Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Photocatalyst Preparation
2.2. Photocatalysis Measurements
2.3. Photocatalyst Regeneration
2.4. General Characterization of Photocatalysts
2.5. AFM-Raman Spectroscopy Characterization
3. Results and Discussion
3.1. Preliminary Characterization
3.2. Photocatalysis Cycles
3.3. Coupled AFM + Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Choi, H.; Zakersalehi, A.; Al-Abed, S.R.; Han, C.; Dionysiou, D.D. Nanostructured Titanium Oxide Film- and Membrane-Based Photocatalysis for Water Treatment. In Nanotechnology Applications for Clean Water; William Andrew Publishing: Norwich, NY, USA, 2014; pp. 123–132. [Google Scholar]
- Koukkari, P.; Pajarre, R.; Hack, K. Modelling TiO2 Production by Explicit Use of Reaction Kinetics. In The SGTE Casebook; Woodhead Publishing: Cambridge, UK, 2008; pp. 437–446. [Google Scholar]
- Mao, T.; Zha, J.; Hu, Y.; Chen, Q.; Zhang, J.; Luo, X. Research Progress of TiO2 Modification and Photodegradation of Organic Pollutants. Inorganics 2024, 12, 178. [Google Scholar] [CrossRef]
- Yan, X.; Chen, X. Titanium Dioxide Nanomaterials. In Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2015; pp. 1–38. [Google Scholar]
- Li, R.; Zhou, A.; Lu, Q.; Yang, C.; Zhang, J. In Situ Monitoring and Analysis of the Photocatalytic Degradation Process and Mechanism on Recyclable Au NPs-TiO2 NTs Substrate Using Surface-Enhanced Raman Scattering. Colloids Surf. A. Physicochem. Eng. Asp. 2013, 436, 270–278. [Google Scholar] [CrossRef]
- Wint, T.H.M.; Smith, M.F.; Chanlek, N.; Chen, F.; Oo, T.Z.; Songsiriritthigul, P. Physical Origin of Diminishing Photocatalytic Efficiency for Recycled TiO2 Nanotubes and Ag-Loaded TiO2 Nanotubes in Organic Aqueous Solution. Catalysts 2020, 10, 737. [Google Scholar] [CrossRef]
- Chong, X.; Zhao, B.; Li, R.; Ruan, W.; Yang, X. Photocatalytic Degradation of Rhodamine 6G on Ag Modified TiO2 Nanotubes: Surface-Enhanced Raman Scattering Study on Catalytic Kinetics and Substrate Recyclability. Colloids Surf. A. Physicochem. Eng. Asp. 2015, 481, 7–12. [Google Scholar] [CrossRef]
- de Oliveira, R.; Sant’Ana, A.C. Plasmonic Photocatalytic Degradation of Tebuconazole and 2,4-Dichlorophenoxyacetic Acid by Ag Nanoparticles-Decorated TiO2 Tracked by SERS Analysis. Chemosphere 2023, 338, 139490. [Google Scholar] [CrossRef]
- Xie, Y.; Jin, Y.; Zhou, Y.; Wang, Y. SERS Activity of Self-Cleaning Silver/Titania Nanoarray. Appl. Surf. Sci. 2014, 313, 549–557. [Google Scholar] [CrossRef]
- Székely, I.; Kovács, Z.; Rusu, M.; Gyulavári, T.; Todea, M.; Focșan, M.; Baia, M.; Pap, Z. Tungsten Oxide Morphology-Dependent Au/TiO2/WO3 Heterostructures with Applications in Heterogenous Photocatalysis and Surface-Enhanced Raman Spectroscopy. Catalysts 2023, 13, 1015. [Google Scholar] [CrossRef]
- Piazza, V.; Mazare, A.; Diamanti, M.V.; Pedeferri, M.; Schmuki, P. Key Oxidation Parameters That Influence Photo-Induced Properties and Applications of Anodic Titanium Oxides. J. Electrochem. Soc. 2016, 163, H119–H127. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Yu, H.; Zuo, Y.; Gao, J.; He, G.; Sun, Z. Facile Fabrication of Ag/Graphene Oxide/TiO2 Nanorod Array as a Powerful Substrate for Photocatalytic Degradation and Surface-Enhanced Raman Scattering Detection. Appl. Catal. B. 2019, 252, 174–186. [Google Scholar] [CrossRef]
- Serrano, G.; Bonanni, B.; Kosmala, T.; Di Giovannantonio, M.; Diebold, U.; Wandelt, K.; Goletti, C. In situ scanning tunneling microscopy study of Ca-modified rutile TiO2(110) in bulk water. Beilstein J. Nanotechnol. 2015, 6, 438–443. [Google Scholar] [CrossRef]
- Diamanti, M.V.; Gadelrab, K.R.; Pedeferri, M.P.; Stefancich, M.; Pehkonen, S.O.; Chiesa, M. Nanoscale Investigation of Photoinduced Hydrophilicity Variations in Anatase and Rutile Nanopowders. Langmuir 2013, 29, 14512–14518. [Google Scholar] [CrossRef] [PubMed]
- Verma, P. Tip-Enhanced Raman Spectroscopy: Technique and Recent Advances. Chem. Rev. 2017, 117, 6447–6466. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.-C.; Huang, S.-C.; Wu, D.-Y.; Meng, L.-Y.; Li, M.-H.; Huang, T.-X.; Zhong, J.-H.; Wang, X.; Yang, Z.-L.; Ren, B. Electrochemical Tip-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2015, 137, 11928–11931. [Google Scholar] [CrossRef] [PubMed]
- Bussetti, G.; Menegazzo, M.; Mitko, S.; Castiglioni, C.; Tommasini, M.; Lucotti, A.; Magagnin, L.; Russo, V.; Li Bassi, A.; Siena, M.; et al. A Combined Raman Spectroscopy and Atomic Force Microscopy System for In Situ and Real-Time Measures in Electrochemical Cells. Materials 2023, 16, 2239. [Google Scholar] [CrossRef] [PubMed]
- Pishkar, N.; Ghoranneviss, M.; Ghorannevis, Z.; Akbari, H. Study of the Highly Ordered TiO2 Nanotubes Physical Properties Prepared with Two-Step Anodization. Results Phys. 2018, 9, 1246–1249. [Google Scholar] [CrossRef]
- Montakhab, E.; Rashchi, F.; Sheibani, S. Modification and Photocatalytic Activity of Open Channel TiO2 Nanotubes Array Synthesized by Anodization Process. Appl. Surf. Sci. 2020, 534, 147581. [Google Scholar] [CrossRef]
- Ng, S.W.; Yam, F.K.; Hassan, Z. Electrochemical Impregnation of Silver Nanostructures in Titanium Dioxide Nanotubes. J Electrochem. Soc. 2012, 159, D742–D746. [Google Scholar] [CrossRef]
- Depero, L.E.; Bonzi, P.; Zocchi, M.; Casale, C.; De Michele, G. Study of the Anatase-Rutile Transformation in TiO2 Powders Obtained by Laser-Induced Synthesis. J. Mater. Res. 1993, 8, 2709–2715. [Google Scholar] [CrossRef]
- Redmond, P.L.; Hallock, A.J.; Brus, L.E. Electrochemical Ostwald Ripening of Colloidal Ag Particles on Conductive Substrates. Nano. Lett. 2005, 5, 131–135. [Google Scholar] [CrossRef]
- Nycz, M.; Arkusz, K.; Pijanowska, D.G. Fabrication of Electrochemical Biosensor Based on Titanium Dioxide Nanotubes and Silver Nanoparticles for Heat Shock Protein 70 Detection. Materials 2021, 14, 3767. [Google Scholar] [CrossRef]
- Zakaria, N.D.; Omar, M.H.; Ahmad Kamal, N.N.; Abdul Razak, K.; Sönmez, T.; Balakrishnan, V.; Hamzah, H.H. Effect of Supporting Background Electrolytes on the Nanostructure Morphologies and Electrochemical Behaviors of Electrodeposited Gold Nanoparticles on Glassy Carbon Electrode Surfaces. ACS Omega 2021, 6, 24419–24431. [Google Scholar] [CrossRef] [PubMed]
- Bellè, U.; Spini, D.; Del Curto, B.; Pedeferri, M.; Diamanti, M.V. Water-Based Photocatalytic Sol–Gel TiO2 Coatings: Synthesis and Durability. Catalysts 2023, 13, 494. [Google Scholar] [CrossRef]
- Zhang, W.F.; He, Y.L.; Zhang, M.S.; Yin, Z.; Chen, Q. Raman Scattering Study on Anatase TiO2 Nanocrystals. J. Phys. D. Appl. Phys. 2000, 33, 912–916. [Google Scholar] [CrossRef]
- Lim, S.P.; Pandikumar, A.; Lim, H.N.; Ramaraj, R.; Huang, N.M. Boosting Photovoltaic Performance of Dye-Sensitized Solar Cells Using Silver Nanoparticle-Decorated N,S-Co-Doped-TiO2 Photoanode. Sci. Rep. 2015, 5, 11922. [Google Scholar] [CrossRef]
- Sun, C.H.; Wang, M.L.; Feng, Q.; Liu, W.; Xu, C.X. Surface-Enhanced Raman Scattering (SERS) Study on Rhodamine B Adsorbed on Different Substrates. Russ. J. Phys. Chem. A 2015, 89, 291–296. [Google Scholar] [CrossRef]
- Majoube, M.; Henry, M. Fourier Transform Raman and Infrared and Surface-Enhanced Raman Spectra for Rhodamine 6G. Spectrochim. Acta A 1991, 47, 1459–1466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinnur, M.V.; Menegazzo, M.; Bussetti, G.; Duò, L.; Pedeferri, M.; Diamanti, M.V. Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces 2024, 7, 938-950. https://doi.org/10.3390/surfaces7040061
Shinnur MV, Menegazzo M, Bussetti G, Duò L, Pedeferri M, Diamanti MV. Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces. 2024; 7(4):938-950. https://doi.org/10.3390/surfaces7040061
Chicago/Turabian StyleShinnur, Manjunath Veeranna, Marco Menegazzo, Gianlorenzo Bussetti, Lamberto Duò, MariaPia Pedeferri, and Maria Vittoria Diamanti. 2024. "Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy" Surfaces 7, no. 4: 938-950. https://doi.org/10.3390/surfaces7040061
APA StyleShinnur, M. V., Menegazzo, M., Bussetti, G., Duò, L., Pedeferri, M., & Diamanti, M. V. (2024). Studying the Photoactivity of Ag-Decorated TiO2 Nanotubes with Combined AFM and Raman Spectroscopy. Surfaces, 7(4), 938-950. https://doi.org/10.3390/surfaces7040061