Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel
Abstract
:1. Introduction
2. Numerical Models
2.1. Governing Equations
2.2. Numerical Methods
3. Numerical Setup
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
DDT | Deflagration-to-detonation transition |
FA | Flame acceleration |
CFD | Computational fluid dynamics |
DL | Darrieus–Landau |
RT | Rayleigh–Taylor |
CJ | Chapman–Jouguet |
RANS | Reynolds-averaged Navier–Stokes |
HLLC | Harten-Lax-van Leer-Contact |
References
- Parra, D.; Valverde, L.; Pino, F.J.; Patel, M.K. A review on the role, cost and value of hydrogen energy systems for deep decarbonisation. Renew. Sustain. Energy Rev. 2019, 101, 279–294. [Google Scholar] [CrossRef]
- Ozawa, A.; Kudoh, Y.; Kitagawa, N.; Muramatsu, R. Life cycle CO2 emissions from power generation using hydrogen energy carriers. Int. J. Hydrogen Energy 2019, 44, 11219–11232. [Google Scholar] [CrossRef]
- Oran, E.S.; Gamezo, V.N. Origins of the deflagration-to-detonation transition in gas-phase combustion. Combust. Flame 2007, 148, 4–47. [Google Scholar] [CrossRef]
- Na’inna, A.M.; Phylaktou, H.N.; Andrews, G.E. Effects of Obstacle Separation Distance on Gas Explosions: The Influence of Obstacle Blockage Ratio. Procedia Eng. 2014, 84, 306–319. [Google Scholar] [CrossRef]
- Zhu, Y.J.; Chao, J.; Lee, J.H.S. An experimental investigation of the propagation mechanism of critical deflagration waves that lead to the onset of detonation. Proc. Combust. Inst. 2007, 31, 2455–2462. [Google Scholar] [CrossRef]
- Li, Q.; Sun, X.; Wang, X.; Zhang, Z.; Lu, S.; Wang, C. Experimental study of flame propagation across flexible obstacles in a square cross-section channel. Int. J. Hydrogen Energy 2019, 44, 3944–3952. [Google Scholar] [CrossRef]
- Karanam, A.; Sharma, P.K.; Ganju, S. Numerical simulation and validation of flame acceleration and DDT in hydrogen air mixtures. Int. J. Hydrogen Energy 2018, 4, 17492–17504. [Google Scholar] [CrossRef]
- Boeck, L.R.; Katzy, P.; Hasslberger, J.; Kink, A.; Sattelmayer, T. The GraVent DDT database. Shock Waves 2016, 26, 683–685. [Google Scholar] [CrossRef]
- Boeck, L.R.; Berger, F.M.; Hasslberger, J.; Sattelmayer, T. Detonation propagation in hydrogen–air mixtures with transverse concentration gradients. Shock Waves 2016, 26, 181–192. [Google Scholar] [CrossRef]
- Vollmer, K.G.; Ettner, F.; Sattelmayer, T. Deflagration-to-Detonation Transition in Hydrogen/Air Mixtures with a Concentration Gradient. Combust. Sci. Technol. 2012, 184, 1903–1915. [Google Scholar] [CrossRef]
- Heidari, A.; Wen, J.X. Flame acceleration and transition from deflagration to detonation in hydrogen explosions. Int. J. Hydrogen Energy 2014, 39, 6184–6200. [Google Scholar] [CrossRef]
- Heidari, A.; Wen, J.X. Numerical simulation of flame acceleration and deflagration to detonation transition in hydrogen-air mixture. Int. J. Hydrogen Energy 2014, 39, 21317–21327. [Google Scholar] [CrossRef]
- Wang, C.J.; Wen, J.X. Numerical simulation of flame acceleration and deflagration-to-detonation transition in hydrogen-air mixtures with concentration gradients. Int. J. Hydrogen Energy 2017, 42, 7657–7663. [Google Scholar] [CrossRef]
- Azadboni, R.K.; Wen, J.X.; Heidari, A.; Wang, C. Numerical modeling of deflagration to detonation transition in inhomogeneous hydrogen/air mixtures. J. Loss Prev. Process Ind. 2017, 49, 722–730. [Google Scholar] [CrossRef]
- Azadboni, R.K.; Heidari, A.; Boeck, L.R.; Wen, J.X. The effect of concentration gradients on deflagration-to-detonation transition in a rectangular channel with and without obstructions—A numerical study. Int. J. Hydrogen Energy 2019, 44, 7032–7040. [Google Scholar] [CrossRef]
- Bychkov, V.; Valiev, D.; Eriksson, L.E. Physical mechanism of ultrafast flame acceleration. Phys. Rev. Lett. 2008, 101, 164501. [Google Scholar] [CrossRef]
- Ju, Y.; Maruta, K. Microscale combustion: Technology development and fundamental research. Prog. Energy Combust. Sci. 2011, 37, 669–715. [Google Scholar] [CrossRef]
- Weller, H.G.; Gosman, A.D.; Fureby, C. Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. In Proceedings of the Twenty-Seventh Symposium (International) on Combustion, Boulder, CO, USA, 2–7 August 1998; The Combustion Institute: Pittsburgh, PA, USA, 1998; pp. 899–907. [Google Scholar]
- Zimont, V.L. A numerical model of premixed turbulent combustion of premixed gases. Chem. Phys. Rep. 1995, 14, 993–1025. [Google Scholar]
- Bauwens, C.R.; Chaffee, J.; Dorofeev, S.B. Vented explosion overpressures from combustion of hydrogen and hydrocarbon mixtures. Int. J. Hydrogen Energy 2011, 36, 2329–2336. [Google Scholar] [CrossRef]
- Vaagsaether, K.; Knudsen, V.; Bjerketvedt, D. Simulation of flame acceleration and DDT in H2H2-air mixture with a flux limiter centered method. Int. J. Hydrogen Energy 2007, 32, 2186–2191. [Google Scholar] [CrossRef]
- Yet-Pole, I.; Chiu, Y.L.; Wu, S.J. The simulation of air recirculation and fire/explosion phenomena within a semiconductor factory. J. Hazard. Mater. 2009, 163, 1040–1051. [Google Scholar]
- Rocourt, X.; Gillard, P.; Sochet, I.; Piton, D.; Prigent, A. Thermal degradation of two liquid fuels and detonation tests for pulse detonation engine studies. Shock Waves 2006, 16, 233–245. [Google Scholar] [CrossRef]
- Barlow, A.J.; Roe, P.L. A cell centred Lagrangian Godunov scheme for shock hydrodynamics. Comput. Fluids 2011, 46, 133–136. [Google Scholar] [CrossRef]
- Qu, F.; Yan, C.; Yu, J.; Sun, D. A new flux splitting scheme for the Euler equations. Comput. Fluids 2014, 102, 203–214. [Google Scholar] [CrossRef]
- Bychkov, V.; Akkerman, V.Y.; Valiev, D.; Law, C.K. Influence of gas compression on flame acceleration in channels with obstacles. Combust. Flame 2010, 157, 2008–2011. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhu, X.; Guo, Y.; Teng, Y.; Liu, M.; Li, Q.; Wang, Q.; Wang, C. Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel. Fire 2024, 7, 418. https://doi.org/10.3390/fire7110418
Zhang J, Zhu X, Guo Y, Teng Y, Liu M, Li Q, Wang Q, Wang C. Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel. Fire. 2024; 7(11):418. https://doi.org/10.3390/fire7110418
Chicago/Turabian StyleZhang, Jiaqing, Xianli Zhu, Yi Guo, Yue Teng, Min Liu, Quan Li, Qiao Wang, and Changjian Wang. 2024. "Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel" Fire 7, no. 11: 418. https://doi.org/10.3390/fire7110418
APA StyleZhang, J., Zhu, X., Guo, Y., Teng, Y., Liu, M., Li, Q., Wang, Q., & Wang, C. (2024). Numerical Study of Homogenous/Inhomogeneous Hydrogen–Air Explosion in a Long Closed Channel. Fire, 7(11), 418. https://doi.org/10.3390/fire7110418