Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations
Abstract
:1. Introduction
2. Experimental Measurements
2.1. Impulse Response Measurements
2.2. Holographic Measurements
3. Mathematical Modeling
3.1. Mathematical Formulation
3.2. CAD Modeling
3.3. FEM Modeling and Simulation
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Scott, E.K.E.; Morrison, A. The acoustics of the modern jazz drum kit. Acoust. Today 2022, 18, 31–39. [Google Scholar] [CrossRef]
- Rossing, T.D. Science of Percussion Instruments, 1st ed.; World Scientific: Singapore, 2000. [Google Scholar]
- Duerinck, T.; Segers, J.; Skrodzka, E.; Verberkmoes, G.; Leman, M.; Van Paepegem, W.; Kersemans, M. Experimental comparison of various excitation and acquisition techniques for modal analysis of violins. Appl. Acoust. 2022, 177, 107942. [Google Scholar] [CrossRef]
- Tronchin, L. Structural acoustics of good and bad violins. J. Acoust. Soc. Am. 2005, 117, 1764–1773. [Google Scholar]
- Bakarezos, E.; Orphanos, Y.; Kaselouris, E.; Dimitriou, V.; Tatarakis, M.; Papadogiannis, N.A. Laser-based interferometric techniques for the study of musical instruments. In Computational Phonogram Archiving; Springer: Cham, Switzerland, 2019; pp. 251–268. [Google Scholar]
- Brezas, S.; Katsipis, M.; Orphanos, Y.; Kaselouris, E.; Kechrakos, K.; Kefaloyannis, N.; Papadaki, H.; Sarantis-Karamesinis, A.; Petrakis, S.; Theodorakis, I.; et al. An Integrated Method for the Vibroacoustic Evaluation of a Carbon Fiber Bouzouki. Appl. Sci. 2023, 13, 4585. [Google Scholar] [CrossRef]
- Kaselouris, E.; Paschalidou, S.; Alexandraki, C.; Dimitriou, V. FEM-BEM Vibroacoustic Simulations of Motion Driven Cymbal-Drumstick Interactions. Acoustics 2023, 5, 165–176. [Google Scholar] [CrossRef]
- Kaselouris, E.; Alexandraki, C.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A detailed FEM Study on the Vibro-acoustic Behaviour of Crash and Splash Musical Cymbals. Int. J. Circuits Syst. Signal Process. 2022, 16, 948–955. [Google Scholar] [CrossRef]
- Chauhan, C.; Singru, P.M.; Vathsan, R. Vibro-acoustic modeling, numerical and experimental study of the resonator and its contribution to the timbre of Sarasvati veena, a South Indian stringed instrument. J. Acoust. Soc. Am. 2021, 149, 540–555. [Google Scholar] [CrossRef]
- Chatziioannou, V. Reconstruction of an early viola da gamba informed by physical modeling. J. Acoust. Soc. Am. 2019, 145, 3435–3442. [Google Scholar] [CrossRef]
- Ducceschi, M.; Touzé, C. Modal approach for nonlinear vibrations of damped impacted plates: Application to sound synthesis of gongs and cymbals. J. Sound Vib. 2015, 344, 313–331. [Google Scholar] [CrossRef]
- Nguyen, Q.B.; Touzé, C. Nonlinear vibrations of thin plates with variable thickness: Application to sound synthesis of cymbals. J. Acoust. Soc. Am. 2019, 145, 977–988. [Google Scholar] [CrossRef]
- Bestle, P.; Eberhard, P.; Hanss, M. Musical instruments–Sound synthesis of virtual idiophones. J. Sound Vib. 2017, 395, 187–200. [Google Scholar] [CrossRef]
- Bretos, J.; Santamaría, C.; Alonso Moral, J. Vibrational patterns of a violin-shaped air cavity obtained by finite element modeling. Acustica 1999, 85, 584–586. [Google Scholar]
- Elejabarrieta, M.J.; Ezcurra, A.; Santamaría, C. Vibrational behaviour of the guitar soundboard analysed by the finite element method. Acta Acust. United Acust. 2001, 87, 128–136. [Google Scholar]
- Lodetti, L.; Gonzalez, S.; Antonacci, F.; Sarti, A. Stiffening Cello Bridges with Design. Appl. Sci. 2023, 13, 928. [Google Scholar] [CrossRef]
- Wilbur, C.; Rossing, T.D. Subharmonic generation in cymbals at large amplitude. J. Acoust. Soc. Am. 1997, 101, 3144. [Google Scholar] [CrossRef]
- Fletcher, N.; Perrin, R.; Legge, K. Nonlinearity and chaos in acoustics. Acust. Aust. 1989, 18, 9–13. [Google Scholar]
- Fletcher, N.; Rossing, T.D. The Physics of Musical Instruments; Springer: New York, NY, USA, 1998. [Google Scholar]
- Schedin, S.; Gren, P.O.; Rossing, T.D. Transient wave response of a cymbal using double-pulsed TV holography. J. Acoust. Soc. Am. 1998, 103, 1217–1220. [Google Scholar] [CrossRef]
- Perrin, R.; Swallowe, G.M.; Moore, T.R.; Zietlow, S.A. Normal modes of an 18 inch crash cymbal. Proc. Inst. Acoust. 2006, 28, 653–662. [Google Scholar]
- Perrin, R.; Swallowe, G.M.; Zietlow, S.A.; Moore, T.R. The normal model of cymbals. Proc. Inst. Acoust. 2008, 30, 460–467. [Google Scholar]
- Available online: https://meinlcymbals.com/en/products/hcs8b-m3465.html (accessed on 31 October 2023).
- Carvalho, M.; Debut, V.; Antunes, J. Physical modelling techniques for the dynamical characterization and sound synthesis of historical bells. Herit. Sci. 2021, 9, 157. [Google Scholar]
- Clinton, J.; Wani, K. Extracting Vibration Characteristics and Performing Sound Synthesis of Acoustic Guitar to Analyze Inharmonicity. Open J. Acoust. 2020, 10, 41–50. [Google Scholar] [CrossRef]
- Mc Connell, K.G.; Varoto, P.S. Vibration Testing: Theory and Practice; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Tronchin, L. Modal analysis and intensity of acoustic radiation of the kettledrum. J. Acoust. Soc. Am. 2005, 117, 926–933. [Google Scholar] [CrossRef]
- Bader, R.; Fischer, J.; Münster, M.; Kontopidis, P. Metamaterials in musical acoustics: A modified frame drum. J. Acoust. Soc. Am. 2019, 145, 3086–3094. [Google Scholar] [CrossRef]
- Ishikawa, K.; Yatabe, K.; Oikawa, Y. Seeing the sound of castanets: Acoustic resonances between shells captured by high-speed optical visualization with 1-mm resolution. J. Acoust. Soc. Am. 2020, 148, 3171–3180. [Google Scholar] [CrossRef]
- Zienkiewicz, O.C. The Finite Element Method in Engineering Science; McGraw-Hill: New York, NY, USA, 1971. [Google Scholar]
- Zienkiewicz, O.C.; Taylor, R.L.; Zhu, J.Z. The Finite Element Method: Its Basis and Fundamentals, 7th ed.; Butterworth-Heinemann: Oxford, UK, 2013. [Google Scholar]
- Kaselouris, E.; Nikolos, I.K.; Orphanos, Y.; Bakarezos, M.; Papadogiannis, N.A.; Tatarakis, M.; Dimitriou, V. Elastoplastic study of nanosecond-pulsed laser interaction with metallic films using 3D multiphysics fem modeling. Int. J. Damage Mech. 2016, 25, 42–55. [Google Scholar] [CrossRef]
- Kaselouris, E.; Bakarezos, M.; Tatarakis, M.; Papadogiannis, N.A.; Dimitriou, V. A Review of Finite Element Studies in String Musical Instruments. Acoustics 2022, 4, 183–202. [Google Scholar] [CrossRef]
- Hallquist, J.O. LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livermore, CA, USA, 2006. [Google Scholar]
- Frequency domain. In LS-DYNA Theory Manual; Livermore Software Technology Corporation: Livermore, CA, USA, 2023; Chapter 47; pp. 855–857.
- Ewins, D.J. Modal Testing: Theory, Practice and Application (Mechanical Engineering Research Studies: Engineering Dynamics Series), 2nd ed.; Wiley: Hoboken, NJ, USA, 2009. [Google Scholar]
- Available online: https://barneelloyd.files.wordpress.com/2013/03/barnee-lloyd-frequency-analysis-of-a-cymbal-paper-incl-all-references.pdf (accessed on 31 October 2023).
Modes | ESPI (Hz) | FEM (1.2 mm) (Hz) | Difference Ratio% | FEM (1.3 mm) (Hz) | Difference Ratio% |
---|---|---|---|---|---|
(2,0) | 210 | 215 | 2.3 | 225 | 6.9 |
(3,0) | 555 | 515 | 7.5 | 540 | 2.7 |
(4,0) | 1040 | 920 | 12.2 | 940 | 10.1 |
(5,0) | 1520 | 1200 | 23.5 | 1235 | 20.7 |
(3,1) | 1630 | 1585 | 2.8 | 1655 | 1.5 |
(4,1) | 1740 | 1600 | 8.4 | 1705 | 2.0 |
(2,1) | 1760 | 1855 | 5.3 | 1900 | 7.6 |
(1,1) | 1825 | 2090 | 13.5 | 2130 | 15.4 |
(6,0) | 1885 | 1435 | 27.1 | 1500 | 22.7 |
(5,1) | 2030 | 2010 | 1.0 | 2160 | 6.2 |
Average difference ratio%: 10.4 | Average difference ratio%: 9.6 |
Modes | ESPI (Hz) | FEM (1.0 mm) (Hz) | Difference Ratio% | FEM (1.1 mm) (Hz) | Difference Ratio% | FEM (1.2 mm) (Hz) | Difference Ratio% |
---|---|---|---|---|---|---|---|
(2,0) | 210 | 230 | 9.1 | 235 | 11.2 | 240 | 13.3 |
(3,0) | 555 | 585 | 5.3 | 605 | 8.6 | 625 | 11.9 |
(4,0) | 1040 | 1100 | 5.6 | 1130 | 8.3 | 1150 | 10.0 |
(5,0) | 1520 | 1580 | 3.9 | 1615 | 6.1 | 1650 | 8.2 |
(3,1) | 1630 | 1645 | 0.9 | 1740 | 6.5 | 1830 | 11.6 |
(4,1) | 1740 | 1620 | 7.1 | 1742 | 0.1 | 1860 | 6.7 |
(2,1) | 1760 | 1760 | 0.0 | 1840 | 4.4 | 1920 | 8.7 |
(1,1) | 1825 | 1835 | 0.5 | 1910 | 4.5 | 1975 | 7.9 |
(6,0) | 1885 | 1820 | 3.5 | 1915 | 1.6 | 1990 | 5.4 |
(5,1) | 2030 | 1850 | 9.3 | 1995 | 1.7 | 2145 | 5.5 |
Average difference ratio%: 4.5 | Average difference ratio%: 5.3 | Average difference ratio%: 8.9 |
Modes | ESPI (Hz) | FEM (1.0 mm) (Hz) | Difference Ratio% | FEM (1.1 mm) (Hz) | Difference Ratio% | FEM (1.2 mm) (Hz) | Difference Ratio% |
---|---|---|---|---|---|---|---|
(2,0) | 210 | 214 | 1.9 | 224 | 6.4 | 230 | 9.1 |
(3,0) | 555 | 555 | 0.0 | 575 | 3.5 | 590 | 6.1 |
(4,0) | 1040 | 1045 | 0.5 | 1075 | 3.3 | 1100 | 5.6 |
(5,0) | 1520 | 1545 | 1.6 | 1575 | 3.5 | 1605 | 5.4 |
(3,1) | 1630 | 1710 | 4.8 | 1800 | 9.9 | 1880 | 14.2 |
(4,1) | 1740 | 1675 | 3.8 | 1795 | 3.1 | 1915 | 9.6 |
(2,1) | 1760 | 1835 | 4.2 | 1915 | 8.4 | 1990 | 12.2 |
(1,1) | 1825 | 1910 | 4.6 | 1980 | 8.1 | 2045 | 11.4 |
(6,0) | 1885 | 1830 | 3.0 | 1910 | 1.3 | 1980 | 4.9 |
(5,1) | 2030 | 1850 | 9.3 | 2010 | 1.0 | 2165 | 6.4 |
Average difference ratio%: 3.4 | Average difference ratio%: 4.9 | Average difference ratio%: 8.5 |
Modes | ESPI (Hz) | FEM (1.0 mm) (Hz) | Difference Ratio% | FEM (1.1 mm) (Hz) | Difference Ratio% | FEM (1.2 mm) (Hz) | Difference Ratio% |
---|---|---|---|---|---|---|---|
(2,0) | 210 | 230 | 9.1 | 235 | 11.2 | 240 | 13.3 |
(3,0) | 555 | 580 | 4.4 | 605 | 8.6 | 620 | 11.1 |
(4,0) | 1040 | 1100 | 5.6 | 1120 | 7.4 | 1145 | 9.6 |
(5,0) | 1520 | 1545 | 1.6 | 1585 | 4.2 | 1620 | 6.4 |
(3,1) | 1630 | 1640 | 0.6 | 1735 | 6.2 | 1825 | 11.3 |
(4,1) | 1740 | 1610 | 7.8 | 1730 | 0.6 | 1855 | 6.4 |
(2,1) | 1760 | 1760 | 0.0 | 1840 | 4.4 | 1920 | 8.7 |
(1,1) | 1825 | 1840 | 0.8 | 1910 | 4.6 | 1980 | 8.1 |
(6,0) | 1885 | 1765 | 6.6 | 1860 | 1.3 | 1940 | 2.9 |
(5,1) | 2030 | 1850 | 9.3 | 2000 | 1.5 | 2150 | 5.7 |
Average difference ratio%: 4.6 | Average difference ratio%: 5.0 | Average difference ratio%: 8.4 |
Modes | ESPI (Hz) | FEM (1.2/1.1/1.0 mm) (Hz) | Difference Ratio% | FEM (1.3/1.2/1.1 mm) (Hz) | Difference Ratio% |
---|---|---|---|---|---|
(2,0) | 210 | 226 | 7.3 | 236 | 11.6 |
(3,0) | 555 | 561 | 1.1 | 582 | 4.7 |
(4,0) | 1040 | 1056 | 1.5 | 1084 | 4.1 |
(5,0) | 1520 | 1553 | 2.1 | 1583 | 4.1 |
(3,1) | 1630 | 1715 | 5.1 | 1809 | 10.4 |
(4,1) | 1740 | 1683 | 3.3 | 1804 | 3.6 |
(2,1) | 1760 | 1838 | 4.3 | 1914 | 8.4 |
(1,1) | 1825 | 1910 | 4.5 | 1980 | 8.1 |
(6,0) | 1885 | 1835 | 2.7 | 1915 | 1.6 |
(5,1) | 2030 | 1866 | 8.4 | 2028 | 0.1 |
Average difference ratio%: 4.0 | Average difference ratio%: 5.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brezas, S.; Kaselouris, E.; Orphanos, Y.; Tatarakis, M.; Bakarezos, M.; Papadogiannis, N.A.; Dimitriou, V. Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations. Vibration 2024, 7, 146-160. https://doi.org/10.3390/vibration7010008
Brezas S, Kaselouris E, Orphanos Y, Tatarakis M, Bakarezos M, Papadogiannis NA, Dimitriou V. Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations. Vibration. 2024; 7(1):146-160. https://doi.org/10.3390/vibration7010008
Chicago/Turabian StyleBrezas, Spyros, Evaggelos Kaselouris, Yannis Orphanos, Michael Tatarakis, Makis Bakarezos, Nektarios A. Papadogiannis, and Vasilis Dimitriou. 2024. "Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations" Vibration 7, no. 1: 146-160. https://doi.org/10.3390/vibration7010008
APA StyleBrezas, S., Kaselouris, E., Orphanos, Y., Tatarakis, M., Bakarezos, M., Papadogiannis, N. A., & Dimitriou, V. (2024). Vibrational Analysis of a Splash Cymbal by Experimental Measurements and Parametric CAD-FEM Simulations. Vibration, 7(1), 146-160. https://doi.org/10.3390/vibration7010008