Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation Method
2.3. Characterization of Pure and Doped System
3. Results and Discussion
3.1. Structural Analysis
3.2. FTIR Analysis
3.3. Raman Analysis
3.4. Morphology and Elemental Analyses
3.5. Optical Properties
3.6. Surface Properties
3.7. Magnetic Properties
3.8. Discussion
4. Conclusions
- The egg white-assisted self-combustion method enabled us to prepare a pure and doped ZnO/C system containing an amorphous carbon matrix with moderate crystalline pure and doped ZnO nanoparticles having wurtzite-type hexagonal structure.
- Doping the ZnO/C system with 2 and 5 mol% Fe2O3 led to a decrease and an increase in the crystallites size of the ZnO lattice, depending on the difference in the ionic radii of both Zn and Fe ions, and also on the formation of some agglomerates. In addition, this doping brought about a decrease in the unit cell volume, evidencing an incorporation of the dopant content used in the lattice of ZnO.
- According to FTIR measurements, pure and doped ZnO/C nanoparticles were created utilizing an egg white-mediated combustion process, based on the presence of carbon groups at 1120 and 1399 cm−1, as well as the typical ZnO absorption bands in the range of 1000–400 cm−1. However, the S1, S2 and S3 samples’ Raman spectra have two large peaks at 1565 cm−1 and 1326 cm−1 that are connected to the D- and G-bands of carbonaceous material, which is consistent with the findings of FTIR and XRD.
- The Raman results display graphitization of sp2 carbon (G-band) and disordered carbon (D-band) in the as-prepared materials, in perfect agreement with the IR results that contain two bands at 1120 and 1399 cm−1 ascribed to carbon groups.
- The surface characteristics of the pure and doped ZnO/C system were sensitive to the observed changes in their structural and morphological properties. The doped system has a surface area smaller than that of the pure system. The smaller surface area for the doped system was due to a decrease in the mean pore radius and total pore volume compared to the pure system.
- The ferromagnetism manifestation of this system is indicated by the magnetization curve of pure and Fe-doped ZnO/C nanoparticles. As iron ions are incorporated into the crystal lattice of ZnO, the magnetic behavior of ZnO/C nanoparticles shifts from being entirely diamagnetic to being slightly ferromagnetic.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Djurišić, A.B.; Chen, X.; Leung, Y.H.; Ng, A.M.C. ZnO nanostructures: Growth, properties and applications. J. Mater. Chem. 2012, 22, 6526–6535. [Google Scholar] [CrossRef]
- Assadi, M.H.; Hanaor, D.A. Theoretical study on copper’s energetics and magnetism in TiO2 polymorphs. J. Appl. Phys. 2013, 113, 233913. [Google Scholar] [CrossRef]
- Ogale, S.B. Dilute doping, defects, and ferromagnetism in metal oxide systems. Adv. Mater. 2010, 22, 3125–3155. [Google Scholar] [CrossRef] [PubMed]
- Moezzi, A.; McDonagh, A.M.; Cortie, M.B. Zinc oxide particles: Synthesis, properties and applications. J. Chem. Eng. 2012, 185, 1–22. [Google Scholar] [CrossRef]
- Chu, D.; Masuda, Y.; Ohji, T.; Kato, K. Formation and photocatalytic application of ZnO nanotubes using aqueous solution. Langmuir 2010, 26, 2811–2815. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, S.; Xu, M.; Wang, Y.; Zhu, B.; Zhang, S.; Huang, W.; Wu, S. Hierarchically porous ZnO architectures for gas sensor application. Cryst. Growth Des. 2009, 9, 3532–3537. [Google Scholar] [CrossRef]
- Liu, X.J.; Zhu, X.Y.; Song, C.; Zeng, F.; Pan, F. Intrinsic and extrinsic origins of room temperature ferromagnetism in Ni-doped ZnO films. J. Phys. D Appl. Phys. 2009, 42, 035004. [Google Scholar] [CrossRef]
- Neal, J.R.; Behan, A.J.; Ibrahim, R.M.; Blythe, H.J.; Ziese, M.; Fox, A.M.; Gehring, G.A. Room-temperature magneto-optics of ferromagnetic transition-metal-doped ZnO thin films. Phys. Rev. Lett. 2006, 96, 197208. [Google Scholar] [CrossRef]
- Wolf, S.A.; Awschalom, D.D.; Buhrman, R.A.; Daughton, J.M.; Molnar, S.; Roukes, M.L.; Chtchelkanova, A.Y.; Treger, D.M. Spintronics: A spin-based electronics vision for the future’. Science 2001, 294, 1488–1495. [Google Scholar] [CrossRef]
- Pearton, S.J.; Norton, D.P.; Ip, K.; Heo, Y.W.; Steiner, T. Recent progress in processing and properties of ZnO. Superlattices Microstruct. 2003, 34, 3–32. [Google Scholar] [CrossRef]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc oxide—From synthesis to application: A review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Maurizio, V.; Merlin, G.; Siligardi, C.; Capron, M.; Mondelli, C. New Eco-Friendly and Low-Energy Synthesis to Produce ZnO Nanoparticles for Real-World Scale Applications. Nanomaterials 2023, 13, 2458. [Google Scholar] [CrossRef] [PubMed]
- Arief, S.; Usna, R.A. Synthesis and Properties of Magnetic-Luminescent Fe3O4@ZnO/C Nanocomposites. J. Nanotechnol. 2023, 2023, 2381623. [Google Scholar]
- Pearton, S.J.; Norton, D.P.; Ivill, M.P.; Hebard, A.F.; Zavada, J.M.; Chen, W.M.; Buyanova, I.A. ZnO doped with transition metal ions. IEEE Trans. Electron. 2007, 54, 1040–1048. [Google Scholar] [CrossRef]
- Kumar, K.; Chitkara, M.; Sandhu, I.S.; Mehta, D.; Kumar, S. Photocatalytic, optical and magnetic properties of Fe-doped ZnO nanoparticles prepared by chemical route. J. Alloys Compd. 2014, 588, 681–689. [Google Scholar] [CrossRef]
- Yang, L.; Yanting, Y.; Huilian, L.; Lili, Y.; Yongjun, Z.; Yaxin, W.; Maobin, W.; Xiaoyan, L.; Lianhua, F.; Xin, C. Intrinsic ferromagnetic properties in Cr-doped ZnO diluted magnetic semiconductors. J. Solid State Chem. 2011, 184, 1273–1278. [Google Scholar]
- Saleh, R.; Djaja, N.F.; Prakoso, S.P. The correlation between magnetic and structural properties of nanocrystalline transition metal-doped ZnO particles prepared by the co-precipitation method. J. Alloys Compd. 2013, 546, 48–56. [Google Scholar] [CrossRef]
- Ahmed, F.; Kumar, S.; Arshi, N.; Anwar, M.S.; Koo, B.H.; Lee, C.G. Doping effects of Co2+ ions on structural and magnetic properties of ZnO nanoparticles. Microelectron. Eng. 2012, 89, 129–132. [Google Scholar] [CrossRef]
- Choudhury, S.; Sain, S.; Mandal, M.K.; Pradhan, S.K.; Meikap, A.K. Microstructure characterization and electrical transport of nanocrystalline Zn0.90Mn0.10O semiconductors synthesized by mechanical alloying. Mater. Res. Bull. 2016, 77, 138–146. [Google Scholar] [CrossRef]
- Fabbiyola, S.; Kennedy, L.J.; Dakhel, A.A.; Bououdina, M.; Vijaya, J.J.; Ratnaji, T. Structural, microstructural, optical and magnetic properties of Mn-doped ZnO nanostructures. J. Mol. Struct. 2016, 1109, 89–96. [Google Scholar] [CrossRef]
- Carofiglio, M.; Barui, S.; Cauda, V.; Laurenti, M. Doped zinc oxide nanoparticles: Synthesis, characterization and potential use in nanomedicine. Appl. Sci. 2020, 10, 5194. [Google Scholar] [CrossRef] [PubMed]
- Lavand, A.B.; Malghe, Y.S. Synthesis, characterization and visible light photocatalytic activity of carbon and iron modified ZnO. J. King Saud Univ. Sci. 2018, 30, 65–74. [Google Scholar] [CrossRef]
- Dhiman, P.; Chand, J.; Kumar, A.; Kotnala, R.K.; Batoo, K.M.; Singh, M. Synthesis and characterization of novel Fe@ZnO nanosystem. J. Alloys Compd. 2013, 578, 235–241. [Google Scholar] [CrossRef]
- Mustaqima, M.; Liu, C. ZnO-based nanostructures for diluted magnetic semiconductor. Turk. J. Phys. 2014, 38, 429–441. [Google Scholar] [CrossRef]
- Beltrán, J.J.; Barrero, C.A.; Punnoose, A. Understanding the role of iron in the magnetism of Fe doped ZnO nanoparticles. Phys. Chem. Chem. Phys. 2015, 17, 15284–15296. [Google Scholar] [CrossRef] [PubMed]
- Mishra, A.K.; Das, D. Investigation on Fe-doped ZnO nanostructures prepared by a chemical route. Mater. Sci. Eng. B 2010, 171, 5–10. [Google Scholar] [CrossRef]
- Abd-Elkader, O.H.; Deraz, N.M.; Aleya, L. Rapid Bio-Assisted Synthesis and Magnetic Behavior of Zinc Oxide/Carbon Nanoparticles. Crystals 2023, 13, 1081. [Google Scholar] [CrossRef]
- Lyckfeldt, O.; Brandt, J.; Lesca, S. Protein forming—A novel shaping technique for ceramics. J. Eur. Ceram. 2000, 20, 2551–2559. [Google Scholar] [CrossRef]
- Maensiri, S.; Masingboon, C.; Boonchom, B.; Seraphin, S. A simple route to synthesize nickel ferrite (NiFe2O4) nanoparticles using egg white. Scr. Mater. 2007, 56, 797–800. [Google Scholar] [CrossRef]
- Wu, L.; Wu, Y.; Wei, L.Ü. Preparation of ZnO nanorods and optical characterizations. Phys. E Low-Dimens. Syst. Nanostruct. 2005, 28, 76–82. [Google Scholar] [CrossRef]
- Deepa, R.; Muthuraj, D.; Kumar, E.; Veeraputhiran, V. Microwave assisted synthesis of zinc oxide nanoparticles and its antimicrobial efficiency. J. Nanosci. Nanotechnol. 2019, 5, 640–641. [Google Scholar]
- Kondawar, S.B.; Patil, P.T.; Agrawal, S. Chemical vapour sensing properties of electrospun nanofibers of polyaniline/ZnO nanocomposites. Adv. Mater. Lett. 2014, 5, 389–395. [Google Scholar] [CrossRef]
- Zhang, R.; Fan, L.; Fang, Y.; Yang, S. Electrochemical route to the preparation of highly dispersed composites of ZnO/carbon nanotubes with significantly enhanced electrochemiluminescence from ZnO. J. Mater. Chem. 2008, 18, 4964–4970. [Google Scholar] [CrossRef]
- Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y. Synthesis of visible-light responsive graphene oxide/TiO2 composites with p/n heterojunction. ACS Nano 2010, 4, 6425–6432. [Google Scholar] [CrossRef] [PubMed]
- Graf, D.; Molitor, F.; Ensslin, K.; Stampfer, C.; Jungen, A.; Hierold, C.; Wirtz, L. Spatially resolved Raman spectroscopy of single-and few-layer graphene. Nano Lett. 2007, 7, 238–242. [Google Scholar] [CrossRef] [PubMed]
- Sim, L.C.; Leong, K.H.; Ibrahim, S.; Saravanan, P. Graphene oxide and Ag engulfed TiO2 nanotube arrays for enhanced electron mobility and visible-light-driven photocatalytic performance. J. Mater. Chem. A 2014, 2, 5315–5322. [Google Scholar] [CrossRef]
- Qian, Z.; Wang, L.; Dzakpasu, M.; Tian, Y.; Ding, D.; Chen, R.; Wang, G.; Yang, S. Spontaneous FeIII/FeII redox cycling in single-atom catalysts: Conjugation effect and electron delocalization. Iscience 2003, 26, 105902. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Mostafa, N.Y.; Heiba, Z.K.; Ibrahim, M.M. Structure and optical properties of ZnO produced from microwave hydrothermal hydrolysis of tris (ethylenediamine) zinc nitrate complex. J. Mol. Struct. 2015, 1079, 480–485. [Google Scholar] [CrossRef]
- Peña-Garcia, R.; Guerra, Y.; Milani, R.; Oliveira, D.M.; Rodrigues, A.R.; Padrón-Hernández, E. The role of Y on the structural, magnetic and optical properties of Fe-doped ZnO nanoparticles synthesized by sol gel method. J. Magn. Magn. Mater. 2020, 498, 166085. [Google Scholar] [CrossRef]
- Liu, L.; Liu, Z.; Yang, Y.; Geng, M.; Zou, Y.; Shahzad, M.B.; Dai, Y.; Qi, Y. Photocatalytic properties of Fe-doped ZnO electrospun nanofibers. Ceram. Int. 2018, 44, 19998–20005. [Google Scholar] [CrossRef]
- Srivastava, A.; Kumar, N.; Misra, K.P.; Khare, S. Blue-light luminescence enhancement and increased band gap from calcium-doped zinc oxide nanoparticle films. Mater. Sci. Semicond. 2014, 26, 259–266. [Google Scholar] [CrossRef]
- Chen, J.T.; Wang, J.; Zhang, F.; Zhang, G.A.; Wu, Z.G.; Yan, P.X. The effect of La doping concentration on the properties of zinc oxide films prepared by the sol–gel method. J. Cryst. Growth 2008, 310, 2627–2632. [Google Scholar] [CrossRef]
- Franco, A., Jr.; Pessoni, H.V. Optical band-gap and dielectric behavior in Ho–doped ZnO nanoparticles. Mater. Lett. 2016, 180, 305–308. [Google Scholar] [CrossRef]
- Sing, K.S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Provisional). Pure Appl. Chem. 1982, 54, 2201–2218. [Google Scholar] [CrossRef]
- Singh, M.; Goyal, M.; Devlal, K. Size and shape effects on the band gap of semiconductor compound nanomaterials. J. Taibah Univ. Sci. 2018, 12, 470–475. [Google Scholar] [CrossRef]
- Souza, F.L.; Lopes, K.P.; Longo, E.; Leite, E.R. The influence of the film thickness of nanostructured α-Fe2O3 on water photooxidation. Phys. Chem. Chem. Phys. 2009, 11, 1215–1219. [Google Scholar] [CrossRef] [PubMed]
- Rahal, A.; Benramache, S.; Benhaoua, B. The effect of the film thickness and doping content of SnO2: F thin films prepared by the ultrasonic spray method. J. Semicond. 2013, 34, 093003. [Google Scholar] [CrossRef]
- Tuna, O.; Selamet, Y.; Aygun, G.; Ozyuzer, L. High quality ITO thin films grown by dc and RF sputtering without oxygen. J. Phys. D Appl. Phys. 2010, 43, 055402. [Google Scholar] [CrossRef]
- Gahlawat, S.; Singh, J.; Yadav, A.K.; Ingole, P.P. Exploring Burstein–Moss type effects in nickel doped hematite dendrite nanostructures for enhanced photo-electrochemical water splitting. Phys. Chem. Chem. Phys. 2019, 21, 20463–20477. [Google Scholar] [CrossRef]
- Tang, G.; Liu, H.; Zhang, W. The variation of optical band gap for ZnO: In films prepared by sol-gel technique. Adv. Mater. Sci. Eng. 2013, 2013, 348601. [Google Scholar] [CrossRef]
- Deraz, N.M.; Shaban, S. Optimization of catalytic, surface and magnetic properties of nanocrystalline manganese ferrite. J. Anal. Appl. Pyrolysis 2009, 86, 173–179. [Google Scholar] [CrossRef]
- Zhang, J.; Xie, Y.; Jiang, Q.; Guo, S.; Huang, J.; Xu, L.; Wang, Y.; Li, G. Facile synthesis of cobalt cluster-CoNx composites: Synergistic effect boosts electrochemical oxygen reduction. J. Mater. Chem. A 2022, 10, 16920–16927. [Google Scholar] [CrossRef]
- Qi, B.; Ólafsson, S.; Gíslason, H.P. Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: Controversial origin and challenges. Prog. Mater. Sci. 2017, 90, 45–74. [Google Scholar] [CrossRef]
- Jindal, K.; Tomar, M.; Katiyar, R.S.; Gupta, V. Transition from diamagnetic to ferromagnetic state in laser ablated nitrogen doped ZnO thin films. AIP Adv. 2015, 5, 027117. [Google Scholar] [CrossRef]
- Il’ves, V.G.; Sokovnin, S.Y. Structural and Magnetic Properties of Nanopowders and Coatings of Carbon-Doped Zinc Oxide Prepared by Pulsed Electron Beam Evaporation. J. Nanotechnol. 2017, 2017, 4628193. [Google Scholar] [CrossRef]
- Srinet, G.; Sharma, S.; Guerrero-Sanchez, J.; Garcia-Diaz, R.; Ponce-Perez, R.; Siqueiros, J.M.; Herrera, O.R. Room-temperature ferromagnetism on ZnO nanoparticles doped with Cr: An experimental and theoretical analysis. J. Alloys Compd. 2020, 849, 156587. [Google Scholar] [CrossRef]
- Gupta, S.; Choubey, R.K.; Sharma, L.K.; Ghosh, M.P.; Kar, M.; Mukherjee, S. Exploring the magnetic ground state of vanadium doped zinc sulphide. Semicond. Sci. Technol. 2019, 34, 105006. [Google Scholar] [CrossRef]
- Morkoç, H.; Özgür, Ü. Zinc Oxide: Fundamentals, Materials and Device Technology; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Roy, S.; Ghosh, M.P.; Mukherjee, S. Introducing magnetic properties in Fe-doped ZnO nanoparticles. Appl. Phys. A 2021, 127, 451. [Google Scholar] [CrossRef]
- Wu, X.; Wei, Z.; Zhang, L.; Wang, X.; Yang, H.; Jiang, J. Optical and magnetic properties of Fe doped ZnO nanoparticles obtained by hydrothermal synthesis. J. Nanomater. 2014, 2014, 4. [Google Scholar] [CrossRef]
- Abdel-Baset, T.A.; Fang, Y.W.; Anis, B.; Duan, C.G.; Abdel-Hafiez, M. Structural and magnetic properties of transition-metal-doped Zn1−xFexO. Nanoscale Res. Lett. 2016, 11, 115. [Google Scholar] [CrossRef] [PubMed]
Structural Parameters | S1 | S2 | S3 |
---|---|---|---|
d, nm | 15 | 6 | 20 |
a, nm | 0.32657 | 0.32737 | 0.32717 |
c, nm | 0.56563 | 0.56702 | 0.56668 |
c/a | 1.73203 | 1.73204 | 1.73206 |
V, nm3 | 0.0655 | 0.0526 | 0.0525 |
μ | 0.3611 | 0.3611 | 0.3611 |
L, nm | 0.4438 | 0.4452 | 0.4448 |
δ, Lines/nm2 | 0.0044 | 0.0277 | 0.00250 |
ε | 0.0075 | 0.0184 | 0.0035 |
SBET m2/g | Vm (cc/g) | ȓ (nm) | Vp (cc/g) | |
---|---|---|---|---|
S1 | 29 | 6.73 | 7.23 | 0.053 |
S3 | 19 | 4.38 | 8.06 | 0.038 |
Samples | Ms (memu/g) | Mr (memu/g) | Mr/Ms | Hc (Oe) | Ka (erg/cm3) |
---|---|---|---|---|---|
S2 | 9.99 | 8.99 | 0.8999 | 83.66 | 93.55 |
S3 | 41.53 | 12.81 | 0.3085 | 62.56 | 554.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abd-Elkader, O.H.; Nasrallah, M.; Aleya, L.; Nasrallah, M. Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles. Surfaces 2023, 6, 410-429. https://doi.org/10.3390/surfaces6040028
Abd-Elkader OH, Nasrallah M, Aleya L, Nasrallah M. Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles. Surfaces. 2023; 6(4):410-429. https://doi.org/10.3390/surfaces6040028
Chicago/Turabian StyleAbd-Elkader, Omar H., Mai Nasrallah, Lotfi Aleya, and Mohamed Nasrallah. 2023. "Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles" Surfaces 6, no. 4: 410-429. https://doi.org/10.3390/surfaces6040028
APA StyleAbd-Elkader, O. H., Nasrallah, M., Aleya, L., & Nasrallah, M. (2023). Biosynthesis, Optical and Magnetic Properties of Fe-Doped ZnO/C Nanoparticles. Surfaces, 6(4), 410-429. https://doi.org/10.3390/surfaces6040028