Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications
Abstract
:1. Introduction
2. Electrode Preparation Methods
3. Electron Transfer Mechanisms
4. Mass and Charge Transport in MFC
5. Structural and Mass Spectroscopy Characterization
6. Surface Electrochemistry
Anode Material | Power Density | Characterization Method to Obtain Ch TR * | Reference |
---|---|---|---|
Natural biomass-based material | |||
Bamboo charcoal | 1652 mW m−2 | EIS Ch TR ↓1 | [86] |
Municipal sludge | 568.5 mW m−2 | EIS Ch TR ↓2 | [87] |
Sewage sludge | 2228 mW m−2 | ACI Ch TR ↓3 | [88] |
Cotton textile | 931 mW m−2 | EIS Ch TR ↓4 | [12] |
Sugar cane | 59.94 W m−3 | [89] | |
Coconut shell | 1069 mW m−2 | [90] | |
Corn stem | ** 3.12 mA cm−2 | EIS Ch TR ↓5 | [91] |
Composite materials | |||
Ti Graphene/PANI | 124 mW m−2 | [127] | |
Fe-N-S-doped carbon tubes | 479 W m−3 | [128] | |
Nano Fe3C/PGC | 1856 W m−2 | EIS ChT TR ↓6 | [129] |
Carbon felt/PANI | 216 mW m−2 | EIS ChT TR ↓7 | [130] |
Activated carbon/PANI | 273 mW m−2 | EIS ChT TR ↓8 | [131] |
MnO2/carbon felt | 3580 mW m−2 | SC and SR | [132] |
Stainless steel mess/PANI | 48 mW m−2 | EIS ChT TR ↓9 | [133] |
Stainless steel mess/PANI/carbon nanotube | 38 mW m−2 | EIS ChT TR ↓10 | [133] |
Fe carbon cloth | 890 mW m−2 | EIS with biofilm | [134] |
Graphene modified based anodes *** | |||
Graphite block anode (and Graphite/polyester Ni as cathode) | 1575 mW m−2 | CV, EIS | [135] |
Graphite/polyester Fe (graphite block cathode) | 58.92 ± 11.27 mW m−2 | CV, EIS low Ch TR | [135] |
Graphite/polyester Co (graphite block cathode) | 430–630 mW m−2 | CV, EIS low Ch TR | [135] |
Graphite/polyester Ni (graphite block cathode) | 430–630 mW m−2 | CV, EIS low Ch TR | [135] |
Graphite/polyester Cu (graphite block cathode) | 430–630 mW m−2 | CV, EIS | [135] |
Graphite/polyester Zn (graphite block cathode) | 1188 mW m−2 | CV, EIS low Ch TR | [135] |
Graphite/polyester Mn (graphite block cathode) | 1200 mW m−2 | CV, EIS lowest Ch TR | [135] |
Graphite/polyester Mg (graphite block cathode) | 1.36 ± 1.3 mW m−2 | CV, EIS | [135] |
rGO/polydopamine | 988 mW m−2 | EIS Ch TR ↓11 | [29] |
Eucalyptus leaves/rGO/carbon fiber paper | 1158 mW m−2 | EIS with inoculum | [136] |
Cellulose derived GO/PANI | 1.1 mW m−2 | EIS with inoculum | [137] |
Lignin derived GO | 0.148 mW m−2 | CV and EIS | [138] |
Lignin derived GO/ZnO | 1.15 mW m−2 | CV and EIS | [138] |
Lignin derived GO/TiO2 | 0.75 mW m−2 | CV and EIS | [138] |
7. Conclusions
- nD nanomaterials. The synthesis, stability, cost, and use of n-dimensional electrodes and combinations of nD nanomaterials provide a larger specific area for microbial adhesion and subsequent contact with contaminants. This will increase the performance to apply in toxic wastewater treatment because of numerous outstanding features (e.g., increase of the tolerance of the microorganisms in toxic environments, adequate transport phenomena).
- Electrochemical characterization. The combination of different electrochemical techniques (in situ or online) can provide a complete picture of the transfer electron mechanism for each applied biofilm electrode material. The EIS experiment must be carefully revised to establish a suitable equivalent electrical circuit.
- Physicochemical characterization. The microstructural properties of the material are important for understanding its stability, selectivity, and biocompatibility with biofilm. This analysis could be applied in in situ and ex situ mode.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ATR | Attenuated Total Reflection |
AFM | Atomic Force Microscopy |
BE | Biofilm Electrodes |
BES | Bioelectrochemical systems |
cAMP | Cyclic AMP |
COD | Chemical Oxygen Demand |
CVD | Chemical vapor deposition |
CW | Constructed wetlands |
DEMS | Differential Electrochemical Mass Spectroscopy |
DET | Direct electron transfer |
EIS | Electrochemical Impedance Spectroscopy |
EPS | Exopolysaccharides or extracellular polymeric substance |
FTIR | Fourier Transformed infrared |
Gr′ | 2D crystalline carbon allotrope Graphene |
HRTEM | High-Resolution Transmission Microscopy |
IC-MS | ion Chromatography Mass Spectrometry |
IDET | Indirect electron transfer |
K-K | Kramers–Kronig |
LC-MS | Liquid Chromatography Mass Spectrometry |
LPS | Lipopolysaccharides |
MET | mediated electron transfer |
MFC | Microbial fuel cell |
MCP | methyl accepting chemotaxis protein |
MWCNT | multi-walled CNTs |
ORR | Oxygen Reduction Reaction |
PGM | Platinum group metals |
SDG | Sustainable Development Goals |
SEM | Scanning Electron Microscopy |
SSLbL | spin spray layer by layer |
XRD | X-ray Diffraction |
XPS | X-ray photoelectron spectroscopy |
References
- Lovley, D.R. Bug Juice: Harvesting Electricity with Microorganisms. Nat. Rev. Microbiol. 2006, 4, 497–508. [Google Scholar] [CrossRef] [PubMed]
- Jayasinghe, N.; Franks, A.; Nevin, K.P.; Mahadevan, R. Metabolic Modeling of Spatial Heterogeneity of Biofilms in Microbial Fuel Cells Reveals Substrate Limitations in Electrical Current Generation. Biotechnol. J. 2014, 9, 1350–1361. [Google Scholar] [CrossRef]
- Wang, J.; Zhong, H.; Estudillo-Wong, L.A.; Li, H.; Alonso-Vante, N.; Li, D.; Tang, P.; Feng, Y. Synthesis and Electrocatalytic Performance of N-Doped Graphene Embedded with Co/CoO Nanoparticles Towards Oxygen Evolution and Reduction Reactions. Catal. Commun. 2022, 164, 106428–106433. [Google Scholar] [CrossRef]
- Song, X.-W.; Zhang, S.; Zhong, H.; Gao, Y.; Estudillo-Wong, L.A.; Alonso-Vante, N.; Shu, X.; Feng, Y. Feco Nanoalloys Embedded in Nitrogen-Doped Carbon Nanosheets/Bamboo-Like Carbon Nanotubes for the Oxygen Reduction Reaction. Inorg. Chem. Front. 2021, 8, 109–121. [Google Scholar] [CrossRef]
- Estudillo-Wong, L.A.; Ramos-Sanchez, G.; Calvillo, L.; Granozzi, G.; Alonso-Vante, N. Support Interaction Effect of Platinum Nanoparticles on Non-, Y-, Ce-Doped Anatase and Its Implication on the ORR in Acid and Alkaline Media. ChemElectroChem 2017, 4, 3264–3275. [Google Scholar] [CrossRef]
- Luo, Y.; Alonso-Vante, N. The Effect of Support on Advanced Pt-Based Cathodes Towards the Oxygen Reduction Reaction. State of the Art. Electrochim. Acta 2015, 179, 108–118. [Google Scholar] [CrossRef]
- Hussain, S.; Erikson, H.; Kongi, N.; Sarapuu, A.; Solla-Gullón, J.; Maia, G.; Kannan, A.M.; Alonso-Vante, N.; Tammeveski, K. Oxygen Reduction Reaction on Nanostructured Pt-Based Electrocatalysts: A Review. Int. J. Hydrogen Energy 2020, 45, 31775–31797. [Google Scholar] [CrossRef]
- Marković, N.M.; Schmidt, T.J.; Stamenković, V.; Ross, P.N. Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review. Fuel Cells 2001, 1, 105–116. [Google Scholar] [CrossRef]
- Gago, A.; Luo, Y.; Alonso-Vante, N. Chalcogenide Electrocatalysts for Energy Conversion Fuel Cell. In Encyclopedia of Interfacial Chemistry; Elsevier: Oxford, UK, 2018; pp. 419–445. [Google Scholar]
- Mora-Hernández, J.M.; Vega-Granados, K.; Estudillo-Wong, L.A.; Canaff, C.; Alonso-Vante, N. Chemistry, Surface Electrochemistry, and Electrocatalysis of Carbon-Supported Palladium-Selenized Nanoparticles. ACS Appl. Energy Mater. 2020, 3, 11434–11444. [Google Scholar] [CrossRef]
- Vega-Granados, K.; Canaff, C.; Estudillo-Wong, L.-A.; Alonso-Núñez, G.; Cruz-Reyes, J.; Alonso-Vante, N. The Effect on the Electrocatalytic Activity of the Chemical Interaction of Selenium with Palladium Centers: Oxygen Reduction and Methanol Oxidation Reactions in Alkaline Medium. J. Phys. Condens. Matter 2021, 33, 314001–314011. [Google Scholar] [CrossRef]
- Zeng, L.; Zhao, S.; He, M. Macroscale Porous Carbonized Polydopamine-Modified Cotton Textile for Application as Electrode in Microbial Fuel Cells. J. Power Sources 2018, 376, 33–40. [Google Scholar] [CrossRef]
- Bhavyasree, P.; Xavier, T. Green Synthesis of Copper Oxide/Carbon Nanocomposites Using the Leaf Extract of Adhatoda Vasica Nees, Their Characterization and Antimicrobial Activity. Heliyon 2020, 6, e03323–e03333. [Google Scholar] [CrossRef]
- Damodharan, J. Nanomaterials in Medicine—An Overview. Mater. Today Proc. 2021, 37, 383–385. [Google Scholar] [CrossRef]
- Mahmoud, R.H.; Samhan, F.A.; Ibrahim, M.K.; Ali, G.H.; Hassan, R.Y.A. Formation of Electroactive Biofilms Derived by Nanostructured Anodes Surfaces. Bioprocess Biosyst. Eng. 2021, 44, 759–768. [Google Scholar] [CrossRef]
- Lou, X.; Liu, Z.; Hou, J.; Zhou, Y.; Chen, W.; Xing, X.; Li, Y.; Liao, Q.; Zhu, X. Modification of the Anodes Using MoS2 Nanoflowers for Improving Microbial Fuel Cells Performance. Catal. Today 2021, 364, 111–117. [Google Scholar] [CrossRef]
- Chaturvedi, A.; Kundu, P.P. Enhancing Sustainable Bioelectricity Generation Using Facile Synthesis of Nanostructures of Bimetallic Co–Ni at the Combined Support of Halloysite Nanotubes and Reduced Graphene Oxide as Novel Oxygen Reduction Reaction Electrocatalyst in Single-Chambered Microbial Fuel Cells. Int. J. Hydrogen Energy 2022, 47, 29413–29429. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Wang, X.; Yang, D.; Wei, Q.; Wang, Y.; Wang, R.; Liu, Y.; Yang, Y. Zeolitic Imidazolate Framework Zif-67 Grown on Nial-Layered Double Hydroxide/Graphene Oxide as Cathode Catalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. Int. J. Hydrogen Energy 2022, 47, 36283–36293. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Zhu, W.-P.; Liu, Y.; Zhou, L.-L.; Liu, P.-X.; Xu, J. An Integrated Biological-Electrocatalytic Process for Highly-Efficient Treatment of Coking Wastewater. Bioresour. Technol. 2021, 339, 125584–125591. [Google Scholar] [CrossRef]
- Pousti, M.; Joly, M.; Roberge, P.; Amirdehi, M.A.; Bégin-Drolet, A.; Greener, J. Linear Scanning Atr-Ftir for Chemical Mapping and High-Throughput Studies of Pseudomonas Sp. Biofilms in Microfluidic Channels. Anal. Chem. 2018, 90, 14475–14483. [Google Scholar] [CrossRef] [Green Version]
- Mecozzi, M.; Pietroletti, M.; Tornambè, A. Molecular and Structural Characteristics in Toxic Algae Cultures of Ostreopsis Ovata and Ostreopsis Spp. Evidenced by Ftir and Ftnir Spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2011, 78, 1572–1580. [Google Scholar] [CrossRef]
- Holman, H.-Y.N.; Miles, R.; Hao, Z.; Wozei, E.; Anderson, L.M.; Yang, H. Real-Time Chemical Imaging of Bacterial Activity in Biofilms Using Open-Channel Microfluidics and Synchrotron Ftir Spectromicroscopy. Anal. Chem. 2009, 81, 8564–8570. [Google Scholar] [CrossRef]
- Zhao, L.; She, Z.; Jin, C.; Yang, S.; Guo, L.; Zhao, Y.; Gao, M. Characteristics of Extracellular Polymeric Substances from Sludge and Biofilm in a Simultaneous Nitrification and Denitrification System under High Salinity Stress. Bioprocess Biosyst. Eng. 2016, 39, 1375–1389. [Google Scholar] [CrossRef]
- Chatterjee, S.; Biswas, N.; Datta, A.; Dey, R.; Maiti, P. Atomic Force Microscopy in Biofilm Study. Microscopy 2014, 63, 269–278. [Google Scholar] [CrossRef]
- Kasian, O.; Geiger, S.; Mayrhofer, K.J.; Cherevko, S. Electrochemical on-Line Icp-Ms in Electrocatalysis Research. Chem. Rec. 2019, 19, 2130–2142. [Google Scholar] [CrossRef]
- Kubannek, F.; Schröder, U.; Krewer, U. Revealing Metabolic Storage Processes in Electrode Respiring Bacteria by Differential Electrochemical Mass Spectrometry. Bioelectrochemistry 2018, 121, 160–168. [Google Scholar] [CrossRef]
- Hu, X.-B.; Xu, K.; Wang, Z.; Ding, L.-L.; Ren, H.-Q. Characteristics of Biofilm Attaching to Carriers in Moving Bed Biofilm Reactor Used to Treat Vitamin C Wastewater. Scanning 2013, 35, 283–291. [Google Scholar] [CrossRef]
- Reese, S.; Guggenheim, B. A Novel Tem Contrasting Technique for Extracellular Polysaccharides In in Vitro Biofilms. Microsc. Res. Tech. 2007, 70, 816–822. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Z.; Xu, Y.; Tan, X.; Yue, Z.; Ma, K.; Wang, Y. Reduced Graphene Oxide@Polydopamine Decorated Carbon Cloth as an Anode for a High-Performance Microbial Fuel Cell in Congo Red/Saline Wastewater Removal. Bioelectrochemistry 2021, 137, 107675–107681. [Google Scholar] [CrossRef]
- Glombitza, C.; Pedersen, J.; Røy, H.; Jørgensen, B.B. Direct Analysis of Volatile Fatty Acids in Marine Sediment Porewater by Two-Dimensional Ion Chromatography-Mass Spectrometry. Limnol. Oceanogr. Methods 2014, 12, 455–468. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, Y.; Ma, J.; Zhao, F. Rapid Degradation of Sulphamethoxazole and the Further Transformation of 3-Amino-5-Methylisoxazole in a Microbial Fuel Cell. Water Res. 2016, 88, 322–328. [Google Scholar] [CrossRef]
- McCutcheon, J.; Southam, G. Advanced Biofilm Staining Techniques for Tem and Sem in Geomicrobiology: Implications for Visualizing Eps Architecture, Mineral Nucleation, and Microfossil Generation. Chem. Geol. 2018, 498, 115–127. [Google Scholar] [CrossRef]
- van der Mei, H.C.; Léonard, A.J.; Weerkamp, A.H.; Rouxhet, P.G.; Busscher, H.J. Surface Properties of Streptococcus Salivarius Hb and Nonfibrillar Mutants: Measurement of Zeta Potential and Elemental Composition with X-ray Photoelectron Spectroscopy. J. Bacteriol. 1988, 170, 2462–2466. [Google Scholar] [CrossRef] [Green Version]
- Das, I.; Ghangrekar, M.M.; Satyakam, R.; Srivastava, P.; Khan, S.; Pandey, H.N. On-Site Sanitary Wastewater Treatment System Using 720-L Stacked Microbial Fuel Cell: Case Study. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020025. [Google Scholar] [CrossRef]
- United Nations. Goal 6: Ensure Access to Water and Sanitation for All; Unit Nations: New York, NY, USA, 2016; Available online: https://www.un.org/sustainabledevelopment/water-and-sanitation/ (accessed on 4 November 2022).
- Tiwari, J.N.; Tiwari, R.N.; Kim, K.S. Zero-Dimensional, One-Dimensional, Two-Dimensional and Three-Dimensional Nanostructured Materials for Advanced Electrochemical Energy Devices. Prog. Mater. Sci. 2012, 57, 724–803. [Google Scholar] [CrossRef]
- Jiang, L.; Chen, J.; Han, D.; Chang, S.; Yang, R.; An, Y.; Liu, Y.; Chen, F. Potential of Core-Shell Nife Layered Double Hydroxide@Co3O4 Nanostructures as Cathode Catalysts for Oxygen Reduction Reaction in Microbial Fuel Cells. J. Power Sources 2020, 453, 227877–227884. [Google Scholar] [CrossRef]
- Hao, C.-C.; Tang, Y.-B.; Shi, W.-L.; Chen, F.-Y.; Guo, F. Facile Solvothermal Synthesis of a Z-Scheme 0d/3d CeO2/Znin2S4 Heterojunction with Enhanced Photocatalytic Performance under Visible Light Irradiation. Chem. Eng. J. 2021, 409, 128168–128178. [Google Scholar] [CrossRef]
- Ren, X.; Pang, L.; Zhang, Y.; Ren, X.; Fan, H.; Liu, S. One-Step Hydrothermal Synthesis of Monolayer MoS2 Quantum Dots for Highly Efficient Electrocatalytic Hydrogen Evolution. J. Mater. Chem. A 2015, 3, 10693–10697. [Google Scholar] [CrossRef]
- Timperman, L.; Feng, Y.; Vogel, W.; Alonso-Vante, N. Substrate Effect on Oxygen Reduction Electrocatalysis. Electrochim. Acta 2010, 55, 7558–7563. [Google Scholar] [CrossRef]
- Yan, Z.; Wang, W.; Du, L.; Zhu, J.; Phillips, D.L.; Xu, J. Interpreting the Enhanced Photoactivities of 0d/1d Heterojunctions of Cds Quantum Dots/TiO2 Nanotube Arrays Using Femtosecond Transient Absorption Spectroscopy. Appl. Catal. B Environ. 2020, 275, 119151–119160. [Google Scholar] [CrossRef]
- Jin, H.; Sun, Y.; Sun, Z.; Yang, M.; Gui, R. Zero-Dimensional Sulfur Nanomaterials: Synthesis, Modifications and Applications. Coord. Chem. Rev. 2021, 438, 213913–213947. [Google Scholar] [CrossRef]
- Pomerantseva, E.; Bonaccorso, F.; Feng, X.; Cui, Y.; Gogotsi, Y. Energy Storage: The Future Enabled by Nanomaterials. Science 2019, 366, eaan8285–eaan8296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladoye, P.O.; Ajiboye, T.O.; Omotola, E.O.; Oyewola, O.J. Methylene Blue Dye: Toxicity and Potential Elimination Technology from Wastewater. Results Eng. 2022, 16, 100678–100694. [Google Scholar] [CrossRef]
- Instruments, Oxford. Chemical Vapor Deposition. Available online: https://plasma.oxinst.com/technology/chemical-vapour-deposition (accessed on 5 December 2022).
- Zhang, C.; Li, H.; Yu, J.; Sui, J.; Dong, H.; Chen, Y.; Zhang, Q.; Yu, L.; Dong, L. In-Situ Preparation of Carbon Nanotubes on Cuo Nanowire Via Chemical Vapor Deposition and Their Growth Mechanism Investigation. Vacuum 2022, 204, 111337–111340. [Google Scholar] [CrossRef]
- Ramos, P.G.; Flores, E.; Luyo, C.; Sánchez, L.A.; Rodriguez, J. Fabrication of ZnO-RGO Nanorods by Electrospinning Assisted Hydrothermal Method with Enhanced Photocatalytic Activity. Mater. Today Commun. 2019, 19, 407–412. [Google Scholar] [CrossRef]
- Sun, D.; Lang, J.; Yan, X.; Hu, L.; Xue, Q. Fabrication of Tin Nanorods by Electrospinning and Their Electrochemical Properties. J. Solid State Chem. 2011, 184, 1333–1338. [Google Scholar] [CrossRef]
- Ruan, S.; Luo, D.; Li, M.; Wang, J.; Ling, L.; Yu, A.; Chen, Z. Synthesis and Functionalization of 2d Nanomaterials for Application in Lithium-Based Energy Storage Systems. Energy Storage Mater. 2021, 38, 200–230. [Google Scholar] [CrossRef]
- Yu, S.; Ng, V.M.H.; Wang, F.; Xiao, Z.; Li, C.; Kong, L.B.; Que, W.; Zhou, K. Synthesis and Application of Iron-Based Nanomaterials as Anodes of Lithium-Ion Batteries and Supercapacitors. J. Mater. Chem. A 2018, 6, 9332–9367. [Google Scholar] [CrossRef]
- Mazzotta, E.; Caroli, A.; Pennetta, A.; De Benedetto, G.E.; Primiceri, E.; Monteduro, A.G.; Maruccio, G.; Malitesta, C. Facile Synthesis of 3d Flower-Like Pt Nanostructures on Polypyrrole Nanowire Matrix for Enhanced Methanol Oxidation. RSC Adv. 2018, 8, 10367–10375. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.-Y.; Liang, H.-W.; Chen, L.-F.; Hu, B.-C.; Yu, S.-H. Bacterial Cellulose: A Robust Platform for Design of Three Dimensional Carbon-Based Functional Nanomaterials. Acc. Chem. Res. 2016, 49, 96–105. [Google Scholar] [CrossRef]
- Liu, P.; Hao, Q.; Xia, X.; Lu, L.; Lei, W.; Wang, X. 3D Hierarchical Mesoporous Flowerlike Cobalt Oxide Nanomaterials: Controllable Synthesis and Electrochemical Properties. J. Phys. Chem. C 2015, 119, 8537–8546. [Google Scholar] [CrossRef]
- Sun, Z.; Kim, J.H.; Zhao, Y.; Bijarbooneh, F.; Malgras, V.; Lee, Y.; Kang, Y.-M.; Dou, S.X. Rational Design of 3d Dendritic Tio2 Nanostructures with Favorable Architectures. J. Am. Chem. Soc. 2011, 133, 19314–19317. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Zhong, H.; Estudillo-Wong, L.A.; Alonso-Vante, N.; Feng, Y.; Li, D. Bifunctional Oxygen Electrode Cobalt–Nickel Sulfides Catalysts Originated from Intercalated Ldh Precursors. J. Energy Chem. 2022, 74, 376–386. [Google Scholar] [CrossRef]
- Chen, Z.; Ren, W.; Gao, L.; Liu, B.; Pei, S.; Cheng, H.-M. Three-Dimensional Flexible and Conductive Interconnected Graphene Networks Grown by Chemical Vapour Deposition. Nat. Mater. 2011, 10, 424–428. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.-Y.; Li, C.; Liang, H.-W.; Chen, J.-F.; Yu, S.-H. Ultralight, Flexible, and Fire-Resistant Carbon Nanofiber Aerogels from Bacterial Cellulose. Angew. Chem. Int. Ed. 2013, 52, 2925–2929. [Google Scholar] [CrossRef] [PubMed]
- Logan, B.E.; Rossi, R.; Ragab, A.I.; Saikaly, P.E. Electroactive Microorganisms in Bioelectrochemical Systems. Nat. Rev. Microbiol. 2019, 17, 307–319. [Google Scholar] [CrossRef]
- van Oss, C.J. Chapter Three—The Extended Dlvo Theory. In Interface Science and Technology; Elsevier: Amsterdam, The Netherlands, 2008; pp. 31–48. [Google Scholar]
- Bayoudh, S.; Othmane, A.; Mora, L.; Ben Ouada, H. Assessing Bacterial Adhesion Using Dlvo and Xdlvo Theories and the Jet Impingement Technique. Colloids Surf. B Biointerfaces 2009, 73, 1–9. [Google Scholar] [CrossRef]
- Chong, P.; Erable, B.; Bergel, A. How Bacteria Use Electric Fields to Reach Surfaces. Biofilm 2021, 3, 100048–100058. [Google Scholar] [CrossRef]
- Armbruster, C.R.; Parsek, M.R. New Insight into the Early Stages of Biofilm Formation. Proc. Natl. Acad. Sci. USA 2018, 115, 4317–4319. [Google Scholar] [CrossRef] [Green Version]
- Hickman, J.W.; Tifrea, D.F.; Harwood, C.S. A Chemosensory System That Regulates Biofilm Formation through Modulation of Cyclic Diguanylate Levels. Proc. Natl. Acad. Sci. USA 2005, 102, 14422–14427. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.K.; de Anda, J.; Baker, A.E.; Bennett, R.R.; Luo, Y.; Lee, E.Y.; Keefe, J.A.; Helali, J.S.; Ma, J.; Zhao, K.; et al. Multigenerational Memory and Adaptive Adhesion in Early Bacterial Biofilm Communities. Proc. Natl. Acad. Sci. USA 2018, 115, 4471–4476. [Google Scholar] [CrossRef]
- Fuchs, E.L.; Brutinel, E.D.; Klem, E.R.; Fehr, A.R.; Yahr, T.L.; Wolfgang, M.C. In Vitro and In Vivo Characterization of the Pseudomonas Aeruginosa Cyclic Amp (Camp) Phosphodiesterase Cpda, Required for Camp Homeostasis and Virulence Factor Regulation. J. Bacteriol. 2010, 192, 2779–2790. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Greenman, J.; Gajda, I.; You, J.; Mendis, B.A.; Obata, O.; Pasternak, G.; Ieropoulos, I. Microbial Fuel Cells and Their Electrified Biofilms. Biofilm 2021, 3, 100057–100073. [Google Scholar] [CrossRef] [PubMed]
- Rollefson, J.B.; Stephen, C.S.; Tien, M.; Bond, D.R. Identification of an Extracellular Polysaccharide Network Essential for Cytochrome Anchoring and Biofilm Formation in Geobacter sulfurreducens. J. Bacteriol. 2011, 193, 1023–1033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, Z.; Li, Y.; Zhang, Y.; Lovley, D.R. Sparking Anaerobic Digestion: Promoting Direct Interspecies Electron Transfer to Enhance Methane Production. iScience 2020, 23, 101794. [Google Scholar] [CrossRef]
- Popat, S.C.; Ki, D.; Rittmann, B.E.; Torres, C.I. Importance of Oh− Transport from Cathodes in Microbial Fuel Cells. ChemSusChem 2012, 5, 1071–1079. [Google Scholar] [CrossRef]
- Rossi, R.; Hall, D.; Wang, X.; Regan, J.M.; Logan, B.E. Quantifying the Factors Limiting Performance and Rates in Microbial Fuel Cells Using the Electrode Potential Slope Analysis Combined with Electrical Impedance Spectroscopy. Electrochim. Acta 2020, 348, 136330–136339. [Google Scholar] [CrossRef]
- Liao, Q.; Zhang, J.; Li, J.; Ye, D.; Zhu, X.; Zhang, B. Increased Performance of a Tubular Microbial Fuel Cell with a Rotating Carbon-Brush Anode. Biosens. Bioelectron. 2015, 63, 558–561. [Google Scholar] [CrossRef]
- Yang, Y.; Ye, D.; Zhu, X.; Liao, Q.; Li, J.; Chen, R. Boosting Power Density of Microfluidic Biofuel Cell with Porous Three-Dimensional Graphene@Nickel Foam as Flow-through Anode. Int. J. Hydrogen Energy 2018, 43, 18516–18520. [Google Scholar] [CrossRef]
- Kim, J.R.; Boghani, H.C.; Amini, N.; Aguey-Zinsou, K.-F.; Michie, I.; Dinsdale, R.M.; Guwy, A.J.; Guo, Z.X.; Premier, G.C. Porous Anodes with Helical Flow Pathways in Bioelectrochemical Systems: The Effects of Fluid Dynamics and Operating Regimes. J. Power Sources 2012, 213, 382–390. [Google Scholar] [CrossRef] [Green Version]
- Ren, Z.; Yan, H.; Wang, W.; Mench, M.M.; Regan, J.M. Characterization of Microbial Fuel Cells at Microbially and Electrochemically Meaningful Time Scales. Environ. Sci. Technol. 2011, 45, 2435–2441. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, X.; Li, J.; Liao, Q.; Ye, D. Biofilm Formation and Electricity Generation of a Microbial Fuel Cell Started up under Different External Resistances. J. Power Sources 2011, 196, 6029–6035. [Google Scholar] [CrossRef]
- Kretzschmar, J.; Harnisch, F. Electrochemical Impedance Spectroscopy on Biofilm Electrodes—Conclusive or Euphonious? Curr. Opin. Electrochem. 2021, 29, 100757–100763. [Google Scholar] [CrossRef]
- Papillon, J.; Ter-Ovanessian, B.; Ondel, O.; Adrien, J.; Maire, É. 3d Anode Microbial Fuel Cell Characterization and Monitoring Coupling X-Ray Tomography and Electrochemical Impedance Spectroscopy. J. Electrochem. Soc. 2021, 168, 054513–054521. [Google Scholar] [CrossRef]
- Turick, C.E.; Colon-Mercado, H.; Bagwell, C.E.; Greenway, S.D.; Amoroso, J.W. Non-Contact Electrochemical Evaluation of Biofilms. SN Appl. Sci. 2020, 2, 389–399. [Google Scholar] [CrossRef] [Green Version]
- Kosimaningrum, W.E.; Ouis, M.; Holade, Y.; Buchari, B.; Noviandri, I.; Kameche, M.; Cretin, M.; Innocent, C. Platinum Nanoarrays Directly Grown onto a 3d-Carbon Felt Electrode as a Bifunctional Material for Garden Compost Microbial Fuel Cell. J. Electrochem. Soc. 2021, 168, 025501–025507. [Google Scholar] [CrossRef]
- Orazem, M.E.; Tribollet, B. Electrochemical Impedance Spectroscopy; John Wiley & Sons, Inc.: New York, NY, USA, 2008; pp. 107–152. [Google Scholar]
- Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. Oxygen Vacancies Engineering by Coordinating Oxygen-Buffering CeO2 with Coo Nanorods as Efficient Bifunctional Oxygen Electrode Electrocatalyst. J. Energy Chem. 2021, 59, 615–625. [Google Scholar] [CrossRef]
- Zhong, H.; Estudillo-Wong, L.A.; Gao, Y.; Feng, Y.; Alonso-Vante, N. Cobalt-Based Multicomponent Oxygen Reduction Reaction Electrocatalysts Generated by Melamine Thermal Pyrolysis with High Performance in an Alkaline Hydrogen/Oxygen Microfuel Cell. ACS Appl. Mater. Interfaces 2020, 12, 21605–21615. [Google Scholar] [CrossRef]
- Yang, W.; Li, J.; Fu, Q.; Zhang, L.; Wei, Z.; Liao, Q.; Zhu, X. Minimizing Mass Transfer Losses in Microbial Fuel Cells: Theories, Progresses and Prospectives. Renew. Sustain. Energy Rev. 2021, 136, 110460–110474. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Guerrero-Barajas, C. Modern Trend of Anodes in Microbial Fuel Cells (Mfcs): An Overview. Environ. Technol. Innov. 2021, 23, 101579–101598. [Google Scholar] [CrossRef]
- Hung, Y.-H.; Liu, T.-Y.; Chen, H.-Y. Renewable Coffee Waste-Derived Porous Carbons as Anode Materials for High-Performance Sustainable Microbial Fuel Cells. ACS Sustain. Chem. Eng. 2019, 7, 16991–16999. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Ye, D.; Zhu, X.; Liao, Q.; Zhang, B. Tubular Bamboo Charcoal for Anode in Microbial Fuel Cells. J. Power Sources 2014, 272, 277–282. [Google Scholar] [CrossRef]
- Ma, X.; Feng, C.; Zhou, W.; Yu, H. Municipal Sludge-Derived Carbon Anode with Nitrogen- and Oxygen-Containing Functional Groups for High-Performance Microbial Fuel Cells. J. Power Sources 2016, 307, 105–111. [Google Scholar] [CrossRef]
- Feng, H.; Jia, Y.; Shen, D.; Zhou, Y.; Chen, T.; Chen, W.; Ge, Z.; Zheng, S.; Wang, M. The Effect of Chemical Vapor Deposition Temperature on the Performance of Binder-Free Sewage Sludge-Derived Anodes in Microbial Fuel Cells. Sci. Total Environ. 2018, 635, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, J.; Wan, X.; Zhou, G.; Yin, L.; Shi, H. High-Performance Carbon Anode Derived from Sugarcane for Packed Microbial Fuel Cells. ChemElectroChem 2017, 4, 168–174. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Liu, T.; Fu, P.; Tang, J.; Zhou, S. Conversion of Sewage Sludge into High-Performance Bifunctional Electrode Materials for Microbial Energy Harvesting. J. Mater. Chem. A 2015, 3, 8475–8482. [Google Scholar] [CrossRef]
- Karthikeyan, R.; Wang, B.; Xuan, J.; Wong, J.W.; Lee, P.K.; Leung, M.K. Interfacial Electron Transfer and Bioelectrocatalysis of Carbonized Plant Material as Effective Anode of Microbial Fuel Cell. Electrochim. Acta 2015, 157, 314–323. [Google Scholar] [CrossRef]
- Kaya, M.; Sargin, I.; Erdonmez, D. Microbial Biofilm Activity and Physicochemical Characterization of Biodegradable and Edible Cups Obtained from Abdominal Exoskeleton of an Insect. Innov. Food Sci. Emerg. Technol. 2016, 36, 68–74. [Google Scholar] [CrossRef]
- Quilès, F.; Humbert, F.; Delille, A. Analysis of Changes in Attenuated Total Reflection Ftir Fingerprints of Pseudomonas Fluorescens from Planktonic State to Nascent Biofilm State. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2010, 75, 610–616. [Google Scholar] [CrossRef] [PubMed]
- Loutherback, K.; Birarda, G.; Chen, L.; Holman, H.-Y.N. Microfluidic Approaches to Synchrotron Radiation-Based Fourier Transform Infrared (Sr-Ftir) Spectral Microscopy of Living Biosystems. Protein Pept. Lett. 2016, 23, 273–282. [Google Scholar] [CrossRef] [Green Version]
- Loutherback, K.; Chen, L.; Holman, H.-Y.N. Open-Channel Microfluidic Membrane Device for Long-Term Ft-Ir Spectromicroscopy of Live Adherent Cells. Anal. Chem. 2015, 87, 4601–4606. [Google Scholar] [CrossRef]
- Tyler, B.J. Xps and Sims Studies of Surfaces Important in Biofilm Formation. Ann. N. Y. Acad. Sci. 1997, 831, 114–126. [Google Scholar] [CrossRef]
- Teng, F.; Guan, Y.; Zhu, W. Effect of Biofilm on Cast Iron Pipe Corrosion in Drinking Water Distribution System: Corrosion Scales Characterization and Microbial Community Structure Investigation. Corros. Sci. 2008, 50, 2816–2823. [Google Scholar] [CrossRef]
- Yuan, S.; Pehkonen, S. Microbiologically Influenced Corrosion of 304 Stainless Steel by Aerobic Pseudomonas Ncimb 2021 Bacteria: Afm and Xps Study. Colloids Surf. B Biointerfaces 2007, 59, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Johansson, L.-S.; Saastamoinen, T. Investigating Early Stages of Biocorrosion with Xps: Aisi 304 Stainless Steel Exposed to Burkholderia Species. Appl. Surf. Sci. 1999, 144–145, 244–248. [Google Scholar] [CrossRef]
- Arnold, J.W.; Bailey, G.W. Surface Finishes on Stainless Steel Reduce Bacterial Attachment and Early Biofilm Formation: Scanning Electron and Atomic Force Microscopy Study. Poult. Sci. 2000, 79, 1839–1845. [Google Scholar] [CrossRef]
- Malki, M.; Casado, S.; López, M.F.; Caillard, R.; Palomares, F.J.; Martin-Gago, J.A.; Vaz-Domínguez, C.; Cuesta, A.; Amils, R.; Fernández, V.M.; et al. Physicochemical Characterization of Acidiphilium Sp. Biofilms. Chemphyschem 2013, 14, 1237–1244. [Google Scholar] [CrossRef]
- Oh, Y.J.; Jo, W.; Yang, Y.; Park, S. Influence of Culture Conditions on Escherichia Coli O157:H7 Biofilm Formation by Atomic Force Microscopy. Ultramicroscopy 2007, 107, 869–874. [Google Scholar] [CrossRef] [PubMed]
- Oh, Y.J.; Lee, N.; Jo, W.; Jung, W.; Lim, J. Effects of Substrates on Biofilm Formation Observed by Atomic Force Microscopy. Ultramicroscopy 2009, 109, 874–880. [Google Scholar] [CrossRef] [PubMed]
- Volle, C.; Ferguson, M.; Aidala, K.; Spain, E.; Núñez, M. Spring Constants and Adhesive Properties of Native Bacterial Biofilm Cells Measured by Atomic Force Microscopy. Colloids Surf. B Biointerfaces 2008, 67, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Lavender, S.; Woo, J.; Guo, L.; Shi, W.; Kilpatrick-Liverman, L.; Gimzewski, J.K. Nanoscale Characterization of Effect of L-Arginine on Streptococcus Mutans Biofilm Adhesion by Atomic Force Microscopy. Microbiology 2014, 160, 1466–1473. [Google Scholar] [CrossRef]
- Qian, F.; Baum, M.; Gu, Q.; Morse, D.E. A 1.5 Μl Microbial Fuel Cell for on-Chip Bioelectricity Generation. Lab Chip 2009, 9, 3076–3081. [Google Scholar] [CrossRef] [PubMed]
- Dávila, D.; Esquivel, J.; Sabaté, N.; Mas, J. Silicon-Based Microfabricated Microbial Fuel Cell Toxicity Sensor. Biosens. Bioelectron. 2011, 26, 2426–2430. [Google Scholar] [CrossRef] [PubMed]
- Sangetha, S.; Zuraini, Z.; Suryani, S.; Sasidharan, S. In Situ Tem and Sem Studies on the Antimicrobial Activity and Prevention of Candida Albicans Biofilm by Cassia Spectabilis Extract. Micron 2009, 40, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Climent, V.; Berná, A.; Feliu, J.M. Effect of Temperature on the Catalytic Ability of Electrochemically Active Biofilm as Anode Catalyst in Microbial Fuel Cells. Electroanalysis 2011, 23, 387–394. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Zhuang, L.; Li, W.; Zhang, J.; Lu, N.; Deng, L. Microbial Fuel Cell Based on Klebsiella Pneumoniae Biofilm. Electrochem. Commun. 2008, 10, 1641–1643. [Google Scholar] [CrossRef]
- Chen, X.; Cui, D.; Wang, X.; Wang, X.; Li, W. Porous Carbon with Defined Pore Size as Anode of Microbial Fuel Cell. Biosens. Bioelectron. 2015, 69, 135–141. [Google Scholar] [CrossRef]
- Frattini, D.; Accardo, G.; Ferone, C.; Cioffi, R. Fabrication and Characterization of Graphite-Cement Composites for Microbial Fuel Cells Applications. Mater. Res. Bull. 2017, 88, 188–199. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Chen, X.; Yuan, X.; Li, N.; He, W.; Feng, Y. Tailoring Spatial Structure of Electroactive Biofilm for Enhanced Activity and Direct Electron Transfer on Iron Phthalocyanine Modified Anode in Microbial Fuel Cells. Biosens. Bioelectron. 2021, 191, 113410–113419. [Google Scholar] [CrossRef]
- Zhao, C.-E.; Wang, W.-J.; Sun, D.; Wang, X.; Zhang, J.-R.; Zhu, J.-J. Nanostructured Graphene/TiO2 Hybrids as High-Performance Anodes for Microbial Fuel Cells. Chem.-Eur. J. 2014, 20, 7091–7097. [Google Scholar] [CrossRef]
- Wen, Q.; Wang, S.; Yan, J.; Cong, L.; Pan, Z.; Ren, Y.; Fan, Z. MnO2-Graphene Hybrid as an Alternative Cathodic Catalyst to Platinum in Microbial Fuel Cells. J. Power Sources 2012, 216, 187–191. [Google Scholar] [CrossRef]
- Pan, Q.-R.; Jiang, P.-Y.; Lai, B.-L.; Qian, Y.-B.; Huang, L.-J.; Liu, X.-X.; Li, N.; Liu, Z.-Q. Co, N Co-Doped Hierarchical Porous Carbon as Efficient Cathode Electrocatalyst and Its Impact on Microbial Community of Anode Biofilm in Microbial Fuel Cell. Chemosphere 2022, 291, 132701–132708. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Li, J.; Ye, D.; Zhu, X.; Liao, Q. Bamboo Charcoal as a Cost-Effective Catalyst for an Air-Cathode of Microbial Fuel Cells. Electrochim. Acta 2017, 224, 585–592. [Google Scholar] [CrossRef] [Green Version]
- Ashton, S.J. Design, Construction and Research Application of a Differential Electrochemical Mass Spectrometer (Dems); Springer: Berlin/Heidelberg, Germany; London, UK, 2012; pp. 9–27. [Google Scholar]
- Yuan, Y.; Zhou, S.; Xu, N.; Zhuang, L. Electrochemical Characterization of Anodic Biofilms Enriched with Glucose and Acetate in Single-Chamber Microbial Fuel Cells. Colloids Surf. B 2011, 82, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Zhou, S.; Xu, N.; Zhuang, L. Electrochemical Characterization of Anodic Biofilm Development in a Microbial Fuel Cell. J. Appl. Electrochem. 2013, 43, 533–540. [Google Scholar] [CrossRef]
- Baudler, A.; Schmidt, I.; Langner, M.; Greiner, A.; Schröder, U. Does It Have to Be Carbon? Metal Anodes in Microbial Fuel Cells and Related Bioelectrochemical Systems. Energy Environ. Sci. 2015, 8, 2048–2055. [Google Scholar] [CrossRef] [Green Version]
- Yazdi, A.A.; D’Angelo, L.; Omer, N.; Windiasti, G.; Lu, X.; Xu, J. Carbon Nanotube Modification of Microbial Fuel Cell Electrodes. Biosens. Bioelectron. 2016, 85, 536–552. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Liu, J.; Qu, Y.; Zhang, J.; Zhong, Y.; Feng, Y. Enhanced Performance of Microbial Fuel Cell with a Bacteria/Multi-Walled Carbon Nanotube Hybrid Biofilm. J. Power Sources 2017, 361, 318–325. [Google Scholar] [CrossRef]
- Ren, H.; Pyo, S.; Lee, J.-I.; Park, T.-J.; Gittleson, F.S.; Leung, F.C.; Kim, J.; Taylor, A.D.; Lee, H.-S.; Chae, J. A High Power Density Miniaturized Microbial Fuel Cell Having Carbon Nanotube Anodes. J. Power Sources 2015, 273, 823–830. [Google Scholar] [CrossRef]
- Sun, D.-Z.; Yu, Y.-Y.; Xie, R.-R.; Zhang, C.-L.; Yang, Y.; Zhai, D.-D.; Yang, G.; Liu, L.; Yong, Y.-C. In-Situ Growth of Graphene/Polyaniline for Synergistic Improvement of Extracellular Electron Transfer in Bioelectrochemical Systems. Biosens. Bioelectron. 2017, 87, 195–202. [Google Scholar] [CrossRef]
- Cai, T.; Meng, L.; Chen, G.; Xi, Y.; Jiang, N.; Song, J.; Zheng, S.; Liu, Y.; Zhen, G.; Huang, M. Application of Advanced Anodes in Microbial Fuel Cells for Power Generation: A Review. Chemosphere 2020, 248, 125985–125999. [Google Scholar] [CrossRef]
- Shengke, Y.; Yanhua, W.; Yang, Z.; Huihui, L.; Wenke, W. Using Graphene/Polyaniline-Modified Electrodes Enhance the Performance of Two-Chambered Microbial Fuel Cells. Pol. J. Environ. Stud. 2017, 26, 1233–1243. [Google Scholar] [CrossRef] [Green Version]
- Yang, W.; Li, J.; Lan, L.; Li, Z.; Wei, W.; Lu, J.E.; Chen, S. Facile Synthesis of Fe/N/S-Doped Carbon Tubes as High-Performance Cathode and Anode for Microbial Fuel Cells. ChemCatChem 2019, 11, 6070–6077. [Google Scholar] [CrossRef]
- Hu, M.; Li, X.; Xiong, J.; Zeng, L.; Huang, Y.; Wu, Y.; Cao, G.; Li, W. Nano-Fe3c@Pgc as a Novel Low-Cost Anode Electrocatalyst for Superior Performance Microbial Fuel Cells. Biosens. Bioelectron. 2019, 142, 111594–111601. [Google Scholar] [CrossRef]
- Rajesh, P.P.; Noori, T.; Ghangrekar, M.M. Improving Performance of Microbial Fuel Cell by Using Polyaniline-Coated Carbon–Felt Anode. J. Hazard. Toxic Radioact. Waste 2020, 24, 04020024. [Google Scholar] [CrossRef]
- Yellappa, M.; Modestra, J.A.; Reddy, Y.R.; Mohan, S.V. Functionalized Conductive Activated Carbon-Polyaniline Composite Anode for Augmented Energy Recovery in Microbial Fuel Cells. Bioresour. Technol. 2021, 320, 124340–124350. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, P.; Jiang, Y.; Huang, X. Enhanced Power Generation of Microbial Fuel Cell Using Manganese Dioxide-Coated Anode in Flow-through Mode. J. Power Sources 2015, 273, 580–583. [Google Scholar] [CrossRef]
- Yellappa, M.; Sravan, J.S.; Sarkar, O.; Reddy, Y.R.; Mohan, S.V. Modified Conductive Polyaniline-Carbon Nanotube Composite Electrodes for Bioelectricity Generation and Waste Remediation. Bioresour. Technol. 2019, 284, 148–154. [Google Scholar] [CrossRef]
- Sayed, E.T.; Shehata, N.; Abdelkareem, M.A.; Atieh, M.A. Recent Progress in Environmentally Friendly Bio-Electrochemical Devices for Simultaneous Water Desalination and Wastewater Treatment. Sci. Total Environ. 2020, 748, 141046–141066. [Google Scholar] [CrossRef] [PubMed]
- Narayanasamy, S.; Jayaprakash, J. Improved Performance of Pseudomonas Aeruginosa Catalyzed Mfcs with Graphite/Polyester Composite Electrodes Doped with Metal Ions for Azo Dye Degradation. Chem. Eng. J. 2018, 343, 258–269. [Google Scholar] [CrossRef]
- Zhou, S.; Lin, M.; Zhuang, Z.; Liu, P.; Chen, Z. Biosynthetic Graphene Enhanced Extracellular Electron Transfer for High Performance Anode in Microbial Fuel Cell. Chemosphere 2019, 232, 396–402. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Umar, K.; Bhawani, S.A.; Khan, A.; Asiri, A.M.; Khan, M.R.; Azam, M.; AlAmmari, A.M. Cellulose Derived Graphene/Polyaniline Nanocomposite Anode for Energy Generation and Bioremediation of Toxic Metals Via Benthic Microbial Fuel Cells. Polymers 2021, 13, 135. [Google Scholar] [CrossRef] [PubMed]
- Yaqoob, A.A.; Ibrahim, M.N.M.; Yaakop, A.S.; Rafatullah, M. Utilization of Biomass-Derived Electrodes: A Journey toward the High Performance of Microbial Fuel Cells. Appl. Water Sci. 2022, 12, 99–118. [Google Scholar] [CrossRef]
- Borja-Maldonado, F.; Zavala, M.L. Contribution of Configurations, Electrode and Membrane Materials, Electron Transfer Mechanisms, and Cost of Components on the Current and Future Development of Microbial Fuel Cells. Heliyon 2022, 8, e09849–e09873. [Google Scholar] [CrossRef] [PubMed]
- Jadhav, D.A.; Mungray, A.K.; Arkatkar, A.; Kumar, S.S. Recent Advancement in Scaling-up Applications of Microbial Fuel Cells: From Reality to Practicability. Sustain. Energy Technol. Assess. 2021, 45, 101226–101235. [Google Scholar] [CrossRef]
- Zhang, B.; Zhao, H.; Zhou, S.; Shi, C.; Wang, C.; Ni, J. A Novel Uasb–Mfc–Baf Integrated System for High Strength Molasses Wastewater Treatment and Bioelectricity Generation. Bioresour. Technol. 2009, 100, 5687–5693. [Google Scholar] [CrossRef]
- Gupta, S.; Srivastava, P.; Patil, S.A.; Yadav, A.K. A Comprehensive Review on Emerging Constructed Wetland Coupled Microbial Fuel Cell Technology: Potential Applications and Challenges. Bioresour. Technol. 2021, 320, 124376–124387. [Google Scholar] [CrossRef]
- Guadarrama-Pérez, O.; Gutiérrez-Macías, T.; García-Sánchez, L.; Guadarrama-Pérez, V.H.; Estrada-Arriaga, E.B. Recent Advances in Constructed Wetland-Microbial Fuel Cells for Simultaneous Bioelectricity Production and Wastewater Treatment: A Review. Int. J. Energy Res. 2019, 43, 5106–5127. [Google Scholar] [CrossRef]
- Feng, L.; Li, X.-Y.; Gan, L.-H.; Xu, J. Synergistic Effects of Electricity and Biofilm on Rhodamine B (Rhb) Degradation in Three-Dimensional Biofilm Electrode Reactors (3d-Bers). Electrochim. Acta 2018, 290, 165–175. [Google Scholar] [CrossRef]
- Zhu, T.-T.; Su, Z.-X.; Lai, W.-X.; Zhang, Y.-B.; Liu, Y.-W. Insights into the Fate and Removal of Antibiotics and Antibiotic Resistance Genes Using Biological Wastewater Treatment Technology. Sci. Total Environ. 2021, 776, 145906–145921. [Google Scholar] [CrossRef]
- Yang, N.; Zhan, G.; Luo, H.; Xiong, X.; Li, D. Integrated Simultaneous Nitrification/Denitrification and Comammox Consortia as Efficient Biocatalysts Enhance Treatment of Domestic Wastewater in Different up-Flow Bioelectrochemical Reactors. Bioresour. Technol. 2021, 339, 125604–125615. [Google Scholar] [CrossRef]
- Wu, S.; Li, H.; Zhou, X.; Liang, P.; Zhang, X.; Jiang, Y.; Huang, X. A Novel Pilot-Scale Stacked Microbial Fuel Cell for Efficient Electricity Generation and Wastewater Treatment. Water Res. 2016, 98, 396–403. [Google Scholar] [CrossRef]
- Fazli, N.; Mutamim, N.S.A.; Shem, C.Y.; Rahim, S.A. Bioelectrochemical Cell (Becc) Integrated with Granular Activated Carbon (Gac) in Treating Spent Caustic Wastewater. J. Taiwan Inst. Chem. Eng. 2019, 104, 114–122. [Google Scholar] [CrossRef]
- Li, H.; Song, H.-L.; Xu, H.; Lu, Y.; Zhang, S.; Yang, Y.-L.; Yang, X.-L.; Lu, Y.-X. Effect of the Coexposure of Sulfadiazine, Ciprofloxacin and Zinc on the Fate of Antibiotic Resistance Genes, Bacterial Communities and Functions in Three-Dimensional Biofilm-Electrode Reactors. Bioresour. Technol. 2020, 296, 122290–122300. [Google Scholar] [CrossRef]
- Zhang, S.; Song, H.-L.; Yang, X.-L.; Yang, K.-Y.; Wang, X.-Y. Effect of Electrical Stimulation on the Fate of Sulfamethoxazole and Tetracycline with Their Corresponding Resistance Genes in Three-Dimensional Biofilm-Electrode Reactors. Chemosphere 2016, 164, 113–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zou, H.; Wang, Y. Azo Dyes Wastewater Treatment and Simultaneous Electricity Generation in a Novel Process of Electrolysis Cell Combined with Microbial Fuel Cell. Bioresour. Technol. 2017, 235, 167–175. [Google Scholar] [CrossRef]
- Liu, S.; Feng, X.; Gu, F.; Li, X.; Wang, Y. Sequential Reduction/Oxidation of Azo Dyes in a Three-Dimensional Biofilm Electrode Reactor. Chemosphere 2017, 186, 287–294. [Google Scholar] [CrossRef] [PubMed]
- Hao, R.; Li, S.; Li, J.; Meng, C. Denitrification of Simulated Municipal Wastewater Treatment Plant Effluent Using a Three-Dimensional Biofilm-Electrode Reactor: Operating Performance and Bacterial Community. Bioresour. Technol. 2013, 143, 178–186. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, L.; Yang, F. Destruction of Tetracycline Hydrochloride Antibiotics by Feooh/TiO2 Granular Activated Carbon as Expanded Cathode in Low-Cost Mbr/Mfc Coupled System. J. Membr. Sci. 2017, 525, 202–209. [Google Scholar] [CrossRef]
- Cui, M.-H.; Cui, D.; Gao, L.; Wang, A.-J.; Cheng, H.-Y. Azo Dye Decolorization in an up-Flow Bioelectrochemical Reactor with Domestic Wastewater as a Cost-Effective yet Highly Efficient Electron Donor Source. Water Res. 2016, 105, 520–526. [Google Scholar] [CrossRef]
- Guo, Y.; Rene, E.R.; Han, B.; Ma, W. Enhanced Fluoroglucocorticoid Removal from Groundwater in a Bio-Electrochemical System with Polyaniline-Loaded Activated Carbon Three-Dimensional Electrodes: Performance and Mechanisms. J. Hazard. Mater. 2021, 416, 126197–126206. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, L. Cathodes of Membrane and Packed Manganese Dioxide/Titanium Dioxide/Graphitic Carbon Nitride/Granular Activated Carbon Promoted Treatment of Coking Wastewater in Microbial Fuel Cell. Bioresour. Technol. 2021, 321, 124442–124452. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Yang, S.; Xia, L.; Wang, Z.; Suo, N.; Chen, H.; Long, Y.; Zhou, B.; Yu, Y. In-Situ Ion Exchange Electrocatalysis Biological Coupling (I-Ieebc) for Simultaneously Enhanced Degradation of Organic Pollutants and Heavy Metals in Electroplating Wastewater. J. Hazard. Mater. 2019, 364, 562–570. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhang, Z.; Zhao, Y.; Song, L.; Wang, X.; Yang, S.; Long, Y.; Zhao, C.; Qiu, L. Accelerated Rhodamine B Removal by Enlarged Anode Electric Biological (Eaeb) with Electro-Biological Particle Electrode (Epe) Made from Steel Converter Slag (Scs). Bioresour. Technol. 2019, 283, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, X.-Y.; Peng, P.; Wang, W.-K.; Wang, S.-Y.; Feng, L.; Zhang, Y.-C.; Xu, J. Particle Electrode Materials Dependent Tetrabromobisphenol a Degradation in Three-Dimensional Biofilm Electrode Reactors. Environ. Res. 2021, 197, 111089–111096. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, X.; Feng, Y.; Wang, X.; Suo, N.; Yang, S.; Long, Y.; Zhang, S. Production of an Electro-Biological Particle Electrode (Ebpe) from Lithium Slag and Its Removal Performance to Salicylic Acid in a Three-Dimensional Electrocatalytic Biological Coupling Reactor (3d-Ebcr). Chemosphere 2021, 282, 131020–131029. [Google Scholar] [CrossRef]
- Rojas, M.; Esplandiu, M.J.; Avalle, L.; Leiva, E.P.M.; Macagno, V. The Oxygen and Chlorine Evolution Reactions at Titanium Oxide Electrodes Modified with Platinum. Electrochim. Acta 1998, 43, 1785–1794. [Google Scholar] [CrossRef]
- Wang, H.; Qu, J. Combined Bioelectrochemical and Sulfur Autotrophic Denitrification for Drinking Water Treatment. Water Res. 2003, 37, 3767–3775. [Google Scholar] [CrossRef]
- Cui, T.; Wang, Y.; Wang, X.; Zhang, Y.; Han, W.; Li, J.; Sun, X.; Shen, J.; Wang, L. Enhanced Isophthalonitrile Complexation-Reduction Removal Using a Novel Anaerobic Fluidized Bed Reactor in a Bioelectrochemical System Based on Electric Field Activation (Afbr-Efa). Bioresour. Technol. 2020, 306, 123115–123123. [Google Scholar] [CrossRef]
- Tang, Q.; Sheng, Y.; Li, C.; Wang, W.; Liu, X. Simultaneous Removal of Nitrate and Sulfate Using an up-Flow Three-Dimensional Biofilm Electrode Reactor: Performance and Microbial Response. Bioresour. Technol. 2020, 318, 124096–124104. [Google Scholar] [CrossRef]
- Wang, H.; Lyu, W.; Hu, X.; Chen, L.; He, Q.; Zhang, W.; Song, J.; Wu, J. Effects of Current Intensities on the Performances and Microbial Communities in a Combined Bio-Electrochemical and Sulfur Autotrophic Denitrification (Cbsad) System. Sci. Total Environ. 2019, 694, 133775–133782. [Google Scholar] [CrossRef]
Operating Conditions | Wastewater Component | Removal Percentage (%) | Reference |
---|---|---|---|
120–450 mg L−1 COD, 40–80 mg L−1 NH4 +−N, 43.92 h, and pH 7–8 | Numerous components | 95–99 | [152] |
200–800 mg L−1 COD, 1.25 h, and pH 6.8–7.1 | Synthetic wastewater | 97 | [153] |
700 mg L−1 COD, 0.085 mg L−1 sulfide, pH 7 | Spent caustic | 97.56 | [154] |
2 mg L−1, 0.8 V, and 36 h | Ciprofloxacin and sulfadiazine | 98.3 and 99.8 | [155] |
0.2 mg L−1, 0.8 V, and 6 h | Sulfamethoxazole and tetracycline | 93.5 and 95.6 | [156] |
50 mg L−1, 2 V, and 48 h | Methyl red | 89.3 | [157] |
1000 mg L−1, 2.5 V, and 24 h | Reactive brilliant red X-3B | >90 | [150] |
30 mg L−1, 40 mA, C/N ratio 3, 7 h, and pH 7 | NO3−-N | 98.3 | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Estudillo-Wong, L.A.; Guerrero-Barajas, C.; Vázquez-Arenas, J.; Alonso-Vante, N. Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications. Surfaces 2023, 6, 2-28. https://doi.org/10.3390/surfaces6010002
Estudillo-Wong LA, Guerrero-Barajas C, Vázquez-Arenas J, Alonso-Vante N. Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications. Surfaces. 2023; 6(1):2-28. https://doi.org/10.3390/surfaces6010002
Chicago/Turabian StyleEstudillo-Wong, Luis Alberto, Claudia Guerrero-Barajas, Jorge Vázquez-Arenas, and Nicolas Alonso-Vante. 2023. "Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications" Surfaces 6, no. 1: 2-28. https://doi.org/10.3390/surfaces6010002
APA StyleEstudillo-Wong, L. A., Guerrero-Barajas, C., Vázquez-Arenas, J., & Alonso-Vante, N. (2023). Revisiting Current Trends in Electrode Assembly and Characterization Methodologies for Biofilm Applications. Surfaces, 6(1), 2-28. https://doi.org/10.3390/surfaces6010002