Unidirectional Flow Through Time-Dependent Cross-Sectional Areas of a Compliant Tube and a Valve: A Nonlinear Model
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. No Valve Is Used
3.2. A Gate Valve Is Used
3.2.1. Constant Valve Opening
3.2.2. Time-Dependent Valve Opening
3.2.3. Intra-Aortic Balloon Pump
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Numerical Method for Solving the Nonlinear Ordinary Differential Equation
References
- Wang, Y.-N.; Fu, L.-M. Micropumps and Biomedical Applications—A Review. Microelectron. Eng. 2018, 195, 121–138. [Google Scholar] [CrossRef]
- Manopoulos, C.G.; Mathioulakis, D.S.; Tsangaris, S.G. One-Dimensional Model of Valveless Pumping in a Closed Loop and a Numerical Solution. Phys. Fluids 2006, 18, 017106. [Google Scholar] [CrossRef]
- Thomann, H. A Simple Pumping Mechanism in a Valveless Tube. Z. Für Angew. Math. Phys. ZAMP 1978, 29, 169–177. [Google Scholar] [CrossRef]
- Jung, E.; Peskin, C.S. Two-Dimensional Simulations of Valveless Pumping Using the Immersed Boundary Method. SIAM J. Sci. Comput. 2001, 23, 19–45. [Google Scholar] [CrossRef]
- Ottesen, J.T. Valveless Pumping in a Fluid-Filled Closed Elastic Tube-System: One-Dimensional Theory with Experimental Validation. J. Math. Biol. 2003, 46, 309–332. [Google Scholar] [CrossRef]
- Hickerson, A.I.; Rinderknecht, D.; Gharib, M. Experimental Study of the Behavior of a Valveless Impedance Pump. Exp. Fluids 2005, 38, 534–540. [Google Scholar] [CrossRef]
- Avrahami, I.; Gharib, M. Computational Studies of Resonance Wave Pumping in Compliant Tubes. J. Fluid Mech. 2008, 608, 139–160. [Google Scholar] [CrossRef]
- Timmermann, S.; Ottesen, J.T. Novel Characteristics of Valveless Pumping. Phys. Fluids 2009, 21, 053601. [Google Scholar] [CrossRef]
- Shin, S.J.; Chang, C.B.; Sung, H.J. Simulation of a Valveless Pump with an Elastic Tube. Int. J. Heat Fluid Flow 2012, 38, 13–23. [Google Scholar] [CrossRef]
- Lee, W.; Lim, S.; Jung, E. Dynamical Motion Driven by Periodic Forcing on an Open Elastic Tube in Fluid. Commun. Comput. Phys. 2012, 12, 494–514. [Google Scholar] [CrossRef]
- Kozlovsky, P.; Rosenfeld, M.; Jaffa, A.J.; Elad, D. Dimensionless Analysis of Valveless Pumping in a Thick-Wall Elastic Tube: Application to the Tubular Embryonic Heart. J. Biomech. 2015, 48, 1652–1661. [Google Scholar] [CrossRef] [PubMed]
- Loumes, L.; Avrahami, I.; Gharib, M. Resonant Pumping in a Multilayer Impedance Pump. Phys. Fluids 2008, 20, 023103. [Google Scholar] [CrossRef]
- Yan, Q.; Yin, Y.; Sun, W.; Fu, J. Advances in Valveless Piezoelectric Pumps. Appl. Sci. 2021, 11, 7061. [Google Scholar] [CrossRef]
- Hou, Y.; He, L.; Hu, D.; Zhang, L.; Yu, B.; Cheng, G. Recent Trends in Structures and Applications of Valveless Piezoelectric Pump—A Review. J. Micromech. Microeng. 2022, 32, 053002. [Google Scholar] [CrossRef]
- Laser, D.J.; Santiago, J.G. A Review of Micropumps. J. Micromech. Microeng. 2004, 14, R35–R64. [Google Scholar] [CrossRef]
- Manopoulos, C.; Mathioulakis, D. Valveless Pumping with an Unsteady Stenosis in an Open Tank Configuration. Fluids 2024, 9, 141. [Google Scholar] [CrossRef]
- Parissis, H.; Graham, V.; Lampridis, S.; Lau, M.; Hooks, G.; Mhandu, P.C. IABP: History-Evolution-Pathophysiology-Indications: What We Need to Know. J. Cardiothorac. Surg. 2016, 11, 122. [Google Scholar] [CrossRef]
- Abdolrazaghi, M.; Navidbakhsh, M.; Hassani, K. Mathematical Modelling of Intra-Aortic Balloon Pump. Comput. Methods Biomech. Biomed. Engin. 2010, 13, 567–576. [Google Scholar] [CrossRef]
- Ferrari, G.; Khir, A.W.; Fresiello, L.; Di Molfetta, A.; Kozarski, M. Hybrid Model Analysis of Intra-Aortic Balloon Pump Performance as a Function of Ventricular and Circulatory Parameters. Artif. Organs 2011, 35, 902–911. [Google Scholar] [CrossRef]
- De Lazzari, C.; De Lazzari, B.; Iacovoni, A.; Marconi, S.; Papa, S.; Capoccia, M.; Badagliacca, R.; Vizza, C.D. Intra-Aortic Balloon Counterpulsation Timing: A New Numerical Model for Programming and Training in the Clinical Environment. Comput. Methods Programs Biomed. 2020, 194, 105537. [Google Scholar] [CrossRef]
- Schaaf, B.W.; Abbrecht, P.H. Digital Computer Simulation of Human Systemic Arterial Pulse Wave Transmission: A Nonlinear Model. J. Biomech. 1972, 5, 345–364. [Google Scholar] [CrossRef] [PubMed]
- Benedict, R.P.; Carlucci, N.A.; Swetz, S.D. Flow Losses in Abrupt Enlargements and Contractions. J. Eng. Power 1966, 88, 73–81. [Google Scholar] [CrossRef]
- Manopoulos, C. Experimental and Theoretical Determination of “Peristaltic Blood Pumps”. Master’s Thesis, National Technical University of Athens, Athens, Greece, 1999. Available online: https://dspace.lib.ntua.gr/xmlui/handle/123456789/49369?locale-attribute=en (accessed on 1 November 2019).
- Miller, D.S. Internal Flow Systems; BHRA fluid engineering series; BHRA Fluid Engineering: Cranfield, UK, 1978. [Google Scholar]
- Zamir, M. The Physics of Coronary Blood Flow; Biological and medical physics, biomedical engineering; Springer: New York, NY, USA, 2005. [Google Scholar]
- Tao, R.; Ng, T.; Su, Y.; Li, Z. A Microfluidic Rectifier for Newtonian Fluids Using Asymmetric Converging–Diverging Microchannels. Phys. Fluids 2020, 32, 052010. [Google Scholar] [CrossRef]
- Mehboudi, A.; Yeom, J. A Passive Stokes Flow Rectifier for Newtonian Fluids. Sci. Rep. 2021, 11, 10182. [Google Scholar] [CrossRef] [PubMed]
- Hall, J.E.; Hall, J.E.; Guyton, A.C. Guyton and Hall Textbook of Medical Physiology, 12th ed.; Saunders: Philadelphia, PA, USA; Elsevier: Philadelphia, PA, USA, 2011. [Google Scholar]
- Parissis, H.; Soo, A.; Leotsinidis, M.; Dougenis, D. A Statistical Model That Predicts the Length from the Left Subclavian Artery to the Celiac Axis; towards Accurate Intra-Aortic Balloon Sizing. J. Cardiothorac. Surg. 2011, 6, 95. [Google Scholar] [CrossRef] [PubMed]
- Krishna, M.; Zacharowski, K. Principles of Intra-Aortic Balloon Pump Counterpulsation. Contin. Educ. Anaesth. Crit. Care Pain 2009, 9, 24–28. [Google Scholar] [CrossRef]
- Zoghbi, W. Recommendations for Evaluation of the Severity of Native Valvular Regurgitation with Two-Dimensional and Doppler Echocardiography. J. Am. Soc. Echocardiogr. 2003, 16, 777–802. [Google Scholar] [CrossRef]
- Papaioannou, T.G.; Mathioulakis, D.S.; Nanas, J.N.; Tsangaris, S.G.; Stamatelopoulos, S.F.; Moulopoulos, S.D. Arterial Compliance Is a Main Variable Determining the Effectiveness of Intra-Aortic Balloon Counterpulsation: Quantitative Data from an in Vitro Study. Med. Eng. Phys. 2002, 24, 279–284. [Google Scholar] [CrossRef]
- Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill Education: New York, NY, USA, 2015. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manopoulos, C.; Tsangaris, S.; Georgantopoulou, C.; Mathioulakis, D. Unidirectional Flow Through Time-Dependent Cross-Sectional Areas of a Compliant Tube and a Valve: A Nonlinear Model. Vibration 2024, 7, 987-998. https://doi.org/10.3390/vibration7040052
Manopoulos C, Tsangaris S, Georgantopoulou C, Mathioulakis D. Unidirectional Flow Through Time-Dependent Cross-Sectional Areas of a Compliant Tube and a Valve: A Nonlinear Model. Vibration. 2024; 7(4):987-998. https://doi.org/10.3390/vibration7040052
Chicago/Turabian StyleManopoulos, Christos, Sokrates Tsangaris, Christina Georgantopoulou, and Dimitrios Mathioulakis. 2024. "Unidirectional Flow Through Time-Dependent Cross-Sectional Areas of a Compliant Tube and a Valve: A Nonlinear Model" Vibration 7, no. 4: 987-998. https://doi.org/10.3390/vibration7040052
APA StyleManopoulos, C., Tsangaris, S., Georgantopoulou, C., & Mathioulakis, D. (2024). Unidirectional Flow Through Time-Dependent Cross-Sectional Areas of a Compliant Tube and a Valve: A Nonlinear Model. Vibration, 7(4), 987-998. https://doi.org/10.3390/vibration7040052