A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate
Abstract
:1. Introduction
2. Research Design
2.1. Data
2.2. Methodology
3. Results
3.1. Regression on Entire Dataset: Log Transformation
3.2. Regression on Entire Dataset: Outlier Detection
3.3. Classification: Increase or Decrease in Daily Burned Area
4. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Westerling, A.L.; Bryant, B.P.; Preisler, H.K.; Holmes, T.P.; Hidalgo, H.G.; Das, T.; Shrestha, S.R. Climate change and growth scenarios for California wildfire. Clim. Change 2011, 109, 445–463. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Flannigan, M.D.; Harrington, J.B. A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1953–80). J. Appl. Meteorol. Climatol. 1988, 27, 441–452. [Google Scholar] [CrossRef]
- Slocum, M.G.; Beckage, B.; Platt, W.J.; Orzell, S.L.; Taylor, W. Effect of climate on wildfire size: A cross-scale analysis. Ecosystems 2010, 13, 828–840. [Google Scholar] [CrossRef]
- Vlassova, L.; Pérez-Cabello, F.; Mimbrero, M.R.; Llovería, R.M.; García-Martín, A. Analysis of the relationship between land surface temperature and wildfire severity in a series of landsat images. Remote Sens. 2014, 6, 6136–6162. [Google Scholar] [CrossRef]
- Joseph, M.B.; Rossi, M.W.; Mietkiewicz, N.P.; Mahood, A.L.; Cattau, M.E.; St. Denis, L.A.; Balch, J.K. Spatiotemporal prediction of wildfire size extremes with Bayesian finite sample maxima. Ecol. Appl. 2019, 29, e01898. [Google Scholar] [CrossRef]
- Taylor, S.W.; Woolford, D.G.; Dean, C.B.; Martell, D.L. Wildfire prediction to inform fire management: Statistical science challenges. Statist. Sci. 2013, 28, 586–615. [Google Scholar] [CrossRef]
- Jain, P.; Coogan, S.C.; Subramanian, S.G.; Crowley, M.; Taylor, S.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Castelli, M.; Vanneschi, L.; Popovič, A. Predicting burned areas of forest fires: An artificial intelligence approach. Fire Ecol. 2015, 11, 106–118. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, M.; Liu, K. Wildfire susceptibility assessment in Southern China: A comparison of multiple methods. Int. J. Disaster Risk Sci. 2017, 8, 164–181. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Global wildfire susceptibility mapping based on machine learning models. Forests 2022, 13, 1050. [Google Scholar] [CrossRef]
- Shmuel, A.; Heifetz, E. Developing novel machine-learning-based fire weather indices. Mach. Learn. Sci. Technol. 2023, 4, 015029. [Google Scholar] [CrossRef]
- Chuvieco, E.; Pettinari, M.L.; Lizundia-Loiola, J.; Storm, T.; Padilla Parellada, M. ESA Fire Climate Change Initiative (Fire_cci): MODIS Fire_cci Burned Area Pixel Product, Version 5.1. Centre for Environmental Data, 2018. Available online: https://catalogue.ceda.ac.uk/uuid/58f00d8814064b79a0c49662ad3af537 (accessed on 3 August 2023).
- Artés, T.; Oom, D.; De Rigo, D.; Durrant, T.H.; Maianti, P.; Libertà, G.; San-Miguel-Ayanz, J. A global wildfire dataset for the analysis of fire regimes and fire behaviour. Sci. Data 2019, 6, 1–11. [Google Scholar] [CrossRef]
- Andela, N.; Morton, D.C.; Giglio, L.; Paugam, R.; Chen, Y.; Hantson, S.; Randerson, J.T. The Global Fire Atlas of individual fire size, duration, speed and direction. Earth Syst. Sci. Data 2019, 11, 529–552. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Thépaut, J.N. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Finney, M.A. FARSITE, Fire Area Simulator—Model Development and Evaluation (No. 4); US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998.
- Cruz, M.G.; Alexander, M.E. Uncertainty associated with model predictions of surface and crown fire rates of spread. Environ. Model. Softw. 2013, 47, 16–28. [Google Scholar] [CrossRef]
- Hoffman, C.; Canfield, J.; Linn, R.; Mell, W.; Sieg, C.; Pimont, F.; Ziegler, J. Evaluating crown fire rate of spread predictions from physics-based models. Fire Technol. 2016, 52, 221–237. [Google Scholar] [CrossRef]
- Rothermel, R. How to Predict the Spread and Intensity of Forest Fire and Range Fires; General Technical Reports, INT-143; US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1983.
- Alexander, M.E.; Cruz, M.G. Evaluating a model for predicting active crown fire rate of spread using wildfire observations. Can. J. For. Res. 2006, 36, 3015–3028. [Google Scholar] [CrossRef]
- Van Wagner, C.E. Structure of the Canadian Forest Fire Weather Index; Environment Canada, Forestry Service: Petawawa Forest Experiment Station: Chalk River, ON, Canada, 1974; Volume 1333.
- Dowdy, A.J.; Mills, G.A.; Finkele, K.; De Groot, W. Australian Fire Weather as Represented by the McArthur Forest Fire Danger Index and the Canadian Forest Fire Weather Index; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2009; p. 91.
- Markuzon, N.; Kolitz, S. Data driven approach to estimating fire danger from satellite images and weather information. In Proceedings of the IEEE Applied Imagery Pattern Recognition Workshop (AIPR 2009), Washington, DC, USA, 14–16 October 2009; pp. 1–7. [Google Scholar]
- Radke, D.; Hessler, A.; Ellsworth, D. FireCast: Leveraging Deep Learning to Predict Wildfire Spread. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19), Macao, China, 10–16 August 2019; pp. 4575–4581. [Google Scholar]
- Khanmohammadi, S.; Arashpour, M.; Golafshani, E.M.; Cruz, M.G.; Rajabifard, A.; Bai, Y. Prediction of wildfire rate of spread in grasslands using machine learning methods. Environ. Model. Softw. 2022, 156, 105507. [Google Scholar] [CrossRef]
- Allaire, F.; Mallet, V.; Filippi, J.B. Emulation of wildland fire spread simulation using deep learning. Neural Netw. 2021, 141, 184–198. [Google Scholar] [CrossRef]
- Xu, Y.; Li, D.; Ma, H.; Lin, R.; Zhang, F. Modeling forest fire spread using machine learning-based cellular automata in a GIS environment. Forests 2022, 13, 1974. [Google Scholar] [CrossRef]
- Troccoli, A. Solar Radiation—Variable Fact Sheet. Copernicus Climate Change Service. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 15 August 2023).
- Fire Danger Indices Historical Data from the Copernicus Emergency Management Service—User Guide, 2021. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/cems-fire-historical?tab=overview (accessed on 3 August 2023).
- Pimont, F.; Dupuy, J.L.; Linn, R.R. Coupled slope and wind effects on fire spread with influences of fire size: A numerical study using FIRETEC. Int. J. Wildland Fire 2012, 21, 828–842. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 180040. [Google Scholar] [CrossRef] [PubMed]
- Center for International Earth Science Information Network—CIESIN—Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11; NASA Socioeconomic Data and Applications Center (SEDAC): Palisades, NY, USA, 2018. [CrossRef]
- Blessing, S.; Giering, R. Leaf Area Index and Fraction Absorbed of Photosynthetically Active Radiation 10-Daily Gridded Data from 1981 to Present, 2018. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-lai-fapar?tab=overview (accessed on 11 August 2023).
- Didan, K.; Munoz, A.B.; Solano, R.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series); Vegetation Index and Phenology Lab, University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification. 2003, pp. 1396–1400. Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf (accessed on 11 August 2023).
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; Randerson, J.T. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed]
- Leys, C.; Ley, C.; Klein, O.; Bernard, P.; Licata, L. Detecting outliers: Do not use standard deviation around the mean, use absolute deviation around the median. J. Exp. Soc. Psychol. 2013, 49, 764–766. [Google Scholar] [CrossRef]
- Xie, Y.; Peng, M. Forest fire forecasting using ensemble learning approaches. Neural Comput. Appl. 2019, 31, 4541–4550. [Google Scholar] [CrossRef]
- Al_Janabi, S.; Al_Shourbaji, I.; Salman, M.A. Assessing the suitability of soft computing approaches for forest fires prediction. Appl. Comput. Inform. 2018, 14, 214–224. [Google Scholar] [CrossRef]
- Morley, S.K.; Brito, T.V.; Welling, D.T. Measures of model performance based on the log accuracy ratio. Space Weather 2018, 16, 69–88. [Google Scholar] [CrossRef]
- Shcherbakov, M.V.; Brebels, A.; Shcherbakova, N.L.; Tyukov, A.P.; Janovsky, T.A.; Kamaev, V.A.E. A survey of forecast error measures. World Appl. Sci. J. 2013, 24, 171–176. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef]
- Ling, C.X.; Huang, J.; Zhang, H. AUC: A better measure than accuracy in comparing learning algorithms. In Proceedings of the Conference of the Canadian Society for Computational Studies of Intelligence 2003, Victoria, BC, Canada, 9–11 May 2005; Springer: Berlin/Heidelberg, Germany, 2005; pp. 329–341. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef]
- Biau, G.; Scornet, E. A random forest guided tour. Test 2016, 25, 197–227. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Ramchoun, H.; Idrissi, M.A.J.; Ghanou, Y.; Ettaouil, M. Multilayer Perceptron: Architecture Optimization and Training. Int. J. Interact. Multimed. Artif. Intell. 2016, 4, 26–30. [Google Scholar] [CrossRef]
- Lever, J.; Krzywinski, M.; Altman, N. Logistic regression: Regression can be used on categorical responses to estimate probabilities and to classify. Nat. Methods 2016, 13, 541–543. [Google Scholar] [CrossRef]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Duchesnay, E. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Mangalathu, S.; Hwang, S.H.; Jeon, J.S. Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach. Eng. Struct. 2020, 219, 110927. [Google Scholar] [CrossRef]
Variable | Abbreviation | Source |
---|---|---|
daily burned area | area_burned | [14] |
2 m temperature | temp | [16] |
relative humidity | RH | |
10 m wind velocity | wind_speed | |
precipitation | prec | |
mean relative humidity in previous month | RH_1_month | |
mean precipitation in previous month | prec_1_month | |
mean relative humidity in previous year | RH_12_months | |
mean precipitation in previous year | prec_12_months | |
area burned in previous year | burned_previous_year | [13] |
median burned area | mean_regional_burn_since_2003 | |
month (categorical) | month_1, month_2, etc. | - |
mean slope | slope | [32] |
population density | population | [33] |
leaf area index: low vegetation | LAI_low | [34] |
leaf area index: high vegetation | LAI_high | |
leaf area index: total | LAI_tot | |
normalized difference vegetation index | NDVI | [35] |
incoming short-wave solar radiation | radiation | [29] |
daily fire weather index | FWI | [30] |
daily build-up index | bui | |
daily danger index | danger | |
daily drought code | drought | |
daily duff moisture code | duff_moisture | |
daily initial fire spread index | initial_spread | |
daily fine fuel moisture code | FFMC | |
daily fire severity rating | severity | |
daily Keetch–Byram drought index | KBDI | |
daily fire danger index | fdi | |
daily spread component | spread | |
daily energy release component | energy | |
daily burning index | BI | |
daily ignition component | IC |
Model | Original Data | Transformed (Log) Data | MAD Outlier Detection |
---|---|---|---|
Previous Fire Data Available | 76.30 | 1.12 | 1.12 |
Previous Fire Data Not Available | 126.82 | 1.46 | 1.47 |
Only First Day of Fire | 559.80 | 1.64 | −0.51 |
Previous Fire Data Available (Days 4+ of Fire) | Previous Fire Data Not Available (Days 4+ of Fire) | |||||
---|---|---|---|---|---|---|
MAE | MSE | RMSE | MAE | MSE | RMSE | |
XGBoost | 0.77 | 0.91 | 0.95 | 0.87 | 1.26 | 1.12 |
RF | 0.78 | 0.93 | 0.96 | 0.92 | 1.43 | 1.20 |
MLP | 0.78 | 0.95 | 0.97 | 0.91 | 1.38 | 1.18 |
LR | 0.91 | 1.27 | 1.13 | 0.95 | 1.42 | 1.19 |
Naïve Prediction (Burned Last Day) | 1.04 | 1.56 | 1.25 | - | - | - |
Previous Fire Data Not Available (Days 1+ of Fire) | Only First Day of Fire | |||||
MAE | MSE | RMSE | MAE | MSE | RMSE | |
XGBoost | 0.75 | 0.92 | 0.96 | 0.52 | 0.44 | 0.66 |
RF | 0.77 | 0.98 | 0.99 | 0.52 | 0.44 | 0.66 |
MLP | 0.76 | 0.98 | 0.99 | 0.54 | 0.45 | 0.67 |
LR | 0.80 | 1.04 | 1.02 | 0.54 | 0.47 | 0.69 |
Model | Previous Fire Behavior Available (Days 4+ of Fire) | ||
---|---|---|---|
MAE | MSE | RMSE | |
XGBoost | 0.27 | 0.10 | 0.31 |
RF | 0.27 | 0.11 | 0.33 |
MLP | 0.27 | 0.11 | 0.34 |
LR | 0.28 | 0.12 | 0.34 |
Model | Previous Fire Behavior Not Available (Days 4+ of Fire) | ||
MAE | MSE | RMSE | |
XGBoost | 0.27 | 0.12 | 0.35 |
RF | 0.27 | 0.12 | 0.35 |
MLP | 0.27 | 0.12 | 0.35 |
LR | 0.29 | 0.12 | 0.35 |
Model | Previous Fire Behavior Not Available (Days 1+ of Fire) | ||
MAE | MSE | RMSE | |
XGBoost | 0.24 | 0.10 | 0.31 |
RF | 0.24 | 0.10 | 0.31 |
MLP | 0.24 | 0.10 | 0.31 |
LR | 0.24 | 0.10 | 0.31 |
Model | Only First Day of Fire | ||
MAE | MSE | RMSE | |
XGBoost | 0.17 | 0.04 | 0.19 |
RF | 0.17 | 0.04 | 0.19 |
MLP | 0.17 | 0.04 | 0.19 |
LR | 0.18 | 0.04 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shmuel, A.; Heifetz, E. A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate. Fire 2023, 6, 319. https://doi.org/10.3390/fire6080319
Shmuel A, Heifetz E. A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate. Fire. 2023; 6(8):319. https://doi.org/10.3390/fire6080319
Chicago/Turabian StyleShmuel, Assaf, and Eyal Heifetz. 2023. "A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate" Fire 6, no. 8: 319. https://doi.org/10.3390/fire6080319
APA StyleShmuel, A., & Heifetz, E. (2023). A Machine-Learning Approach to Predicting Daily Wildfire Expansion Rate. Fire, 6(8), 319. https://doi.org/10.3390/fire6080319