Simple and Intelligent Electrochemical Detection of Ammonia over Cuprous Oxide Thin Film Electrode
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Solutions
2.2. Synthesis of Colloidal CuNPs
2.3. Preparation of Cu2O Thin Film Electrode
2.4. Apparatus
2.5. EIS and Electrochemical Measurements
2.6. NH3 Detection Procedure
2.7. NH3 Recovery in Drinking Water
3. Results and Discussion
3.1. UV-Visible Spectra of Colloidal CuNPs
3.2. Surface Functional Group Analysis by FTIR
3.3. X-ray Diffraction Pattern of Cu2O/GCE
3.4. XPS Analysis
3.5. Morphology of Cu2O on GCE
3.6. EIS Analysis of GCE and Cu2O/GCE
3.7. CV Analysis of GCE and Cu2O/GCE
3.8. CV Analysis of NH3/Cu2O/GCE
3.9. Effect of Cu2O Amount
3.10. Effect of the Scan Rate
3.11. Effect of NH3 Concentration
3.12. Effect of Changing the Vertex Potential
3.13. Effect of the Supporting Electrolyte
3.14. Effect of pH
3.15. Effect of SWV Parameters
3.16. Analytical Response
3.17. NH3 Recovery
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Buzzeo, M.C.; Giovanelli, D.; Lawrence, N.S.; Hardacre, C.; Seddon, K.R.; Compton, R.G. Elucidation of the Electrochemical Oxidation Pathway of Ammonia in Dimethylformamide and the Room Temperature Ionic Liquid, 1-Ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 888–896. [Google Scholar] [CrossRef]
- Bhogadia, M.; Edgar, M.; Hunwin, K.; Page, G.; Grootveld, M. Detection and Quantification of Ammonia as the Ammonium Cation in Human Saliva by 1H NMR: A Promising Probe for Health Status Monitoring, with Special Reference to Cancer. Metabolites 2023, 13, 792. [Google Scholar] [CrossRef] [PubMed]
- Arya, S.; Riyas, M.; Sharma, A.; Singh, B.; Prerna Bandhoria, P.; Khan, S.; Bharti, V. Electrochemical detection of ammonia solution using tin oxide nanoparticles synthesized via sol–gel route. Appl. Phys. A 2018, 124, 1–7. [Google Scholar] [CrossRef]
- Zhao, Y.; Shi, R.; Bian, X.; Zhou, C.; Zhao, Y.; Zhang, S.; Wu, F.; Waterhouse, G.I.; Wu, L.Z.; Tung, C.H.; et al. Ammonia detection methods in photocatalytic and electrocatalytic experiments: How to improve the reliability of NH3 production rates? Adv. Sci. 2019, 6, 1802109. [Google Scholar] [CrossRef]
- Siribunbandal, P.; Kim, Y.H.; Osotchan, T.; Zhu, Z.; Jaisutti, R. Quantitative colorimetric detection of dissolved ammonia using polydiacetylene sensors enabled by machine learning classifiers. ACS Omega 2002, 7, 18714–18721. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Ghosh, B.; Dey, R.S. Refining the spectroscopic detection technique: A pivot in the electrochemical ammonia synthesis. Langmuir 2023, 39, 3810–3820. [Google Scholar] [CrossRef]
- Panchompoo, J.; Compton, R.G. Electrochemical detection of ammonia in aqueous solution using fluorescamine: A comparison of fluorometric versus voltammetric analysis. J. Electrochem. 2012, 18, 437. [Google Scholar]
- Khan, M.A.; Qazi, F.; Hussain, Z.; Idrees, M.U.; Soomro, S.; Soomro, S. Recent trends in electrochemical detection of NH3, H2S and NOx gases. Int. J. Electrochem. Sci. 2017, 12, 1711–1733. [Google Scholar] [CrossRef]
- Ji, X.; Banks, C.E.; Compton, R.G. The direct electrochemical oxidation of ammonia in propylene carbonate: A generic approach to amperometric gas sensors. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2006, 18, 449–455. [Google Scholar] [CrossRef]
- Ji, X.; Compton, R.G. Determination of ammonia based on the electrochemical oxidation of N, N′-diphenyl-1, 4-phenylenediamine in propylene carbonate. Anal. Sci. 2007, 23, 1317–1320. [Google Scholar] [CrossRef]
- Zolotov, S.A.; Vladimirova, E.V.; Dunaeva, A.A.; Shipulo, E.V.; Petrukhin, O.M.; Vatsuro, I.M.; Kovalev, V.V. Determination of the ammonium ion by voltammetry at the liquid-liquid interface using calixarenes as neutral carriers. Russ. J. Electrochem. 2014, 50, 940–946. [Google Scholar] [CrossRef]
- Oudenhoven, J.F.M.; Knoben, W.; Van Schaijk, R. Electrochemical detection of ammonia using a thin ionic liquid film as the electrolyte. Procedia Eng. 2015, 120, 983–986. [Google Scholar] [CrossRef]
- Vidal-Iglesias, F.J.; García-Aráez, N.; Montiel, V.; Feliu, J.M.; Aldaz, A. Selective electrocatalysis of ammonia oxidation on Pt (1 0 0) sites in alkaline medium. Electrochem. Commun. 2003, 5, 22–26. [Google Scholar] [CrossRef]
- Bunce, N.J.; Bejan, D. Mechanism of electrochemical oxidation of ammonia. Electrochim. Acta 2011, 56, 8085–8093. [Google Scholar] [CrossRef]
- Le Vot, S.; Roué, L.; Bélanger, D. Study of the electrochemical oxidation of ammonia on platinum in alkaline solution: Effect of electrodeposition potential on the activity of platinum. J. Electroanal. Chem. 2013, 691, 18–27. [Google Scholar] [CrossRef]
- De Mishima, B.L.; Lescano, D.; Holgado, T.M.; Mishima, H.T. Electrochemical oxidation of ammonia in alkaline solutions: Its application to an amperometric sensor. Electrochim. Acta 1998, 43, 395–404. [Google Scholar] [CrossRef]
- Valentini, F.; Biagiotti, V.; Lete, C.; Palleschi, G.; Wang, J. The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes. Sens. Actuators B Chem. 2007, 128, 326–333. [Google Scholar] [CrossRef]
- Din, M.I.; Rehan, R. Synthesis, characterization, and applications of copper nanoparticles. Anal. Lett. 2017, 50, 50–62. [Google Scholar] [CrossRef]
- Usman, M.S.; Ibrahim, N.A.; Shameli, K.; Zainuddin, N.; Yunus, W.M.Z.W. Copper nanoparticles mediated by chitosan: Synthesis and characterization via chemical methods. Molecules 2012, 17, 14928–14936. [Google Scholar] [CrossRef]
- Ramyadevi, J.; Jeyasubramanian, K.; Marikani, A.; Rajakumar, G.; Rahuman, A.A. Synthesis and antimicrobial activity of copper nanoparticles. Mater. Lett. 2012, 71, 114–116. [Google Scholar] [CrossRef]
- Gawande, M.B.; Goswami, A.; Felpin, F.X.; Asefa, T.; Huang, X.; Silva, R.; Zou, X.; Zboril, R.; Varma, R.S. Cu and Cu-based nanoparticles: Synthesis and applications in catalysis. Chem. Rev. 2016, 116, 3722–3811. [Google Scholar] [CrossRef] [PubMed]
- Kodasi, B.; Joshi, S.D.; Kamble, R.R.; Keri, R.S.; Bayannavar, P.K.; Nesaragi, A.R.; Dixit, S.; Vootla, S.K.; Metre, T.V. Cu microcrystals garnished with copper nanoparticles catalyzed one-pot facile synthesis of novel 1, 2, 3-triazoles via click chemistry as antifungal agents. Appl. Organomet. Chem. 2022, 36, e6664. [Google Scholar] [CrossRef]
- Kang, W.; Pei, X.; Bange, A.; Haynes, E.N.; Heineman, W.R.; Papautsky, I. Copper-based electrochemical sensor with palladium electrode for cathodic stripping voltammetry of manganese. Anal. Chem. 2014, 86, 12070–12077. [Google Scholar] [CrossRef] [PubMed]
- Lete, C.; Spinciu, A.M.; Alexandru, M.G.; Calderon Moreno, J.; Leau, S.A.; Marin, M.; Visinescu, D. Copper (II) oxide nanoparticles embedded within a PEDOT matrix for hydrogen peroxide electrochemical sensing. Sensors 2022, 22, 8252. [Google Scholar] [CrossRef] [PubMed]
- Bonthula, S.; Bonthula, S.R.; Pothu, R.; Srivastava, R.K.; Boddula, R.; Radwan, A.B.; Al-Qahtani, N. Recent Advances in Copper-Based Materials for Sustainable Environmental Applications. Sustain. Chem. 2023, 4, 246–271. [Google Scholar] [CrossRef]
- Grujicic, D.; Pesic, B. Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochim. Acta 2005, 50, 4426–4443. [Google Scholar] [CrossRef]
- Zhybak, M.T.; Vagin, M.Y.; Beni, V.; Liu, X.; Dempsey, E.; Turner, A.P.; Korpan, Y.I. Direct detection of ammonium ion by means of oxygen electrocatalysis at a copper-polyaniline composite on a screen-printed electrode. Microchim. Acta 2016, 183, 1981–1987. [Google Scholar] [CrossRef]
- Xiong, J.; Wang, Y.; Xue, Q.; Wu, X. Synthesis of highly stable dispersions of nanosized copper particles using L-ascorbic acid. Green Chem. 2016, 13, 900–904. [Google Scholar] [CrossRef]
- Khan, A.; Rashid, A.; Younas, R.; Chong, R. A chemical reduction approach to the synthesis of copper nanoparticles. Int. Nano Lett. 2016, 6, 21–26. [Google Scholar] [CrossRef]
- Chandra, S.; Kumar, A.; Tomar, P.K. Synthesis and characterization of copper nanoparticles by reducing agent. J. Saudi Chem. Soc. 2014, 18, 149–153. [Google Scholar] [CrossRef]
- Shikha, J.A.I.N.; Ankita, J.A.I.N.; Kachhawah, P.; Devra, V. Synthesis and size control of copper nanoparticles and their catalytic application. Trans. Nonferrous Met. Soc. China 2015, 25, 3995–4000. [Google Scholar]
- Ali Soomro, R.; Tufail Hussain Sherazi, S.; Memon, N.; Raza Shah, M.; Hussain Kalwar, N.; Richard Hallam, K.; Shah, A. Synthesis of air stable copper nanoparticles and their use in catalysis. Adv. Mater. Lett. 2014, 5, 191–198. [Google Scholar] [CrossRef]
- Sood, A.; Arora, V.; Shah, J.; Kotnala, R.K.; Jain, T.K. Ascorbic acid-mediated synthesis and characterisation of iron oxide/gold core–shell nanoparticles. J. Exp. Nanosci. 2016, 11, 370–382. [Google Scholar] [CrossRef]
- Bashami, R.M.; Soomro, M.T.; Khan, A.N.; Aazam, E.S.; Ismail, I.M.; El-Shahawi, M.S. A highly conductive thin film composite based on silver nanoparticles and malic acid for selective electrochemical sensing of trichloroacetic acid. Anal. Chim. Acta 2018, 1036, 33–48. [Google Scholar] [CrossRef] [PubMed]
- Palomba, M.; Carotenuto, G.; Longo, A. A Brief Review: The Use of L-Ascorbic Acid as a Green Reducing Agent of Graphene Oxide. Materials 2022, 15, 6456. [Google Scholar] [CrossRef] [PubMed]
- Stojanov, L.; Rafailovska, A.; Jovanovski, V.; Mirceski, V. Electrochemistry of Copper in Polyacrylic Acid: The Electrode Mechanism and Analytical Application for Gaseous Hydrogen Peroxide Detection. J. Phys. Chem. C 2022, 126, 18313–18322. [Google Scholar] [CrossRef]
- Yabuki, A.; Tanaka, S. Oxidation behavior of copper nanoparticles at low temperature. Mater. Res. Bull. 2011, 46, 2323–2327. [Google Scholar] [CrossRef]
- Yoon, J.; Choi, D.J.; Kim, Y.H. Fabrication of CuO and Cu2O nanoparticles in a thick polyimide film by post heat treatment in a controlled-atmosphere. J. Nanosci. Nanotechnol. 2011, 11, 796–800. [Google Scholar] [CrossRef]
- Umer, A.; Naveed, S.; Ramzan, N.; Rafique, M.S.; Imran, M. A green method for the synthesis of copper nanoparticles using L-ascorbic acid. Matéria 2014, 19, 197–203. [Google Scholar] [CrossRef]
- Nguyen, V.T.; Trinh, K.S. In situ deposition of copper nanoparticles on polyethylene terephthalate filters and antibacterial testing against Escherichia coli and Salmonella enterica. Braz. J. Chem. Eng. 2020, 36, 1553–1560. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, M.G. HPLC-UV method for the simultaneous determinations of ascorbic acid and dehydroascorbic acid in human plasma. Transl. Clin. Pharmacol. 2016, 24, 37–42. [Google Scholar] [CrossRef]
- Qi, F.; Huang, H.; Wang, M.; Rong, W.; Wang, J. Applications of antioxidants in dental procedures. Antioxidants 2022, 11, 2492. [Google Scholar] [CrossRef] [PubMed]
- Koliou, E.K.; Ioannou, P.V. Preparation of dehydro-L-ascorbic acid dimer by air oxidation of L-ascorbic acid in the presence of catalytic amounts of copper (II) acetate and pyridine. Carbohydr. Res. 2005, 340, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Shafiey Dehaj, M.; Zamani Mohiabadi, M. Experimental study of water-based CuO nanofluid flow in heat pipe solar collector. J. Therm. Anal. Calorim. 2019, 137, 2061–2072. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, P. Highly stable copper oxide composite as an effective photocathode for water splitting via a facile electrochemical synthesis strategy. J. Mater. Chem. 2012, 22, 2456–2464. [Google Scholar] [CrossRef]
- Sudha, V.; Murugadoss, G.; Thangamuthu, R. Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Sci. Rep. 2021, 11, 3413. [Google Scholar] [CrossRef]
- Kader, D.A.; Rashid, S.O.; Omer, K.M. Green nanocomposite: Fabrication, characterization, and photocatalytic application of vitamin C adduct-conjugated ZnO nanoparticles. RSC Adv. 2023, 13, 9963–9977. [Google Scholar] [CrossRef]
- Li, J.; Mei, Z.; Liu, L.; Liang, H.; Azarov, A.; Kuznetsov, A.; Liu, Y.; Ji, A.; Meng, Q.; Du, X. Probing defects in nitrogen-doped Cu2O. Sci. Rep. 2014, 4, 7240. [Google Scholar] [CrossRef]
- Zhao, W.; Fu, W.; Yang, H.; Tian, C.; Li, M.; Li, Y.; Zhang, L.; Sui, Y.; Zhou, X.; Chen, H.; et al. Electrodeposition of Cu2O films and their photoelectrochemical properties. CrystEngComm 2011, 13, 2871–2877. [Google Scholar] [CrossRef]
- Won, Y.H.; Stanciu, L.A. Cu2O and Au/Cu2O particles: Surface properties and applications in glucose sensing. Sensors 2012, 12, 13019–13033. [Google Scholar] [CrossRef]
- Aziz, G.E.N.Ç. Hydrothermal Synthesis of Cuprous Oxide Nanoflowers and Characterization of Their Optical Properties. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018, 22, 397–401. [Google Scholar]
- Mowbray, R. Morphological Control of Copper and Cuprous Oxide Nanoparticles via Synthesis and Oxidation/Reduction Reactions. Ph.D. Thesis, University of Colorado at Boulder, Boulder, CO, USA, 2013. [Google Scholar]
- Bashami, R.M.; Hameed, A.; Aslam, M.; Ismail, I.M.; Soomro, M.T. The suitability of ZnO film-coated glassy carbon electrode for the sensitive detection of 4-nitrophenol in aqueous medium. Anal. Methods 2015, 7, 1794–1801. [Google Scholar] [CrossRef]
- Kosa, S.A.M.; Khan, A.N.; Ahmed, S.; Aslam, M.; Bawazir, W.A.; Hameed, A.; Soomro, M.T. Strategic Electrochemical Determination of Nitrate over Polyaniline/Multi-Walled Carbon Nanotubes-Gum Arabic Architecture. Nanomaterials 2022, 12, 3542. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Diawara, B.; Maurice, V.; Marcus, P. Bulk and surface properties of Cu2O: A first-principles investigation. J. Mol. Struct. THEOCHEM 2009, 903, 41–48. [Google Scholar] [CrossRef]
- Zhang, W.; Yin, J.; Min, F.; Jia, L.; Zhang, D.; Zhang, Q.; Xie, J. Cyclic voltammetry analysis of copper electrode performance in Na2WO4 solution and optical property of electrochemical synthesized CuWO4 nanoparticles. J. Alloys Compd. 2017, 690, 221–227. [Google Scholar] [CrossRef]
- Han, U.B.; Lee, J.S. Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications. Sci. Rep. 2016, 6, 28966. [Google Scholar] [CrossRef]
- Mohammadzadeh, S.; Zare, H.R.; Khoshro, H. Electrochemical study of Cu2O/CuO composite coating produced by annealing and electrochemical methods. J. Iran. Chem. Soc. 2019, 16, 2719–2729. [Google Scholar] [CrossRef]
- Ramos, A.; Miranda-Hernández, M.; González, I. Influence of chloride and nitrate anions on copper electrodeposition in ammonia media. J. Electrochem. Soc. 2001, 148, C315. [Google Scholar] [CrossRef]
- Hench-Cabrera, A.E.; Quiroga-González, E. Direct electrochemical detection mechanism of ammonia in aqueous solution using Cu-decorated Si microelectrodes. J. Electrochem. Sci. Eng. 2023. [Google Scholar] [CrossRef]
- Wang, J.; Diao, P. Simultaneous detection of ammonia and nitrate using a modified electrode with two regions. Microchem. J. 2020, 154, 104649. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, T.; Ren, R.; Zhang, J.; He, D.; Zhao, C.; Suo, H. In situ synthesis of hierarchical platinum nanosheets-polyaniline array on carbon cloth for electrochemical detection of ammonia. J. Hazard. Mater. 2020, 392, 122342. [Google Scholar] [CrossRef] [PubMed]
Pulse Amplitude/mV | Frequency/ms | Step Potential/mV | Ip/µA |
---|---|---|---|
Pulse amplitude | |||
25 | 50 | −10 | −65.52 |
50 | 50 | −10 | −70.32 |
75 | 50 | −10 | −68.11 |
100 | 50 | −10 | −63.54 |
Frequency | |||
25 | 10 | −10 | −37.04 |
25 | 25 | −10 | −56.21 |
25 | 50 | −10 | −70.32 |
25 | 100 | −10 | −89.15 |
Step potential | |||
25 | 50 | −5 | −52.17 |
25 | 50 | −10 | −70.32 |
25 | 50 | −15 | −77.63 |
25 | 50 | −20 | −91.51 |
Electrode System | Direct/Indirect Detection | Detection Technique | Supporting Electrolyte | Linear Range | LOD | References |
---|---|---|---|---|---|---|
NH3/Cu2O NPs/GCE | Through complex formation/indirect | SWV | 0.1 M Phosphate buffer, pH 7 | 0.01–1 mM | 6.23 µM | This work |
MWCNT/Cu paste electrode | Through complex formation/indirect | DPV | 50 mM Carbonate buffer, pH 10 | 3–100 µM | 3.47 µM | [17] |
Pt-working-microfabricated electrode | Oxidation/direct | CV | Ionic liquid | 1–20 ppm | 1 ppm | [12] |
GCE | Through chemical reaction/oxidation/indirect | SWV | 0.1 M Borate buffer, pH 9 | 0–60 µM | 0.71 µM | [7] |
Pt/ITO | Oxidation/direct | LSW | 0.5 M KOH | 0.27–5 µM | 3.946 µM | [61] |
Pt-PANI-CC | Oxidation/direct | DPV | 1 M KOH | 0.5–550 µM | 77.2 nM | [62] |
SnO2 | Oxidation/direct | CV | Phosphate buffer | - | - | [3] |
Detected (mM) | Added (mM) | Measured (mM) | Recovery (%) |
---|---|---|---|
0 | 0.01 | 0.00982 | 98.2 ± 4.59 |
0 | 0.05 | 0.04838 | 96.7 ± 4.87 |
0 | 0.1 | 0.0991 | 99.1 ± 4.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosa, S.A.; Khan, A.N.; Al-Johani, B.; Taib, L.A.; Aslam, M.; Bawazir, W.A.; Hameed, A.; Soomro, M.T. Simple and Intelligent Electrochemical Detection of Ammonia over Cuprous Oxide Thin Film Electrode. Surfaces 2023, 6, 430-449. https://doi.org/10.3390/surfaces6040029
Kosa SA, Khan AN, Al-Johani B, Taib LA, Aslam M, Bawazir WA, Hameed A, Soomro MT. Simple and Intelligent Electrochemical Detection of Ammonia over Cuprous Oxide Thin Film Electrode. Surfaces. 2023; 6(4):430-449. https://doi.org/10.3390/surfaces6040029
Chicago/Turabian StyleKosa, Samia A., Amna N. Khan, Basma Al-Johani, L. A. Taib, M. Aslam, Wafa A. Bawazir, A. Hameed, and M. Tahir Soomro. 2023. "Simple and Intelligent Electrochemical Detection of Ammonia over Cuprous Oxide Thin Film Electrode" Surfaces 6, no. 4: 430-449. https://doi.org/10.3390/surfaces6040029
APA StyleKosa, S. A., Khan, A. N., Al-Johani, B., Taib, L. A., Aslam, M., Bawazir, W. A., Hameed, A., & Soomro, M. T. (2023). Simple and Intelligent Electrochemical Detection of Ammonia over Cuprous Oxide Thin Film Electrode. Surfaces, 6(4), 430-449. https://doi.org/10.3390/surfaces6040029