M.; Wong, C.S. Dielectric Barrier Discharge (DBD) Plasmas and Their Applications. In Plasma Science and Technology for Emerging Economies: An AAAPT Experience; Rawat, R.S., Ed.; Springer: Singapore, 2017; pp. 693–737. ISBN 978-981-10-4217-1. [Google Scholar]
- Ollegott, K.; Wirth, P.; Oberste-Beulmann, C.; Awakowicz, P.; Muhler, M. Fundamental Properties and Applications of Dielectric Barrier Discharges in Plasma-Catalytic Processes at Atmospheric Pressure. Chem. Ing. Tech. 2020, 92, 1542–1558. [Google Scholar] [CrossRef]
- He, J.; Wen, X.; Wu, L.; Chen, H.; Hu, J.; Hou, X. Dielectric Barrier Discharge Plasma for Nanomaterials: Fabrication, Modification and Analytical Applications. TrAC Trends Anal. Chem. 2022, 156, 116715. [Google Scholar] [CrossRef]
- Lisi, N.; Pasqual Laverdura, U.; Chierchia, R.; Luisetto, I.; Stendardo, S. A Water Cooled, High Power, Dielectric Barrier Discharge Reactor for CO2 Plasma Dissociation and Valorization Studies. Sci. Rep. 2023, 13, 7394. [Google Scholar] [CrossRef]
- Porrang, S.; Rahemi, N.; Davaran, S.; Mahdavi, M.; Hassanzadeh, B.; Gholipour, A.M. Direct Surface Modification of Mesoporous Silica Nanoparticles by DBD Plasma as a Green Approach to Prepare Dual-Responsive Drug Delivery System. J. Taiwan Inst. Chem. Eng. 2021, 123, 47–58. [Google Scholar] [CrossRef]
- Mieles, M.; Harper, S.; Ji, H.-F. Bulk Polymerization of Acrylic Acid Using Dielectric-Barrier Discharge Plasma in a Mesoporous Material. Polymers 2023, 15, 2965. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Cao, M.; Feng, E.; Sohlberg, K.; Ji, H.-F. Polymerization of Solid-State Aminophenol to Polyaniline Derivative Using a Dielectric Barrier Discharge Plasma. Plasma 2020, 3, 187–195. [Google Scholar] [CrossRef]
- Li, Y.; Atif, R.; Chen, K.; Cheng, J.; Chen, Q.; Qiao, Z.; Fridman, G.; Fridman, A.; Ji, H.-F. Polymerization of D-Ribose in Dielectric Barrier Discharge Plasma. Plasma 2018, 1, 144–149. [Google Scholar] [CrossRef]
- Chen, K.; Cao, M.; Qiao, Z.; He, L.; Wei, Y.; Ji, H.-F. Polymerization of Solid-State 2,2′-Bithiophene Thin Film or Doped in Cellulose Paper Using DBD Plasma and Its Applications in Paper-Based Electronics. ACS Appl. Polym. Mater. 2020, 2, 1518–1527. [Google Scholar] [CrossRef]
- Cheng, J.; Fan, Y.; Pei, X.; Tian, D.; Liu, Z.; Wei, Z.Z.; Ji, H.; Chen, Q. Mechanism and Reactive Species in a Fountain-Strip DBD Plasma for Degrading Perfluorooctanoic Acid (PFOA). Water 2022, 14, 3384. [Google Scholar] [CrossRef]
- Leduc, M.; Guay, D.; Leask, R.L.; Coulombe, S. Cell Permeabilization Using a Non-Thermal Plasma. New J. Phys. 2009, 11, 115021. [Google Scholar] [CrossRef]
- Shekhter, A.B.; Serezhenkov, V.A.; Rudenko, T.G.; Pekshev, A.V.; Vanin, A.F. Beneficial Effect of Gaseous Nitric Oxide on the Healing of Skin Wounds. Nitric Oxide 2005, 12, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Amiri Khoshkar Vandani, S.; Liu, Q.; Lam, Y.; Ji, H.-F. Enhancing Selectivity with Molecularly Imprinted Polymers via Non-Thermal Dielectric Barrier Discharge Plasma. Polymers 2024, 16, 2380. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Friedman, G.; Fridman, A.; Ji, H.-F. Decomposition of Sugars under Non-Thermal Dielectric Barrier Discharge Plasma. Clin. Plasma Med. 2014, 2, 56–63. [Google Scholar] [CrossRef]
- Guo, Y.; Ying, Y.; Mao, Y.; Peng, X.; Chen, B. Polystyrene Sulfonate Threaded through a Metal–Organic Framework Membrane for Fast and Selective Lithium-Ion Separation. Angew. Chem. 2016, 128, 15344–15348. [Google Scholar] [CrossRef]
- Rodrigues, F.F.; Shvydyuk, K.O.; Nunes-Pereira, J.; Páscoa, J.C.; Silva, A.P. Plasma Actuators Based on Alumina Ceramics for Active Flow Control Applications. Ceramics 2024, 7, 192–207. [Google Scholar] [CrossRef]
- Kolbakir, C.; Hu, H.; Liu, Y.; Hu, H. An experimental study on different plasma actuator layouts for aircraft icing mitigation. Aerosp. Sci. Technol. 2020, 107, 106325. [Google Scholar] [CrossRef]
- Omidi, J. Advances and opportunities in wind energy harvesting using plasma actuators: A review. Clean Energy 2024, 8, 197–225. [Google Scholar] [CrossRef]
- Shvydyuk, K.O.; Rodrigues, F.F.; Nunes-Pereira, J.; Páscoa, J.C.; Lanceros-Mendez, S.; Silva, A.P. Long-lasting ceramic composites for surface dielectric barrier discharge plasma actuators. J. Eur. Ceram. Soc. 2023, 43, 6112–6121. [Google Scholar] [CrossRef]
- Coolbs, P.; Van Vrekhem, S.; De Geyter, N.; Morent, R. The Use of DBD Plasma Treatment and Polymerization for the Enhancement of Biomedical UHMWPE. Thin Solid Films 2014, 572, 251–259. [Google Scholar] [CrossRef]
- Borra, J.-P.; Valt, A.; Arefi-Khonsari, F.; Tatoulian, M. Atmospheric Pressure Deposition of Thin Functional Coatings: Polymer Surface Patterning by DBD and Post-Discharge Polymerization of Liquid Vinyl Monomer from Surface Radicals. Plasma Process. Polym. 2012, 9, 1104–1115. [Google Scholar] [CrossRef]
- Morent, R.; De Geyter, N.; Van Vlierberghe, S.; Beaurain, A.; Dubruel, P.; Payen, E. Influence of Operating Parameters on Plasma Polymerization of Acrylic Acid in a Mesh-to-Plate Dielectric Barrier Discharge. Prog. Org. Coat. 2011, 70, 336–341. [Google Scholar] [CrossRef]
- Chen, M.; Shafer-Peltier, K.; Randtke, S.J.; Peltier, E. Competitive Association of Cations with Poly(Sodium 4-Styrenesulfonate) (PSS) and Heavy Metal Removal from Water by PSS-Assisted Ultrafiltration. Chem. Eng. J. 2018, 344, 155–164. [Google Scholar] [CrossRef]
- Sepulveda, V.R.; Sierra, L.; López, B.L. Low Dispersity and High Conductivity Poly(4-Styrenesulfonic Acid) Membranes Obtained by Inexpensive Free Radical Polymerization of Sodium 4-Styrenesulfonate. Membranes 2018, 8, 58. [Google Scholar] [CrossRef] [PubMed]
- Kuntz, I. Anionic Polymerization. Kinetics, Mechanisms and Synthesis. Organometallics 1982, 1, 1106. [Google Scholar] [CrossRef]
- Kwon, H.J.; Osada, Y.; Gong, J.P. Polyelectrolyte Gels-Fundamentals and Applications. Polym. J. 2006, 38, 1211–1219. [Google Scholar] [CrossRef]
- Das, S.; Banik, M.; Chen, G.; Sinha, S.; Mukherjee, R. Polyelectrolyte Brushes: Theory, Modelling, Synthesis and Applications. Soft Matter 2015, 11, 8550–8583. [Google Scholar] [CrossRef]
- Yuan, W.; Weng, G.-M.; Lipton, J.; Li, C.M.; Van Tassel, P.R.; Taylor, A.D. Weak Polyelectrolyte-Based Multilayers via Layer-by-Layer Assembly: Approaches, Properties, and Applications. Adv. Colloid Interface Sci. 2020, 282, 102200. [Google Scholar] [CrossRef]
- Thünemann, A.F. Polyelectrolyte–Surfactant Complexes (Synthesis, Structure and Materials Aspects). Prog. Polym. Sci. 2002, 27, 1473–1572. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, S.; Li, P.; Xia, Y.; Zhang, X.; Du, D.; Isikgor, F.H.; Ouyang, J. Review on Application of PEDOTs and PEDOT:PSS in Energy Conversion and Storage Devices. J. Mater. Sci. Mater. Electron. 2015, 26, 4438–4462. [Google Scholar] [CrossRef]
- Chen, S.-L.; Krishnan, L.; Srinivasan, S.; Benziger, J.; Bocarsly, A.B. Ion Exchange Resin/Polystyrene Sulfonate Composite Membranes for PEM Fuel Cells. J. Membr. Sci. 2004, 243, 327–333. [Google Scholar] [CrossRef]
- He, Q.; Wang, X.; Dai, D.; Feng, Y.; Xu, R.; Yan, J.; Wang, P.; Shen, J.; Hu, B. Resource Utilization of Polystyrene Waste by Preparation of High Performance Dispersant for Coal-Water Slurry. Int. J. Coal Prep. Util. 2024, 44, 920–940. [Google Scholar] [CrossRef]
- Tseghai, G.B.; Mengistie, D.A.; Malengier, B.; Fante, K.A.; Van Langenhove, L. PEDOT:PSS-Based Conductive Textiles and Their Applications. Sensors 2020, 20, 1881. [Google Scholar] [CrossRef] [PubMed]
- Coughlin, J.E.; Reisch, A.; Markarian, M.Z.; Schlenoff, J.B. Sulfonation of Polystyrene: Toward the “Ideal” Polyelectrolyte. J. Polym. Sci. Part Polym. Chem. 2013, 51, 2416–2424. [Google Scholar] [CrossRef]
- Dalla Valle, C.; Zecca, M.; Rastrelli, F.; Tubaro, C.; Centomo, P. Effect of the Sulfonation on the Swollen State Morphology of Styrenic Cross-Linked Polymers. Polymers 2020, 12, 600. [Google Scholar] [CrossRef]
- Rymsha, K.V.; Yevchuk, I.Y.; Zhyhailo, M.M.; Demchyna, O.I.; Maksymych, V.M.; Ivashchyshyn, F.O. Hydrogels and Their Composites Based on Sulfo-Containing Acrylates: Preparation, Properties, and Proton Conductivity. J. Solid State Electrochem. 2024, 28, 555–563. [Google Scholar] [CrossRef]
- Liu, H.; Gong, B.; Zhou, Y.; Sun, Z.; Wang, X.; Zhao, S. Preparation of High-Capacity Magnetic Polystyrene Sulfonate Sodium Material Based on SI-ATRP Method and Its Adsorption Property Research for Sulfonamide Antibiotics. BMC Chem. 2020, 14, 3. [Google Scholar] [CrossRef]
- Villermaux, J.; Blavier, L. Free Radical Polymerization Engineering—I: A New Method for Modeling Free Radical Homogeneous Polymerization Reactions. Chem. Eng. Sci. 1984, 39, 87–99. [Google Scholar] [CrossRef]
- Pang, K.; Kotek, R.; Tonelli, A. Review of Conventional and Novel Polymerization Processes for Polyesters. Prog. Polym. Sci. 2006, 31, 1009–1037. [Google Scholar] [CrossRef]
- Komorowska-Durka, M.; Dimitrakis, G.; Bogdał, D.; Stankiewicz, A.I.; Stefanidis, G.D. A Concise Review on Microwave-Assisted Polycondensation Reactions and Curing of Polycondensation Polymers with Focus on the Effect of Process Conditions. Chem. Eng. J. 2015, 264, 633–644. [Google Scholar] [CrossRef]
- Gauthier, M.A.; Gibson, M.I.; Klok, H.-A. Synthesis of Functional Polymers by Post-Polymerization Modification. Angew. Chem. Int. Ed. 2009, 48, 48–58. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Wang, W.; Wang, A. Effect of Dry Grinding on the Microstructure of Palygorskite and Adsorption Efficiency for Methylene Blue. Powder Technol. 2012, 225, 124–129. [Google Scholar] [CrossRef]
- Kayabaşı, Y.; Erbaş, O. Methylene Blue and Its Importance in Medicine. Demiroglu Sci. Univ. Florence Nightingale J. Med. 2020, 6, 136–145. [Google Scholar] [CrossRef]
- Khan, I.; Saeed, K.; Zekker, I.; Zhang, B.; Hendi, A.H.; Ahmad, A.; Ahmad, S.; Zada, N.; Ahmad, H.; Shah, L.A.; et al. Review on Methylene Blue: Its Properties, Uses, Toxicity and Photodegradation. Water 2022, 14, 242. [Google Scholar] [CrossRef]
- Bharti, V.; Vikrant, K.; Goswami, M.; Tiwari, H.; Sonwani, R.K.; Lee, J.; Tsang, D.C.W.; Kim, K.-H.; Saeed, M.; Kumar, S.; et al. Biodegradation of Methylene Blue Dye in a Batch and Continuous Mode Using Biochar as Packing Media. Environ. Res. 2019, 171, 356–364. [Google Scholar] [CrossRef]
- Electrochemical Degradation of Methylene Blue—ScienceDirect. Available online: https://www.sciencedirect.com/science/article/pii/S1383586606003455?casa_token=DYxwfvFVUQgAAAAA:vjMzUuZGPM6mpqqW_a0wQ90yQ05xxtJsA-4Q6EPyf6awcUdpqqdMpgLOIg9b6BvBvYfgfdUVGw (accessed on 17 September 2024).
- Li, Q.; Li, Y.; Ma, X.; Du, Q.; Sui, K.; Wang, D.; Wang, C.; Li, H.; Xia, Y. Filtration and Adsorption Properties of Porous Calcium Alginate Membrane for Methylene Blue Removal from Water. Chem. Eng. J. 2017, 316, 623–630. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Adsorptive Removal of Organic Pollutant Methylene Blue Using Polysaccharide-Based Composite Hydrogels. Chemosphere 2022, 286, 131890. [Google Scholar] [CrossRef]
- Zammuto, V.; Macrì, A.; Agostino, E.; Ruggeri, L.M.; Caccamo, M.T.; Magazù, S.; Campos, V.L.; Aguayo, P.; Guglielmino, S.; Gugliandolo, C. Enhancement of Biodegradation and Detoxification of Methylene Blue by Preformed Biofilm of Thermophilic Bacilli on Polypropylene Perforated Balls. J. Mar. Sci. Eng. 2024, 12, 1248. [Google Scholar] [CrossRef]
- Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. [Google Scholar] [CrossRef]
- Wahyuni, E.T.; Alharrisa, E.Z.; Lestari, N.D.; Suherman, S. Modified Waste Polystyrene as a Novel Adsorbent for Removal of Methylene Blue from Aqueous Media. Adv. Environ. Technol. 2022, 8, 83–92. [Google Scholar] [CrossRef]
- Kamani, M.; Rahmati, M.; Vandani, S.A.K.; Fard, G.C.; Kamani, M.; Rahmati, M.; Vandani, S.A.K.; Fard, G.C. Investigation of “MCM-22”, “ZSM-12 & 35 COMPOSITE”, and “ZEOLITE AL-MORDENITE & ZSM-39 COMPOSITE” crystals by analysis of characterization techniques. J. Chil. Chem. Soc. 2021, 66, 5332–5338. [Google Scholar] [CrossRef]
Crosslinker | Ratio | MB Removal Rate (%) |
---|---|---|
MBAA | 0.1% | 58.22 |
0.25% | 58.50 | |
0.5% | 63.35 | |
DVB | 0.1% | 58.54 |
0.25% | 63.65 | |
0.5% | 68.83 |
Trial | Filter Paper | MB Removal Rate (%) |
---|---|---|
First | blank | 47.80 |
PSS/DVB(0.5%) | 68.83 | |
Second | blank | 67.70 |
PSS/DVB(0.5%) | 84.41 | |
Third | blank | 74.30 |
PSS/DVB(0.5%) | 95.80 | |
Fourth | blank | 78.50 |
PSS/DVB(0.5%) | 99.40 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amiri Khoshkar Vandani, S.; Farhadian, L.; Pennycuick, A.; Ji, H.-F. Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma 2024, 7, 867-876. https://doi.org/10.3390/plasma7040047
Amiri Khoshkar Vandani S, Farhadian L, Pennycuick A, Ji H-F. Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma. 2024; 7(4):867-876. https://doi.org/10.3390/plasma7040047
Chicago/Turabian StyleAmiri Khoshkar Vandani, Samira, Lian Farhadian, Alex Pennycuick, and Hai-Feng Ji. 2024. "Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma" Plasma 7, no. 4: 867-876. https://doi.org/10.3390/plasma7040047
APA StyleAmiri Khoshkar Vandani, S., Farhadian, L., Pennycuick, A., & Ji, H. -F. (2024). Polymerization of Sodium 4-Styrenesulfonate Inside Filter Paper via Dielectric Barrier Discharge Plasma. Plasma, 7(4), 867-876. https://doi.org/10.3390/plasma7040047