Evaluation of 3D Models of Archaeological Remains of Almenara Castle Using Two UAVs with Different Navigation Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. UAV Data
2.2. Processing Methodology
- –
- Carry out RTK flights so that the flight height is known; the scale of the photographs improves the inaccuracies of the data calculated in point clouds and thus the subsequent production of three-dimensional models.
- –
- Carry out oblique flights, as opposed to traditional nadir flights, to reduce clutter and errors on irregular surfaces.
2.3. Modelling Methodology
3. Results
3.1. Data Flight Results
3.2. Processing and Adjustment Results: Point Cloud and Digital Model Extraction
3.3. Volume and Product Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koutsoudis, A.; Vidmar, B.; Ioannakis, G.; Arnaoutoglou, F.; Pavlidis, G.; Chamzas, C. Multi-image 3D reconstruction data evaluation. J. Cult. Herit. 2014, 15, 73–79. [Google Scholar] [CrossRef]
- Abad, P.V.; Fernandez, A.F.; Novoa, A.A.R. Lost archaeological heritage: Virtual reconstruction of the medieval castle of San Salvador de Todea. Virtual Archaeol. Rev. 2022, 13, 22–44. [Google Scholar] [CrossRef]
- Demetrescu, E. Virtual Reconstruction as a Scientific Tool: The Extended Matrix and Source-Based Modelling Approach. Digit. Res. Educ. Archit. Herit. 2018, 817, 102–116. [Google Scholar] [CrossRef]
- Fiz, J.; Martin, P.; Cuesta, R.; Subías, E.; Codina, D.; Cartes, A. Examples and Results of Aerial Photogrammetry in Archeology with UAV: Geometric Documentation, High Resolution Multispectral Analysis, Models and 3D Printing. Drones 2022, 6, 59. [Google Scholar] [CrossRef]
- Yigit, A.; Uysal, M. Automatic crack detection and structural inspection of cultural heritage buildings using UAV photogrammetry and digital twin technology. J. Build. Eng. 2024, 94, 109952. [Google Scholar] [CrossRef]
- Harshit, H.; Kushwaha, S.; Jain, K. Geometric features interpretation of photogrammetric point cloud from unmanned aerial vehiclE. In Proceedings of the 17th 3D Geoinfo Conference, Sydney, Australia, 18–21 October 2022; pp. 83–88. [Google Scholar]
- Barrile, V.; Bernardo, E.; Fotia, A.; Bilotta, G. Integration of Laser Scanner, Ground-Penetrating Radar, 3D Models and Mixed Reality for Artistic, Archaeological and Cultural Heritage Dissemination. Heritage 2022, 5, 1529–1550. [Google Scholar] [CrossRef]
- Puente, I.; Solla, M.; Laguela, S.; Sanjurjo-Pinto, J. Reconstructing the Roman Site “Aquis Querquennis” (Bande, Spain) from GPR, T-LiDAR and IRT Data Fusion. Remote Sens. 2018, 10, 379. [Google Scholar] [CrossRef]
- Stal, C.; Covataru, C.; Müller, J.; Parnic, V.; Ignat, T.; Hofmann, R.; Lazar, C. Supporting Long-Term Archaeological Research in Southern Romania Chalcolithic Sites Using Multi-Platform UAV Mapping. Drones 2022, 6, 277. [Google Scholar] [CrossRef]
- Kompoti, A.; Kazolias, A.; Panagiotidis, V.; Zacharias, N. 3D Laser Scanning and UAVs in cultural heritage: The case of Old Navarino castle in Pylos, Greece. J. Archaeol. Sci. Rep. 2023, 52, 104223. [Google Scholar] [CrossRef]
- Cianci, M.; Calisi, D.; Colaceci, S.; Botta, S.; Pontisso, M.; Quilici, S.; Spallino, C. Integrated 3D methodologies for the survey of archeological heritage. Disegnarecon 2023, 16, 4.1–4.12. [Google Scholar] [CrossRef]
- Benavides Lopez, J.A.; Martin Civantos, J.M.; Rouco Collazo, J. Architectural survey and archaeological analysis of the pinar castle as a starting point for its conservation. Virtual Archaeol. Rev. 2020, 11, 95–115. [Google Scholar] [CrossRef]
- Potje, G.; Resende, G.; Campos, M.; Nascimento, E. Towards an efficient 3D model estimation methodology for aerial and ground images. Mach. Vis. Appl. 2017, 28, 937–952. [Google Scholar] [CrossRef]
- Barreau, J.-B.; Bernard, Y.; Petit, Q.; Beuchet, L.; Petit, E.; Platen, V.; Gaugne, R.; Le Rumeur, J.; Gouranton, V. Combination of 3D Scanning, Modeling and Analyzing Methods around the Castle of Coatfrec Reconstitution. Digit. Herit. Progress. Cult. Herit. Doc. Preserv. Prot. 2014, 8740, 418–426. [Google Scholar]
- García-Molina, D.; González-Merino, R.; Rodero-Pérez, J.; Carrasco-Hurtado, B. 3D documentation for the conservation of historical heritage: The castle of priego de cordoba (Spain). Virtual Archaeol. Rev. 2021, 12, 115–130. [Google Scholar] [CrossRef]
- Şasi, A.; Yakar, M. Photogrammetric modelling of hasbey dar’ülhuffaz (masjid) using an unmanned aerial vehicle. Int. J. Eng. Geosci. 2018, 3, 6–11. [Google Scholar] [CrossRef]
- Yimaz, H.; Yakar, M.; Gulec, S.; Dulgerler, O. Importance of digital close-range photogrammetry in documentation of cultural heritage. J. Cult. Herit. 2007, 8, 428–433. [Google Scholar] [CrossRef]
- Cuenca-Garcia, C.; Risbol, O.; Bates, C.R.; Stamnes, A.A.; Skoglund, F.; Odegard, O.; Viberg, A.; Koivisto, S.; Fuglsang, M.; Gabler, M.; et al. Sensing Archaeology in the North: The Use of Non-Destructive Geophysical and Remote Sensing Methods in Archaeology in Scandinavian and North Atlantic Territories. Remote Sens. 2020, 12, 3102. [Google Scholar] [CrossRef]
- Balsi, M.; Esposito, S.; Fallavollita, P.; Melis, M.G.; Milanese, M. Preliminary Archeological Site Survey by UAV-Borne Lidar: A Case Study. Remote Sens. 2021, 13, 332. [Google Scholar] [CrossRef]
- Arevalo-Verjel, A.N.; Lerma, J.L.; Prieto, J.F.; Carbonell-Rivera, J.P.; Fernandez, J. Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas. Remote Sens. 2022, 14, 2877. [Google Scholar] [CrossRef]
- Charter, L. The London Charter for the Computer-Based Visualisation of Cultural Heritage. 2009. Available online: http://www.londoncharter.org (accessed on 10 March 2024).
- Lopez-Menchero, V.M.; Grande, A. The principles of the Seville Charter. In Proceedings of the CIPA Symposium Proceedings, Prague, Czech Republic, 12–16 September 2011; pp. 2–6. [Google Scholar]
- Rojas-Sola, J.I.; del Rio-Cidoncha, G.; Fernandez-de La Puente Sarria, A.; Galiano-Delgado, V. Blaise Pascal’s Mechanical Calculator: Geometric Modelling and Virtual Reconstruction. Machines 2021, 9, 136. [Google Scholar] [CrossRef]
- Pan, J.; Li, L.; Yamaguchi, H.; Hasegawa, K.; Thufail, F.I.; Brahmantara; Tanaka, S. Integrated High-Definition Visualization of Digital Archives for Borobudur Temple. Remote Sens. 2021, 13, 5024. [Google Scholar] [CrossRef]
- Enriquez, C.; Manuel Jurado, J.; Bailey, A.; Callen, D.; Jose Collado, M.; Espina, G.; Marroquin, P.; Oliva, E.; Osla, E.; Isabel Ramos, M.; et al. The UAS-Based 3D Image Characterization of Mozarabic Church Ruins in Bobastro (Malaga), Spain. Remote Sens. 2020, 12, 2377. [Google Scholar] [CrossRef]
- Del Pozo, S.; Rodriguez-Gonzalvez, P.; Hernandez-Lopez, D.; Onrubia-Pintado, J.; Guerrero-Sevilla, D.; Gonzalez-Aguilera, D. Novel Pole Photogrammetric System for Low-Cost Documentation of Archaeological Sites: The Case Study of “Cueva Pintada”. Remote Sens. 2020, 12, 2644. [Google Scholar] [CrossRef]
- Emmitt, J.; Pillay, P.; Barrett, M.; Middleton, S.; Mackrell, T.; Floyd, B.; Ladefoged, T.N. A Comparison of Volumetric Reconstruction Methods of Archaeological Deposits Using Point-Cloud Data from Ahuahu, Aotearoa New Zealand. Remote Sens. 2021, 13, 4015. [Google Scholar] [CrossRef]
- Landes, T.; Heissler, M.; Koehl, M.; Benazzi, T.; Nivola, T. Uncertainty visualization approaches for 3D models of castles restituted from archeological knowledge. In Proceedings of the 8th International Workshop 3D-Arch: 3D Virtual Reconstruction and Visualization of Complex Architectures, Bergamo, Italy, 6–8 February 2019; pp. 409–416. [Google Scholar] [CrossRef]
- Cascini, L.; Brando, G.; Portioli, F.P.A.; Forgione, M.R.; Mazzanti, C.; Vasta, M. Force-Based Seismic Evaluation of Retrofitting Interventions of Historic Masonry Castles by 3D Rigid Block Limit Analysis. Appl. Sci. 2020, 10, 5035. [Google Scholar] [CrossRef]
- D’Aprile, M.; Piscitelli, M. Survey, stratigraphy of the elevations, 3D modelling for the knowledge and conservation of archaeological parks: The castle of avella. In Proceedings of the 8th International Workshop 3D-Arch: 3D Virtual Reconstruction and Visualization of Complex Architectures, Bergamo, Italy, 6–8 February 2019; pp. 289–296. [Google Scholar] [CrossRef]
- Aparicio-Resco, P.; Garcia Alvarez-Busto, A.; Muniz-Lopez, I.; Fernandez-Calderon, N. 3D virtual reconstruction of the Gauzon Castle (Castrillon, Principado de Asturias). Virtual Archaeol. Rev. 2021, 12, 158–176. [Google Scholar] [CrossRef]
- Radulescu, V.M.; Radulescu, G.M.T.; Nas, S.; Radulescu, A.T.; Bondrea, M.; Radulescu, C.M. Geoinformatics Technologies for Preservation of Cultural Heritage, Case Study, Rákóczi-Bánffy Castle, Urmeniș, Bistriţa Năsăud County, Romania. J. Appl. Eng. Sci. 2021, 11, 41–48. [Google Scholar] [CrossRef]
- Manferdini, A.M.; Galassi, M. Assessments for 3D reconstructions of cultural heritage using digital technologies. In Proceedings of the 3D-Arch 2013—3D Virtual Reconstruction and Visualization of Complex Architectures, Trento, Italy, 25–26 February 2013; pp. 167–174. [Google Scholar]
- Scianna, A.; La Guardia, M. Survey and Photogrammetric Restitution of Monumental Complexes: Issues and Solutions—The Case of the Manfredonic Castle of Mussomeli. Heritage 2019, 2, 774–786. [Google Scholar] [CrossRef]
- Banfi, F. HBIM, 3D drawing and virtual reality for archaeological sites and ancient ruins. Virtual Archaeol. Rev. 2020, 11, 16–33. [Google Scholar] [CrossRef]
UAV | Flight Data | Photo | Flight Time (min) | GSD (cm) | Density (Pts/m2) |
---|---|---|---|---|---|
Phantom 4 | O | 144 | 12 | 1.2 | 167 |
N | 224 | 17 | 1.2 | 87 | |
C | 368 | 29 | 1.2 | 254 | |
Matrice 300 RTK P1 | O | 832 | 21 | 0.87 | 1860 |
SO | 973 | 15 | 0.75/0.87 | 1760 |
ZGNSS | ZP1 | ZP4P | Error P1 | Error P4P | |
---|---|---|---|---|---|
P 1 | 995.047 | 995.031 | 995.041 | 0.016 | 0.006 |
P 2 | 996.441 | 996.414 | 996.405 | 0.027 | 0.036 |
P 3 | 1000.240 | 1000.242 | 1000.238 | −0.002 | 0.002 |
P 4 | 1001.686 | 1001.653 | 1001.639 | 0.033 | 0.047 |
Control Point Type | ID | Z | ZP1 | ErrorP1 | ZP4P | ErrorP4P | RelativeElev | Dif. P1–P4P |
---|---|---|---|---|---|---|---|---|
Total Station Point | A | 1023.135 | 1023.120 | 0.015 | 1023.310 | −0.175 | 36.880 | 0.190 |
GNSS Point | B | 1011.360 | 1011.349 | 0.011 | 1011.479 | −0.119 | 48.651 | 0.130 |
GNSS Point | C | 1007.677 | 1007.686 | −0.009 | 1007.756 | −0.079 | 52.314 | 0.070 |
Total Station Point | D | 1007.045 | 1007.065 | −0.020 | 1007.153 | −0.108 | 52.935 | 0.088 |
Total Station Point | E | 1012.719 | 1012.709 | 0.010 | 1012.818 | −0.099 | 47.291 | 0.109 |
Total Station Point | F | 1023.764 | 1023.751 | 0.013 | 1023.919 | −0.155 | 36.249 | 0.168 |
Total Station Point | G | 1023.660 | 1023.659 | 0.001 | 1023.855 | −0.195 | 36.341 | 0.196 |
Total Station Point | H | 1007.330 | 1007.341 | −0.011 | 1007.401 | −0.071 | 52.659 | 0.060 |
Total Station Point | I | 1017.678 | 1017.688 | −0.010 | 1017.822 | −0.144 | 42.312 | 0.134 |
Total Station Point | J | 1022.778 | 1022.758 | 0.020 | 1022.957 | −0.179 | 37.242 | 0.199 |
GNSS Point | K | 1009.594 | 1009.574 | 0.020 | 1009.686 | −0.092 | 50.426 | 0.112 |
Zone | Area, m2 | Perimeter, m | Reference, m | Volume, m3 |
---|---|---|---|---|
Zone 1 | 222.37 | 62.442 | 1052 | 1039.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Herrera, J.; López-Cuervo, S.; Pérez-Martín, E.; Maté-González, M.Á.; Izquierdo, C.V.; Peñarroya, J.M.; Herrero-Tejedor, T.R. Evaluation of 3D Models of Archaeological Remains of Almenara Castle Using Two UAVs with Different Navigation Systems. Heritage 2025, 8, 22. https://doi.org/10.3390/heritage8010022
López-Herrera J, López-Cuervo S, Pérez-Martín E, Maté-González MÁ, Izquierdo CV, Peñarroya JM, Herrero-Tejedor TR. Evaluation of 3D Models of Archaeological Remains of Almenara Castle Using Two UAVs with Different Navigation Systems. Heritage. 2025; 8(1):22. https://doi.org/10.3390/heritage8010022
Chicago/Turabian StyleLópez-Herrera, Juan, Serafín López-Cuervo, Enrique Pérez-Martín, Miguel Ángel Maté-González, Consuelo Vara Izquierdo, José Martínez Peñarroya, and Tomás R. Herrero-Tejedor. 2025. "Evaluation of 3D Models of Archaeological Remains of Almenara Castle Using Two UAVs with Different Navigation Systems" Heritage 8, no. 1: 22. https://doi.org/10.3390/heritage8010022
APA StyleLópez-Herrera, J., López-Cuervo, S., Pérez-Martín, E., Maté-González, M. Á., Izquierdo, C. V., Peñarroya, J. M., & Herrero-Tejedor, T. R. (2025). Evaluation of 3D Models of Archaeological Remains of Almenara Castle Using Two UAVs with Different Navigation Systems. Heritage, 8(1), 22. https://doi.org/10.3390/heritage8010022