Driving Factors and Future Trends of Wildfires in Alberta, Canada
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Datasets
2.3. Methods
3. Results
3.1. Drivers of Wildfires
3.2. Intra-Annual Changes of the Future Wildfires
3.3. Changes of the Future Wildfires
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Brandt, J.P.; Flannigan, M.D.; Maynard, D.G.; Thompson, I.D.; Volney, W.J.A. An introduction to Canada’s boreal zone: Ecosystem processes, health, sustainability, and environmental issues. Environ. Rev. 2013, 21, 207–226. [Google Scholar] [CrossRef]
- Gauthier, S.; Bernier, P.; Kuuluvainen, T.; Shvidenko, A.Z.; Schepaschenko, D.G. Boreal forest health and global change. Science 2015, 349, 819–822. [Google Scholar] [CrossRef] [PubMed]
- Bradshaw, C.J.A.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Global Planet Change 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef]
- Price, D.T.; Alfaro, R.I.; Brown, K.J.; Flannigan, M.D.; Venier, L.A. Anticipating the consequences of climate change for Canada’s boreal forest ecosystems. Environ. Rev. 2013, 21, 322–365. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Robinne, F.N.; Jain, P.; Flannigan, M.D. Scientists’warning on wildfire—A Canadian perspective. Can. J. Forest Res. 2019, 49, 1015–1023. [Google Scholar] [CrossRef]
- Hanes, C.; Wotton, M.; Woolford, D.G.; Martell, D.L.; Flannigan, M. Preceding fall drought conditions and overwinter precipitation effects on spring wildland fire activity in Canada. Fire 2020, 3, 24. [Google Scholar] [CrossRef]
- Seager, R.; Hooks, A.; Williams, A.P.; Cook, B.; Nakamura, J.; Henderson, N. Climatology, variability, and trends in the US vapor pressure deficit, an important fire-related meteorological quantity. J. Appl. Meteorol. Clim. 2015, 54, 1121–1141. [Google Scholar] [CrossRef]
- Higuera, P.E.; Abatzoglou, J.T. Record-setting climate enabled the extraordinary 2020 fire season in the western United States. Glob. Change Biol. 2021, 27, 1–2. [Google Scholar] [CrossRef]
- Parks, S.A.; Abatzoglou, J.T. Warmer and drier fire seasons contribute to increases in area burned at high severity in western US forests from 1985 to 2017. Geophys. Res. Lett. 2020, 47, e2020GL089858. [Google Scholar] [CrossRef]
- Wang, Y. The effect of climate change on forest fire danger and severity in the Canadian boreal forests for the period 1976–2100. J. Geophys. Res-Atmos. 2024, 129, e2023JD039118. [Google Scholar] [CrossRef]
- Shvidenko, A.; Schepaschenko, D. Climate Change and Wildfires in Russia. Contemp Probl. Ecol. 2013, 6, 683–692. [Google Scholar] [CrossRef]
- Spyros, K.; Ioannis, P.; Michele, R.; Ioannis, P.; Gustau, C.-V.; María, P.; Miguel-Ángel, F.-T.; Nuno, C. Wildfire Danger Prediction and Understanding with Deep Learning. Geophys. Res. Lett. 2022, 49, e2022GL099368. [Google Scholar]
- Zhang, G.; Wang, M.; Yang, B.; Liu, K. Current and Future Patterns of Global Wildfire Based on Deep Neural Networks. Geophys. Res. Lett. 2024, 12, e2023EF004088. [Google Scholar] [CrossRef]
- Chen, D.; Cheng, S.; Hu, J.; Matthew, K.; Rossella, A. Explainable Global Wildfire Prediction Models using Graph Neural Networks. arXiv 2024, arXiv:2402.07152, 2024. [Google Scholar]
- Joshi, J.; Sukumar, R. Improving prediction and assessment of global fires using multilayer neural networks. Sci. Rep. 2021, 11, 3295. [Google Scholar] [CrossRef]
- Hanes, C.C.; Wang, X.; Jain, P.; Parisien, M.-A.; Little, J.M.; Flannigan, M.D. Fire-regime changes in Canada over the last half century. Can. J. For. Res. 2019, 49, 256–269. [Google Scholar] [CrossRef]
- Kirchmeier-Young, M.C.; Gillett, N.P.; Zwiers, F.W.; Cannon, A.J.; Anslow, F.S. Attribution of the influence of human-induced climate change on an extreme fire season. Earths Future 2019, 7, 2–10. [Google Scholar] [CrossRef]
- Tymstra, C.; Jain, P.; Flannigan, M.D. Characterisation of initial fire weather conditions for large spring wildfires in Alberta, Canada. Int. J. Wildland Fire 2021, 30, 823–835. [Google Scholar] [CrossRef]
- Tymstra, C.; Stocks, B.J.; Cai, X.; Flannigan, M.D. Wildfire management in Canada: Review, challenges and opportunities. Prog. Disaster Sci. 2020, 5, 100045. [Google Scholar] [CrossRef]
- Mwale, D.; Gan, T.Y.; Devito, K.; Carl, M.; Uldis, S.; Richard, P. Precipitation variability and its relationship to hydrologic variability in Alberta. Hydrol. Process 2009, 23, 3040–3056. [Google Scholar] [CrossRef]
- Sekhon, N.S.; Hassan, Q.K.; Sleep, R.W. Evaluating potential of MODIS-based indices in determining “snow gone” stage over forest-dominant regions. Remote Sens. 2010, 2, 1348–1363. [Google Scholar] [CrossRef]
- Whitman, E.; Parks, S.A.; Holsinger, L.M.; Parisien, M.-A. Climate-induced fire regime amplification in Alberta, Canada. Environ. Res. Lett. 2022, 17, 055003. [Google Scholar] [CrossRef]
- Barichivich, J.; Osborn, T.J.; Harris, I.; van der Schrier, G.; Jones, P.D. Monitoring global drought using the self-calibrating Palmer Drought Severity Index. B. Am. Meteorol. Soc. 2021, 102, 68–70. [Google Scholar]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res. 2003, 108, 4407. [Google Scholar] [CrossRef]
- Murray, F.W. On the computation of saturation vapor pressure. J. Appl. Meteorol. Clim. 1967, 6, 203–204. [Google Scholar] [CrossRef]
- Breiman, L. Random forest. Mach. Learn 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by random Forest. R News 2002, 2, 18–22. [Google Scholar]
- Archer, E. rfPermute: Estimate permutation p-values for random forest important metrics. R package version 2.2. 2021. Available online: https://CRAN.R-project.org/package=rfPermute (accessed on 18 April 2024).
- Fortmann-Roe, S. Consistent and clear reporting of results from diverse modeling techniques: The A3 method. J. Stat. Softw 2013, 66, 1–23. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. 2021. Available online: https://www.R-project.org (accessed on 18 April 2024).
- Williams, A.P.; Abatzoglou, J.T.; Gershunov, A.; Guzman-Morales, J.; Bishop, D.A.; Balch, J.K.; Lettenmaier, D.P. Observed impacts of anthropogenic climate change on wildfire in California. Earths Future 2019, 7, 892–910. [Google Scholar] [CrossRef]
- Restaino, C.M.; Peterson, D.L.; Littell, J. Increased water deficit decreases Douglas fir growth throughout western US forests. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 9557–9562. [Google Scholar] [CrossRef]
- Ding, J.; Yang, T.; Zhao, Y.; Liu, D.; Wang, X.; Yao, Y.; Peng, S.; Wang, T.; Piao, S. Increasingly important role of atmospheric aridity on Tibetan alpine grasslands. Geophys. Res. Lett. 2018, 45, 2852–2859. [Google Scholar] [CrossRef]
- Williams, A.P.; Allen, C.D.; Macalady, A.K.; Griffin, D.; Woodhouse, C.A.; Meko, D.M.; Swetnam, T.W.; Rauscher, S.A.; Seager, R.; Grissino-Mayer, H.D.; et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 2013, 3, 292–297. [Google Scholar] [CrossRef]
- Fletcher, A.L.; Sinclair, T.R.; Allen, L.H., Jr. Transpiration responses to vapor pressure deficit in well watered ‘slow-wilting’ and commercial soybean. Environ. Exp. Bot. 2007, 61, 145–151. [Google Scholar] [CrossRef]
- Richardson, D.; Black, A.S.; Irving, D.; Matear, R.J.; Monselesan, D.P.; Risbey, J.S.; Squire, D.T.; Tozer, C.R. Global increase in wildfire potential from compound fire weather and drought. npj Clim. Atmos. Sci. 2022, 5, 23. [Google Scholar] [CrossRef]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R.A. Unprecedented burn area of Australian mega forest fires. Nat. Clim. Change. 2020, 10, 171–172. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; de Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Change 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Kasischke, E.S.; Turetsky, M.R. Recent changes in the fire regime across the North American boreal region—Spatial and temporal patterns of burning across Canada and Alaska. Geophys. Res. Lett. 2006, 33, L09703. [Google Scholar] [CrossRef]
- Hoecker, T.J.; Higuera, P.E. Forest succession and climate variability interacted to control fire activity over the last four centuries in an Alaskan boreal landscape. Landscape Ecol. 2019, 34, 227–241. [Google Scholar] [CrossRef]
- Kirillina, K.; Shvetsov, E.G.; Protopopova, V.V.; Thiesmeyer, L.; Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: Case study of forestry districts with increasing burnt area in the Sakha Republic Russia. Environ. Res. Lett. 2020, 15, 035009. [Google Scholar] [CrossRef]
- Johnstone, J.F.; Boby, L.B.; Tissier, E.T.; Mack, M.M.; Verbyla, D.V.; Walker, X.J. Postfire seed rain of black spruce, a semiserotinous conifer, in forests of interior Alaska. Can. J. For. Res. 2009, 39, 1575–1588. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M. Modelling the effects of surface and crown fire behaviour on serotinous cone opening in jack pine and lodgepole pine forests. Int. J. Wildland Fire 2012, 21, 709–721. [Google Scholar] [CrossRef]
- Walker, X.J.; Mack, M.C.; Johnstone, J.F. Predicting ecosystem resilience to fire from tree ring analysis in black spruce forests. Ecosystems 2017, 20, 1137–1150. [Google Scholar] [CrossRef]
- Pinno, B.D.; Errington, R.C.; Thompson, D.K. Young jack pine and high severity fire combine to create potentially expansive areas of understocked forest. For. Ecol. Manag. 2013, 310, 517–522. [Google Scholar] [CrossRef]
- Baltzer, J.L.; Day, N.J.; Walker, X.J.; Johnstone, J.F. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl Acad. Sci. USA 2021, 118, e2024872118. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bai, M.; Yao, Q.; Wang, Z.; Wang, D.; Zhang, H.; Fang, K.; Guo, F. Driving Factors and Future Trends of Wildfires in Alberta, Canada. Fire 2024, 7, 419. https://doi.org/10.3390/fire7110419
Bai M, Yao Q, Wang Z, Wang D, Zhang H, Fang K, Guo F. Driving Factors and Future Trends of Wildfires in Alberta, Canada. Fire. 2024; 7(11):419. https://doi.org/10.3390/fire7110419
Chicago/Turabian StyleBai, Maowei, Qichao Yao, Zhou Wang, Di Wang, Hao Zhang, Keyan Fang, and Futao Guo. 2024. "Driving Factors and Future Trends of Wildfires in Alberta, Canada" Fire 7, no. 11: 419. https://doi.org/10.3390/fire7110419
APA StyleBai, M., Yao, Q., Wang, Z., Wang, D., Zhang, H., Fang, K., & Guo, F. (2024). Driving Factors and Future Trends of Wildfires in Alberta, Canada. Fire, 7(11), 419. https://doi.org/10.3390/fire7110419