Dynamic-Based Limit Analysis for Seismic Assessment of Free-Standing Walls of San Giovanni Church in Castelseprio UNESCO World Heritage Site
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodological Approach
2.1.1. Exploratory Study
2.1.2. Structural Modeling
2.1.3. Seismic Assessment
2.2. Case Study
2.2.1. Description
2.2.2. Building Techniques
3. Results
3.1. On-Site Investigations
3.1.1. Visual Inspections and MQI
3.1.2. Sonic Pulse Velocity Tests
3.1.3. Dynamic Identification
3.2. Structural Modeling
3.2.1. Preliminary Mechanical Properties
Area | Color (Figure 13a) | E (MPa) | ν | ρ (kg/m3) | Thickness (m) |
---|---|---|---|---|---|
W1 | blue | 1050 | 0.2 | 2000 | 0.70 |
W2 | green | 950 | 0.2 | 2000 | 0.70 |
W3 | red | 1000 | 0.2 | 2000 | 1.05 |
Area | Color (Figure 13b) | E (MPa) | ν | ρ (kN/m3) | Thickness (m) |
---|---|---|---|---|---|
A1 | blue | 800 | 0.2 | 1900 | 0.70 |
green | 800 | 0.2 | 1900 | 1.05 | |
A2 | orange | 700 | 0.2 | 1700 | 0.70 |
A3 | cyan | 950 | 0.2 | 1800 | 0.70 |
A4 | pink | 950 | 0.2 | 1800 | 0.45 |
A5 | red | 1000 | 0.2 | 1800 | 0.85 |
A6 | magenta | 700 | 0.2 | 1700 | 0.30 |
A7 | yellow | 1100 | 0.2 | 1800 | 0.70 |
3.2.2. Model Updating
3.3. Seismic Input and Safety Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cecchi, R.; Gasparoli, P. Prevenzione e Manutenzione per i Beni Culturali Edificati; Alinea: Florence, Italy, 2010. [Google Scholar]
- Archaeological Sites: Conservation and Management; Sullivan, S.; Mackay, R. (Eds.) Readings in Conservation; The Getty Conservation Institute: Los Angeles, CA, USA, 2012; ISBN 978-1-60606-124-4. [Google Scholar]
- Teutonico, J.M.; Palumbo, G. (Eds.) Management Planning for Archaeological Site; The Getty Conservation Institute: Los Angeles, CA, USA, 2002. [Google Scholar]
- Giuffré, A. A Mechanical Model for Statics and Dynamics of Historical Masonry Buildings. In Protection of the Architectural Heritage Against Earthquakes; Petrini, V., Save, M., Eds.; Springer Vienna: Vienna, Austria, 1996; pp. 71–152. ISBN 978-3-211-82805-2. [Google Scholar]
- ICOMOS-ISCARSAH Committee. Recommendations for the Analysis, Conservation and Structural Restoration of Architectural Heritage. 2003. Available online: https://ancientgeorgia.files.wordpress.com/2012/04/recommendations_icomos-principles-and-guidelines.pdf (accessed on 12 January 2024).
- Ministry of Infrastructures and Transportations. Regulation No. 7/2019, Istruzioni per L’applicazione dell’«Aggiornamento Delle “Norme Tecniche per Le Costruzioni”» di cui al Decreto Ministeriale 17 Gennaio 2018. 2019. Available online: https://www.gazzettaufficiale.it/eli/id/2019/02/11/19A00855/sg (accessed on 12 January 2024). (In Italian)
- Bosiljkov, V.; Uranjek, M.; Žarnić, R.; Bokan-Bosiljkov, V. An Integrated Diagnostic Approach for the Assessment of Historic Masonry Structures. J. Cult. Herit. 2010, 11, 239–249. [Google Scholar] [CrossRef]
- Marino, L. Conservazione e Manutenzione di Manufatti Edilizi Ridotti allo Stato di Rudere; Opus Libri: Florence, Italy, 1989. [Google Scholar]
- Baggio, C. La Valutazione Della Sicurezza (Strutturale): Analitica o Qualitativa. In Quale Sicurezza per il Patrimonio Architettonico? Centroni, A., Ed.; Nuova Argos: Roma, Italy, 2007; pp. 133–142. (In Italian) [Google Scholar]
- Lourenço, P.B.; Mendes, N.; Ramos, L.F.; Oliveira, D.V. Analysis of Masonry Structures without Box Behavior. Int. J. Archit. Herit. 2011, 5, 369–382. [Google Scholar] [CrossRef]
- Degli Abbati, S.; Cattari, S.; Lagomarsino, S. Theoretically-Based and Practice-Oriented Formulations for the Floor Spectra Evaluation. Earthq. Struct. 2018, 15, 565–581. [Google Scholar] [CrossRef]
- Degli Abbati, S.; D’Altri, A.M.; Ottonelli, D.; Castellazzi, G.; Cattari, S.; de Miranda, S.; Lagomarsino, S. Seismic Assessment of Interacting Structural Units in Complex Historic Masonry Constructions by Nonlinear Static Analyses. Comput. Struct. 2019, 213, 51–71. [Google Scholar] [CrossRef]
- Aguilar, R.; Marques, R.; Sovero, K.; Martel, C.; Trujillano, F.; Boroschek, R. Investigations on the Structural Behaviour of Archaeological Heritage in Peru: From Survey to Seismic Assessment. Eng. Struct. 2015, 95, 94–111. [Google Scholar] [CrossRef]
- Di Miceli, E.; Monti, G.; Bianco, V.; Filetici, M.G. Assessment and Improvement of the Seismic Safety of the “Bastione Farnesiano”, in the Central Archeological Area of Rome: A Calculation Method between Need to Preserve and Uncertainties. Int. J. Archit. Herit. 2017, 11, 198–218. [Google Scholar] [CrossRef]
- Bergamasco, I.; Papaccio, V.; Carpani, B.; Clemente, P.; Saitta, F. Seismic Preservation of the Archeological Site of Pompeii. Preliminary Analyses. Energ. Ambiente Innov. 2012, 2, 48–55. [Google Scholar]
- Galassi, S.; Ruggieri, N.; Tempesta, G. A Novel Numerical Tool for Seismic Vulnerability Analysis of Ruins in Archaeological Sites. Int. J. Archit. Herit. 2020, 14, 1492647. [Google Scholar] [CrossRef]
- Pappas, A.; Da Porto, F.; Modena, C. Seismic Vulnerability Assessment Form for Free-Standing Columns Based on a Simplified Numerical Analysis. Int. J. Archit. Herit. 2016, 10, 281–299. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Salvalaggio, M.; Lorenzoni, F.; Politi, M.; Boaga, J. The Engineering Approach to Conservation of Massive Archaeological Structures in Seismic Areas: The Apollo Nymphaeum in Hierapolis of Phrygia. Int. J. Archit. Herit. 2023, 17, 1590–1606. [Google Scholar] [CrossRef]
- Pulatsu, B.; Bretas, E.M.; Lourenco, P.B. Discrete Element Modeling of Masonry Structures: Validation and Application. Earthq. Struct. 2016, 11, 563–582. [Google Scholar] [CrossRef]
- Doherty, K.; Griffith, M.C.; Lam, N.; Wilson, J. Displacement-Based Seismic Analysis for out-of-Plane Bending of Unreinforced Masonry Walls. Earthq. Eng. Struct. Dyn. 2002, 31, 833–850. [Google Scholar] [CrossRef]
- Heyman, J. The Stone Skeleton: Structural Engineering of Masonry Architecture; Cambridge University Press: New York, NY, USA, 1997; ISBN 978-0-521-62963-8. [Google Scholar]
- D’Ayala, D.; Speranza, E. Definition of Collapse Mechanisms and Seismic Vulnerability of Historic Masonry Buildings. Earthq. Spectra 2003, 19, 479–509. [Google Scholar] [CrossRef]
- Kouris, L.A.S.; Penna, A.; Magenes, G. Seismic Damage Diagnosis of a Masonry Building Using Short-Term Damping Measurements. J. Sound Vib. 2017, 394, 366–391. [Google Scholar] [CrossRef]
- Ferretti, D.; Coïsson, E.; Lenticchia, E. Seismic Damage on Merlons in Masonry Fortified Buildings: A Parametric Analysis for Overturning Mechanism. Eng. Struct. 2018, 177, 117–132. [Google Scholar] [CrossRef]
- Roca, P. The ISCARSAH Guidelines on the Analysis, Conservation and Structural Restoration of Architectural Heritage. In Proceedings of the 12th International Conference on Structural Analysis of Historical Constructions (SAHC), Barcelona, Spain, 16–18 September 2020; Roca, P., Pelà, L., Molins, C., Eds.; International Centre for Numerical Methods in Engineering (CIMNE): Barcelona, Spain, 2021; pp. 1629–1640. [Google Scholar]
- Guerriero, L.; Guadagnuolo, M.; Titomanlio, I.; Faella, G. An Integrated Approach for the Conservation of Archaeological Buildings: The “Re Barbaro” Palace in Sardinia. Digit. Appl. Archaeol. Cult. Herit. 2022, 27, e00244. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Lorenzoni, F.; Deiana, R.; Taffarel, S.; Modena, C. Non-Destructive Investigations for Structural Qualification of the Sarno Baths, Pompeii. J. Cult. Herit. 2019, 40, 280–287. [Google Scholar] [CrossRef]
- Marques, R.; Aguilar, R.; Trujillano, F.; Sovero, K.; Martel, C. Study on the Seismic Behaviour of Archaeological Heritage Buildings: A Wall in Chokepukio. In Proceedings of the 9th International Conference on Structural Analysis of Historical Constructions (SAHC), Mexico City, Mexico, 14–17 October 2014. [Google Scholar]
- Lanzarone, F. La Conservazione Dei Beni Culturali. Processo Conservativo e Vigente Normativa, Il Nuovo Codice Urbani; Flaccovio: Palermo, Italy, 2004. (In Italian) [Google Scholar]
- Angjeliu, G.; Coronelli, D.; Cardani, G. Development of the Simulation Model for Digital Twin Applications in Historical Masonry Buildings: The Integration between Numerical and Experimental Reality. Comput. Struct. 2020, 238, 106282. [Google Scholar] [CrossRef]
- Dal Piaz, V. Il Ruolo Delle Fonti Documentarie: Appunti Di Metodo. In Manutenzione e Conservazione del Costruito fra Tradizione e Innovazione: Atti del Convegno di Studi “Scienza e Beni Culturali”, Bressanone 24-27 Giugno 1986; Biscontin, G., Ed.; Libreria Progetto: Padova, Italy, 1986; pp. 1–9. (In Italian) [Google Scholar]
- Stylianidis, E.; Remondino, F. (Eds.) 3D Recording, Documentation and Management of Cultural Heritage; Whittles Publishing: Dunbeath, UK, 2016. [Google Scholar]
- Castillo, L.J.; Serván, F.; Patroni, K. Documenting Archaeological Sites on Mountains and Slopes with Drones. Adv. Archaeol. Pract. 2019, 7, 337–352. [Google Scholar] [CrossRef]
- Mannoni, T. Caratteri Costruttivi dell’Edilizia Storica; Venticinque Anni di Archeologia Globale; ESCUM: Genova, Italy, 1994. [Google Scholar]
- Boato, A. L’archeologia in Architettura. Misurazioni, Stratigrafie, Datazioni, Restauro; Marsilio: Venice, Italy, 2008. [Google Scholar]
- Borri, A.; Corradi, M.; Castori, G.; De Maria, A. A Method for the Analysis and Classification of Historic Masonry. Bull. Earthq. Eng. 2015, 13, 2647–2665. [Google Scholar] [CrossRef]
- Doglioni, F. Processi Di Trasformazione e Forme Di Vulnerabilità. In Tecniche Costruttive dell’Edilizia Storica. Conoscere per Conservare; Fiorani, D., Esposito, D., Eds.; Viella: Roma, Italy, 2005; pp. 219–231. [Google Scholar]
- Cardani, G.; Binda, L. Guidelines for the Masonry Quality Evaluation in Built Heritage. In Proceedings of the International Conference Built Heritage 2013: Monitoring Conservation Management, Milan, Italy, 18–20 November 2013; pp. 107–115. [Google Scholar]
- Rovero, L.; Alecci, V.; Mechelli, J.; Tonietti, U.; De Stefano, M. Masonry Walls with Irregular Texture of L’Aquila (Italy) Seismic Area: Validation of a Method for the Evaluation of Masonry Quality. Mater. Struct. 2016, 49, 2297–2314. [Google Scholar] [CrossRef]
- Manzo, A.; Cantini, L.; Chesi, C.; Parisi, M.A. Italian Middle Byzantine Churches: A Comparison Through Masonry Quality Analysis. Int. J. Archit. Herit. 2021, 15, 1474–1491. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M.; De Maria, A. The Failure of Masonry Walls by Disaggregation and the Masonry Quality Index. Heritage 2020, 3, 1162–1198. [Google Scholar] [CrossRef]
- Borri, A.; De Maria, A. Il Metodo IQM per la Stima delle Caratteristiche Meccaniche delle Murature: Allineamento alla Circolare n. 7/2019. In Atti del XVIII Convegno ANIDIS L’Ingegneria Sismica in Italia: Ascoli Piceno, 15–19 Settembre 2019; Braga, F., Dall’Asta, A., Gara, F., Eds.; Pisa University Press: Pisa, Italy, 2019; pp. SG06-02–SG06-21. (In Italian) [Google Scholar]
- Binda, L. The Importance of Investigation for the Diagnosis of Historic Buildings: Application at Different Scales (Centres and Single Buildings). In Structural Analysis of Historical Constructions: Proceedings of the IVth. Int. Seminar on Structural Analysis of Historical Constructions, 10–13 November 2004, Padova, Italy; Modena, C., Lourenço, P.B., Roca, P., Eds.; Taylor & Francis Group: Abingdon, UK, 2005; pp. 29–42. [Google Scholar]
- Binda, L.; Saisi, A.; Tiraboschi, C. Investigation Procedures for the Diagnosis of Historic Masonries. Constr. Build. Mater. 2000, 14, 199–233. [Google Scholar] [CrossRef]
- Valluzzi, M.R.; Cescatti, E.; Cardani, G.; Cantini, L.; Zanzi, L.; Colla, C.; Casarin, F. Calibration of Sonic Pulse Velocity Tests for Detection of Variable Conditions in Masonry Walls. Constr. Build. Mater. 2018, 192, 272–286. [Google Scholar] [CrossRef]
- Autiero, F.; De Martino, G.; Di Ludovico, M.; Prota, A. Mechanical Performance of Full-Scale Pompeii-like Masonry Panels. Constr. Build. Mater. 2020, 251, 118964–118979. [Google Scholar] [CrossRef]
- Autiero, F.; De Martino, G.; Di Ludovico, M.; Prota, A. Structural Assessment of Ancient Masonry Structures: An Experimental Investigation on Rubble Stone Masonry. Int. J. Archit. Herit. 2023, 17, 815–828. [Google Scholar] [CrossRef]
- Miranda, L.; Cantini, L.; Guedes, J.; Binda, L.; Costa, A. Applications of Sonic Tests to Masonry Elements: Influence of Joints on the Propagation Velocity of Elastic Waves. J. Mater. Civ. Eng. 2013, 25, 667–682. [Google Scholar] [CrossRef]
- Saretta, Y.; Casarin, F.; Valluzzi, M.R. An Update of Sonic Pulse Velocity Tests on Heritage Buildings: Correlation with Masonry Types. In Structural Analysis of Historical Constructions; Endo, Y., Hanazato, T., Eds.; RILEM Bookseries; Springer Nature Switzerland: Cham, Switzerland, 2024; Volume 47, pp. 654–667. ISBN 978-3-031-39602-1. [Google Scholar]
- Rainieri, C.; Fabbrocino, G. Operational Modal Analysis for the Characterization of Heritage Structures. Geofizika 2011, 28, 109–126. [Google Scholar]
- Malcata, M.; Ponte, M.; Tiberti, S.; Bento, R.; Milani, G. Failure Analysis of a Portuguese Cultural Heritage Masterpiece: Bonet Building in Sintra. Eng. Fail. Anal. 2020, 115, 104636. [Google Scholar] [CrossRef]
- Requena-Garcia-Cruz, M.V.; Romero-Sánchez, E.; López-Piña, M.P.; Morales-Esteban, A. Preliminary Structural and Seismic Performance Assessment of the Mosque-Cathedral of Cordoba: The Abd al-Rahman I Sector. Eng. Struct. 2023, 291, 116465. [Google Scholar] [CrossRef]
- Shabani, A.; Kioumarsi, M.; Zucconi, M. State of the Art of Simplified Analytical Methods for Seismic Vulnerability Assessment of Unreinforced Masonry Buildings. Eng. Struct. 2021, 239, 112280. [Google Scholar] [CrossRef]
- Lorenzoni, F.; Casarin, F.; Modena, C.; Caldon, M.; Islami, K.; da Porto, F. Structural Health Monitoring of the Roman Arena of Verona, Italy. J. Civ. Struct. Health Monit. 2013, 3, 227–246. [Google Scholar] [CrossRef]
- Chácara, C.; Zvietcovich, F.; Briceño, C.; Marques, R.; Perucchio, R.; Castañeda, B.; Uceda, S.; Morales, R.; Aguilar, R. On-Site Investigation and Numerical Analysis for Structural Assessment of the Archaeological Complex of Huaca de La Luna. In Proceedings of the 9th International Conference on Structural Analysis of Historical Constructions, Mexico City, Mexico, 14–17 October 2014. [Google Scholar]
- Brincker, R.; Zhang, L.; Andersen, P. Modal Identification from Ambient Response Using Frequency Domain Decomposition. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, San Antonio, TX, USA, 14–17 September 2000. [Google Scholar]
- Guillaume, P.; Verboven, P.; Vanlanduit, S.; Van der Auweraer, H.; Peeters, B. A Poly-Reference Implementation of the Least-Squares Complex Frequency-Domain Estimator. In Proceedings of the SEM Annual Conference and Exposition on Experimental and Applied Mechanics, Kissimmee, FL, USA, 3–6 February 2003. [Google Scholar]
- Peeters, B.; De Roeck, G. Stochastic System Identification for Operational Modal Analysis: A Review. J. Dyn. Syst. Meas. Control 2001, 123, 659–667. [Google Scholar] [CrossRef]
- ARTeMIS Extractor; Release 6.0 2011; Structural Vibration Solutions A/S SVS: Aalborg, Denmark, 2011.
- Van den Branden, B.; Laquière, A.; Peeters, B.; De Roeck, G. MACEC 2021, Version 3.4; KU Leuven: Leuven, Belgium, 2021. [Google Scholar]
- Lourenço, P.B.; Gaetani, A. Finite Element Analysis for Building Assessment: Advanced Use and Practical Recommendations, 1st ed.; Routledge: New York, NY, USA, 2022; ISBN 978-0-429-34156-4. [Google Scholar]
- Ghiassi, B.; Milani, G. (Eds.) Numerical Modelling of Masonry and Historical Structures: From Theory to Application; Woodhead Publishing Series in Civil and Structural Engineering; Woodhead Publishing: Duxford, UK, 2019; ISBN 978-0-08-102439-3. [Google Scholar]
- D’Altri, A.M.; Sarhosis, V.; Milani, G.; Rots, J.; Cattari, S.; Lagomarsino, S.; Sacco, E.; Tralli, A.; Castellazzi, G.; de Miranda, S. Modeling Strategies for the Computational Analysis of Unreinforced Masonry Structures: Review and Classification. Arch. Comput. Methods Eng. 2020, 27, 1153–1185. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Riveiro, B.; González-Aguilera, D.; Ramos, L.F. The Combination of Geomatic Approaches and Operational Modal Analysis to Improve Calibration of Finite Element Models: A Case of Study in Saint Torcato Church (Guimarães, Portugal). Constr. Build. Mater. 2014, 70, 118–129. [Google Scholar] [CrossRef]
- Elyamani, A.; Roca, P. A Review on the Study of Historical Structures Using Integrated Investigation Activities for Seismic Safety Assessment. Part II: Model Updating And Seismic Analysis. Sci. Cult. 2018, 4, 29–51. [Google Scholar] [CrossRef]
- Cattari, S.; Degli Abbati, S.; Alfano, S.; Brunelli, A.; Lorenzoni, F.; da Porto, F. Dynamic Calibration and Seismic Validation of Numerical Models of URM Buildings through Permanent Monitoring Data. Earthq. Eng. Struct. Dyn. 2021, 50, 2690–2711. [Google Scholar] [CrossRef]
- Beconcini, M.L.; Croce, P.; Mengozzi, M. Dynamic Monitoring and Model Updating of a Masonry Bell Tower in Pisa. In Proceedings of the 5th International Conference on Structural Analysis of Historical Constructions, New Delhi, India, 6–8 November 2006; Lourenço, P.B., Roca, P., Modena, C., Agrawal, S., Eds.; Macmillan: New Delhi, India, 2007; pp. 659–666. [Google Scholar]
- Gentile, C.; Saisi, A. Ambient Vibration Testing of Historic Masonry Towers for Structural Identification and Damage Assessment. Constr. Build. Mater. 2007, 21, 1311–1321. [Google Scholar] [CrossRef]
- Gentile, C.; Saisi, A.; Gallino, N. Operational Modal Analysis and FE Modelling of a Masonry Tower. In Proceedings of the 3rd International Operational Modal Analysis Conference (IOMAC), Portonovo, Italy, 4–6 May 2009; pp. 499–506. [Google Scholar]
- Allemang, R.J.; Brown, D.L. A Correlation Coefficient for Modal Vector Analysis. In Proceedings of the 1st International Modal Analysis Conference, Orlando, FL, USA, 8–10 November 1982; pp. 110–116. [Google Scholar]
- Pastor, M.; Binda, M.; Harčarik, T. Modal Assurance Criterion. Model. Mech. Mechatron. Syst. 2012, 48, 543–548. [Google Scholar] [CrossRef]
- European Committee for Standardization. Eurocode 8: Design of Structures for Earthquake Resistance—Part 1: General Rules, Seismic Actions and Rules for Buildings (EN 1998-1: 2004). 2004. Available online: https://www.confinedmasonry.org/wp-content/uploads/2009/09/Eurocode-8-1-Earthquakes-general.pdf (accessed on 12 January 2004).
- Turnšek, V.; Čačovič, F. Some Experimental Results on the Strength of Brick Masonry Walls. In Proceedings of the 2nd International Brick Masonry Conference, Stoke-on-Trent, UK, 12–15 April 1970; pp. 149–156. [Google Scholar]
- Donà, M.; Carpanese, P.; Follador, V.; Sbrogiò, L.; da Porto, F. Mechanics-Based Fragility Curves for Italian Residential URM Buildings. Bull. Earthq. Eng. 2021, 19, 3099–3127. [Google Scholar] [CrossRef]
- Chavarria Arnau, A.; Brogiolo, G.P.; Vedovetto, P. Nuove Indagini Sulla Chiesa Di San Giovanni Di Castelseprio (VA). Campagne Di Scavo 2021. In IX Congresso Nazionale di Archeologia Medievale, Alghero, 28 Settembre–2 Ottobre 2022; Milanese, M., Ed.; All’insegna del Giglio: Firenze, Italy; pp. 410–414. (In Italian)
- Rovida, A.; Locati, M.; Camassi, R.; Lolli, B.; Gasperini, P.; Antonucci, A. (Eds.) Italian Parametric Earthquake Catalogue (CPTI15); version 4.0; Istituto Nazionale di Geofisica e Vulcanologia (INGV): Roma, Italy, 2022.
- Forlin, P.; Gerrard, C.; Petley, D. Exploring Representativeness and Reliability for Late Medieval Earthquakes in Europe. Nat. Hazards 2016, 84, 1625–1636. [Google Scholar] [CrossRef]
- De Marchi, P.M. (Ed.) Castelseprio e Torba: Patrimonio dell’Umanità; SAP Società Archeologica: Mantova, Italy, 2013. [Google Scholar]
- Brogiolo, G.P. San Giovanni di Castelseprio. Architetture, Stratigrafie e Interventi dopo un Terremoto. Eur. J. Post-Class. Archaeol. PCA 2022, 12, 237–264. [Google Scholar]
- Bugini, R.; Folli, L. Castrum Sibrium: Le Murature in Ciottoli del Complesso Basilicale di San Giovanni. Sibrium Collana Studi Doc. 2018, 32, 89–106. [Google Scholar]
- Razzante, V. Analisi Archeometriche di Malte Storiche: Il Caso Studio Della Chiesa e del Cimitero di San Giovanni Evangelista in Castel Seprio. Master’s Thesis, University of Padua, Padua, Italy, 2023. [Google Scholar]
- Dilaria, S.; Secco, M.; Bonetto, J.; Ricci, G.; Artioli, G. Making Ancient Mortars Hydraulic. How to Parametrize Type and Crystallinity of Reaction Products in Different Recipes. In Conservation and Restoration of Historic Mortars and Masonry Structures; Bokan Bosiljkov, V., Padovnik, A., Turk, T., Eds.; RILEM Bookseries; Springer Nature Switzerland: Cham, Switzerland, 2023; Volume 42, pp. 36–52. ISBN 978-3-031-31471-1. [Google Scholar]
- Cescatti, E.; Rosato, L.; Valluzzi, M.R.; Casarin, F. An Automatic Algorithm for the Execution and Elaboration of Sonic Pulse Velocity Tests in Direct and Tomographic Arrangements. In Structural Analysis of Historical Constructions. An Interdisciplinary Approach; Aguilar, R., Torrealva, D., Moreira, S., Pando, M.A., Ramos, L.F., Eds.; Springer: Berlin/Heidelberg, Germany, 2019; pp. 716–724. ISBN 978-3-319-99440-6. [Google Scholar]
- G+D Computing Strand7; R3.1.1 2022; Strand7 UK Limited: Cambridgeshire, UK, 2022.
- Ministry of Infrastructures and Transportations. Ministerial Decree 17/01/2018, Aggiornamento Delle «Norme Tecniche per Le Costruzioni». 2018. Available online: https://www.gazzettaufficiale.it/eli/id/2018/2/20/18A00716/sg (accessed on 12 January 2024). (In Italian)
Direction | Masonry Quality | ||
---|---|---|---|
Poor (Category C) | Mediocre (Category B) | Good (Category A) | |
Vertical (MQIV) | 0–2.5 | 2.5–5 | 5–10 |
In plane, horizontal (MQIIP) | 0–4 | 4–7 | 7–10 |
Out of plane, horizontal (MQIOOP) | 0–3 | 3–5 | 5–10 |
Sample | Masonry Quality Indices | |||||
---|---|---|---|---|---|---|
Vertical | Out-of-Plane | In-Plane | ||||
Category | MQIV | Category | MQIOOP | Category | MQIIP | |
MQ9 | B | 3 | C | 1.5 | C | 2.5 |
MQ10 | B | 3 | C | 2.5 | C | 2.5 |
MQ11 | B | 3 | C | 2 | C | 2.5 |
MQ12 | C | 2 | C | 2 | C | 2 |
MQ7 | C | 1 | C | 0.5 | C | 0.5 |
MQ15 | C | 1 | C | 0.5 | C | 0.5 |
MQ16 | C | 2 | C | 1.5 | C | 1 |
Test ID | Average Velocity (m/s) | Wall Thickness (cm) | Hammer Side | Grid Rows × Cols | Height from Ground (cm) | Spacing (cm) |
---|---|---|---|---|---|---|
SON1 | 1749 | 70 | Outside | 10 × 8 | 30 | 20 |
SON2 | 1026 | 110 | Outside | 1 × 9 | 40 | 20 |
SON3A | 642 | 70 | Outside | 7 × 5 | 390 | 20 |
SON3B | 1235 | 70 | Inside | 6 × 5 | 90 | 20 |
Frequency | pLSCF [Hz] | SSI [Hz] | ε [%] |
---|---|---|---|
f1 | 4.79 | 4.73 | 1.3 |
f2 | 5.86 | 5.92 | 0.9 |
f3 | 8.26 | 7.76 | 6.4 |
MAC | pLSCF | |||
---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | ||
Mode 1 | 0.991 | 0.043 | 0.046 | |
SSI | Mode 2 | 0.071 | 0.903 | 0.000 |
Mode 3 | 0.002 | 0.015 | 0.967 |
Frequency | pLSCF (Hz) | EFDD (Hz) | ε (%) |
---|---|---|---|
f1 | 4.06 | 4.00 | 1.4 |
f2 | 4.46 | 4.51 | 1.1 |
f3 | 5.38 | 5.25 | 2.6 |
MAC | pLSCF | |||
---|---|---|---|---|
Mode 1 | Mode 2 | Mode 3 | ||
Mode 1 | 0.952 | 0.147 | 0.820 | |
EFDD | Mode 2 | 0.173 | 0.993 | 0.063 |
Mode 3 | 0.002 | 0.787 | 0.651 |
Part | f (N/mm2) | τ0 (N/mm2) | E (N/mm2) | G (N/mm2) |
---|---|---|---|---|
North wall | 1.7–2.9 | 0.032–0.052 | 906–1295 | 290–410 |
Apse | 1.2–2.1 | 0.019–0.031 | 684–984 | 226–320 |
Part | Frequency | FE (Hz) | ε FE-pLSCF (%) | MAC FE-pLSCF | ε FE-SSI (%) | MAC FE-SSI | ε FE-EFDD (%) | MAC FE-EFDD |
---|---|---|---|---|---|---|---|---|
North wall | f1 | 5.14 | 7.27 | 0.918 | 8.70 | 0.893 | - | - |
f2 | 6.80 | 15.93 | 0.793 | 14.84 | 0.870 | - | - | |
f3 | 9.21 | 11.49 | 0.784 | 18.79 | 0.855 | - | - | |
Apse | f1 | 4.06 | 0.13 | 0.962 | - | - | 1.50 | 0.987 |
f2 | 4.43 | 0.56 | 0.972 | - | - | 1.66 | 0.986 |
Area | E (MPa) | ΔE (%) | ρ (kN/m3) | Δρ (%) |
---|---|---|---|---|
W1 | 800 | −24 | 2000 | 0 |
W2 | 1300 | 37 | 1800 | −10 |
W3 | 800 | −20 | 2000 | 0 |
Area | E (MPa) | ΔE (%) | ρ (kg/m3) | Δρ (%) |
---|---|---|---|---|
A1 | 750 | −6 | 2000 | 5 |
A2 | 700 | 0 | 1700 | 0 |
A3 | 1300 | 37 | 1800 | 0 |
A4 | 1300 | 37 | 1800 | 0 |
A5 | 1000 | 0 | 1800 | 0 |
A6 | 700 | 0 | 1700 | 0 |
A7 | 1100 | 0 | 1800 | 0 |
Part | Frequency | FE (Hz) | ε FE-pLSCF (%) | MAC FE-pLSCF | ε FE-SSI (%) | MAC FE-SSI | ε FE-EFDD (%) | MAC FE-EFDD |
---|---|---|---|---|---|---|---|---|
North wall | f1 | 4.73 | 1.18 | 0.953 | 0.14 | 0.935 | - | - |
f2 | 6.49 | 10.69 | 0.841 | 9.65 | 0.912 | - | - | |
f3 | 9.05 | 9.47 | 0.844 | 16.64 | 0.914 | - | - | |
Apse | f1 | 4.08 | 0.59 | 0.965 | - | - | 1.96 | 0.987 |
f2 | 4.42 | 1.96 | 0.975 | - | - | 2.02 | 0.987 |
LS | ag/g | F0 | TC* (s) | cc | sS | sT | TC (s) | TB (s) | TD (s) |
---|---|---|---|---|---|---|---|---|---|
DL | 0.018 | 2.55 | 0.17 | 3.06 | 1.8 | 1 | 0.170 | 0.511 | 1.672 |
NC | 0.038 | 2.63 | 0.28 | 2.37 | 1.8 | 1 | 0.220 | 0.660 | 1.752 |
Mechanism | Limit State | λ | a0* (m/s2) | az (m/s2) | Safety Ratio | Activation |
---|---|---|---|---|---|---|
1 (Figure 19a) | DL | 0.25 | 1.82 | 0.30 | 6.06 | No |
2 (Figure 19b) | NC | 0.56 | 4.06 | 1.35 | 3.01 | No |
3 (Figure 19c) | NC | 0.47 | 3.41 | 1.11 | 3.07 | No |
4 (Figure 19d) | NC | 0.50 | 3.63 | 1.35 | 2.68 | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sbrogiò, L.; Tavano, L.; Saretta, Y.; Caprino, A.; Chavarría Arnau, A.; Brogiolo, G.P.; Valluzzi, M.R. Dynamic-Based Limit Analysis for Seismic Assessment of Free-Standing Walls of San Giovanni Church in Castelseprio UNESCO World Heritage Site. Heritage 2024, 7, 448-475. https://doi.org/10.3390/heritage7010022
Sbrogiò L, Tavano L, Saretta Y, Caprino A, Chavarría Arnau A, Brogiolo GP, Valluzzi MR. Dynamic-Based Limit Analysis for Seismic Assessment of Free-Standing Walls of San Giovanni Church in Castelseprio UNESCO World Heritage Site. Heritage. 2024; 7(1):448-475. https://doi.org/10.3390/heritage7010022
Chicago/Turabian StyleSbrogiò, Luca, Lorenzo Tavano, Ylenia Saretta, Amedeo Caprino, Alejandra Chavarría Arnau, Gian Pietro Brogiolo, and Maria Rosa Valluzzi. 2024. "Dynamic-Based Limit Analysis for Seismic Assessment of Free-Standing Walls of San Giovanni Church in Castelseprio UNESCO World Heritage Site" Heritage 7, no. 1: 448-475. https://doi.org/10.3390/heritage7010022
APA StyleSbrogiò, L., Tavano, L., Saretta, Y., Caprino, A., Chavarría Arnau, A., Brogiolo, G. P., & Valluzzi, M. R. (2024). Dynamic-Based Limit Analysis for Seismic Assessment of Free-Standing Walls of San Giovanni Church in Castelseprio UNESCO World Heritage Site. Heritage, 7(1), 448-475. https://doi.org/10.3390/heritage7010022