Highly Reproducible Automated Tip Coater for In Situ and Operando EC-STM Measurements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Electrochemical Etching of W Tips
2.2. System Design and Architecture of the ATC
2.3. Tip Coating Process
2.4. Cyclic Voltammetry of Coated Tips
2.5. EC-STM Measurements
3. Results and Discussion
3.1. Visual Assessment of Tip Coating Quality
3.2. Electrochemical Testing of Coated Tips
3.3. In Situ and Operando EC-STM Performance
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nowicki, M.; Wandelt, K. Electrochemical Scanning Tunneling Microscopy. In Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier: Amsterdam, The Netherlands, 2018; pp. 108–128. ISBN 9780128098943. [Google Scholar]
- Gentz, K.; Wandelt, K. Electrochemical Scanning Tunneling Microscopy. In Fundamentals of Picoscience; Sattler, K., Ed.; Taylor & Francis: Abingdon, UK, 2013; p. 269. ISBN 9781466505094. [Google Scholar]
- Yagati, A.K.; Min, J.; Choi, J.-W. Electrochemical Scanning Tunneling Microscopy (ECSTM)—From Theory to Future Applications. In Modern Electrochemical Methods in Nano, Surface and Corrosion Science; InTech: London, UK, 2014; ISBN 9789535157595. [Google Scholar]
- Facchin, A.; Kosmala, T.; Gennaro, A.; Durante, C. Electrochemical Scanning Tunneling Microscopy Investigations of FeN 4—Based Macrocyclic Molecules Adsorbed on Au(111) and Their Implications in the Oxygen Reduction Reaction. ChemElectroChem 2020, 7, 1431–1437. [Google Scholar] [CrossRef]
- Kosmala, T.; Calvillo, L.; Agnoli, S.; Granozzi, G. Enhancing the Oxygen Electroreduction Activity through Electron Tunnelling: CoOx Ultrathin Films on Pd(100). ACS Catal. 2018, 8, 2343–2352. [Google Scholar] [CrossRef]
- Kosmala, T.; Bibent, N.; Sougrati, M.T.; Dražić, G.; Agnoli, S.; Jaouen, F.; Granozzi, G. Stable, Active, and Methanol-Tolerant PGM-Free Surfaces in an Acidic Medium: Electron Tunneling at Play in Pt/FeNC Hybrid Catalysts for Direct Methanol Fuel Cell Cathodes. ACS Catal. 2020, 10, 7475–7485. [Google Scholar] [CrossRef]
- Ye, C.Q.; Hu, R.G.; Li, Y.; Lin, C.J.; Pan, J.S. Probing the Vertical Profiles of Potential in a Thin Layer of Solution Closed to Electrode Surface during Localized Corrosion of Stainless Steel. Corros. Sci. 2012, 61, 242–245. [Google Scholar] [CrossRef]
- Marcus, P. Surface Science Approach of Corrosion Phenomena. Electrochim. Acta 1998, 43, 109–118. [Google Scholar] [CrossRef]
- Zhu, L.; Hommet, F.; Salace, G.; Claude-Montigny, B.; Métrot, A. STM Observation of the Electro-Adsorption of Lithium Ions onto Graphite and of the Ensuing Solid Electrolyte Interphase Formation. Surf. Sci. 2002, 512, 84–96. [Google Scholar] [CrossRef]
- Wang, L.; Deng, X.; Dai, P.X.; Guo, Y.G.; Wang, D.; Wan, L.J. Initial Solid Electrolyte Interphase Formation Process of Graphite Anode in LiPF 6 Electrolyte: An in Situ ECSTM Investigation. Phys. Chem. Chem. Phys. 2012, 14, 7330–7336. [Google Scholar] [CrossRef]
- Kolb, D.M.; Ullmann, R.; Will, T. Nanofabrication of Small Copper Clusters on Gold(111) Electrodes by a Scanning Tunneling Microscope. Science 1997, 275, 1097–1099. [Google Scholar] [CrossRef]
- Alessandrini, A.; Facci, P. Electron Transfer in Nanobiodevices. Eur. Polym. J. 2016, 83, 450–466. [Google Scholar] [CrossRef]
- Kosmala, T.; Agnoli, S.; Granozzi, G. Watching Atoms at Work during Reactions. Pure Appl. Chem. 2024, 96, 457–463. [Google Scholar] [CrossRef]
- Feng, H.; Xu, X.; Du, Y.; Dou, S.X. Application of Scanning Tunneling Microscopy in Electrocatalysis and Electrochemistry. Electrochem. Energy Rev. 2021, 4, 249–268. [Google Scholar] [CrossRef]
- Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando Visualization of the Hydrogen Evolution Reaction with Atomic-Scale Precision at Different Metal–Graphene Interfaces. Nat. Catal. 2021, 4, 850–859. [Google Scholar] [CrossRef]
- Lunardon, M.; Kosmala, T.; Ghorbani-Asl, M.; Krasheninnikov, A.V.; Kolekar, S.; Durante, C.; Batzill, M.; Agnoli, S.; Granozzi, G. Catalytic Activity of Defect-Engineered Transition Me Tal Dichalcogenides Mapped with Atomic-Scale Precision by Electrochemical Scanning Tunneling Microscopy. ACS Energy Lett. 2023, 8, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Lunardon, M.; Kosmala, T.; Durante, C.; Agnoli, S.; Granozzi, G. Atom-by-Atom Identification of Catalytic Active Sites in Operando Conditions by Quantitative Noise Detection. Joule 2022, 6, 617–635. [Google Scholar] [CrossRef]
- Liang, Y.; Csoklich, C.; McLaughlin, D.; Schneider, O.; Bandarenka, A.S. Revealing Active Sites for Hydrogen Evolution at Pt and Pd Atomic Layers on Au Surfaces. ACS Appl. Mater. Interfaces 2019, 11, 12476–12480. [Google Scholar] [CrossRef]
- Pfisterer, J.H.K.; Liang, Y.; Schneider, O.; Bandarenka, A.S. Direct Instrumental Identification of Catalytically Active Surface Sites. Nature 2017, 549, 74–77. [Google Scholar] [CrossRef]
- Mitterreiter, E.; Liang, Y.; Golibrzuch, M.; Mclaughlin, D.; Csoklich, C.; Bartl, J.D.; Holleitner, A.; Wurstbauer, U.; Bandarenka, A.S. In-Situ Visualization of Hydrogen Evolution Sites on Helium Ion Treated Molybdenum Dichalcogenides under Reaction Conditions. NPJ 2D Mater. Appl. 2019, 3, 25. [Google Scholar] [CrossRef]
- Haid, R.W.; Kluge, R.M.; Liang, Y.; Bandarenka, A.S. In Situ Quantification of the Local Electrocatalytic Activity via Electrochemical Scanning Tunneling Microscopy. Small Methods 2021, 5, 2000710. [Google Scholar] [CrossRef]
- Schmidt, T.O.; Haid, R.W.; Gubanova, E.L.; Kluge, R.M.; Bandarenka, A.S. Electrochemical Scanning Tunneling Microscopy as a Tool for the Detection of Active Electrocatalytic Sites. Topics in Catalysis 2023, 66, 1270–1279. [Google Scholar] [CrossRef]
- Liang, Y.; McLaughlin, D.; Csoklich, C.; Schneider, O.; Bandarenka, A.S. The Nature of Active Centers Catalyzing Oxygen Electro-Reduction at Platinum Surfaces in Alkaline Media. Energy Environ. Sci. 2019, 12, 351–357. [Google Scholar] [CrossRef]
- Haid, R.W.; Kluge, R.M.; Schmidt, T.O.; Bandarenka, A.S. In-Situ Detection of Active Sites for Carbon-Based Bifunctional Oxygen Reduction and Evolution Catalysis. Electrochim. Acta 2021, 382, 138285. [Google Scholar] [CrossRef]
- Kluge, R.M.; Haid, R.W.; Bandarenka, A.S. Assessment of Active Areas for the Oxygen Evolution Reaction on an Amorphous Iridium Oxide Surface. J. Catal. 2021, 396, 14–22. [Google Scholar] [CrossRef]
- Kluge, R.M.; Haid, R.W.; Stephens, I.E.L.; Calle-Vallejo, F.; Bandarenka, A.S. Monitoring the Active Sites for the Hydrogen Evolution Reaction at Model Carbon Surfaces. Phys. Chem. Chem. Phys. 2021, 23, 10051–10058. [Google Scholar] [CrossRef]
- Bach, C.E.; Nichols, R.J.; Beckmann, W.; Meyer, H.; Schulte, A.; Besenhard, J.O.; Jannakoudakis, P.D. Effective Insulation of Scanning Tunneling Microscopy Tips for Electrochemical Studies Using an Electropainting Method. J. Electrochem. Soc. 1993, 140, 1281–1284. [Google Scholar] [CrossRef]
- Itaya, K.; Tomita, E. Scanning Tunneling Microscope for Electrochemistry—A New Concept for the in Situ Scanning Tunneling Microscope in Electrolyte Solutions. Surf. Sci. 1988, 201, L507–L512. [Google Scholar] [CrossRef]
- Heben, M.J.; Dovek, M.M.; Lewis, N.S.; Penner, R.M.; Quate, C.F. Preparation of STM Tips for In-situ Characterization of Electrode Surfaces. J. Microsc. 1988, 152, 651–661. [Google Scholar] [CrossRef]
- Penner, R.M.; Heben, M.J.; Lewis, N.S. Preparation and Electrochemical Characterization of Conical and Hemispherical Ultramicroelectrodes. Anal. Chem. 1989, 61, 1630–1636. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yokota, Y.; Takahashi, Y.; Takeya, J.; Kim, Y. Electrodeposited Gold Probe for Electrochemical Scanning Tunneling Microscopy. J. Phys. Chem. C 2023, 127, 13929–13935. [Google Scholar] [CrossRef]
- Schneir, J.; Hansma, P.K.; Elings, V.; Gurley, J.; Wickramasinghe, K.; Sonnenfeld, R. Creating and Observing Surface Features with A Scanning Tunneling Microscope. In Scanning Microscopy Technologies and Applications; SPIE: Bellingham, WA, USA, 1988; Volume 897, pp. 16–21. [Google Scholar]
- Abelev, E.; Sezin, N.; Ein-Eli, Y. An Alternative Isolation of Tungsten Tips for a Scanning Tunneling Microscope. Rev. Sci. Instrum. 2005, 76, 106105. [Google Scholar] [CrossRef]
- Zhu, L.; Claude-Montigny, B.; Gattrell, M. Insulating Method Using Cataphoretic Paint for Tungsten Tips for Electrochemical Scanning Tunnelling Microscopy (ECSTM). Appl. Surf. Sci. 2005, 252, 1833–1845. [Google Scholar] [CrossRef]
- Salerno, M. Coating of Tips for Electrochemical Scanning Tunneling Microscopy by Means of Silicon, Magnesium, and Tungsten Oxides. Rev. Sci. Instrum. 2010, 81, 093703. [Google Scholar] [CrossRef] [PubMed]
- Hacker, B.; Hillebrand, A.; Hartmann, T.; Guckenberger, R. Preparation and Characterization of Tips for Scanning Tunneling Microscopy of Biological Specimens. Ultramicroscopy 1992, 42–44, 1514–1518. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, E. Fabrication of STM Tips with Controlled Geometry by Electrochemical Etching and ECSTM Tips Coated with Paraffin. Electrochim. Acta 1994, 39, 103–106. [Google Scholar] [CrossRef]
- Green, M.P.; Hanson, K.J.; Scherson, D.A.; Xing, X.; Richter, M.; Ross, P.N.; Carr, R.; Lindau, I. In Situ Scanning Tunneling Microscopy Studies of the Underpotential Deposition of Lead on Gold (111). J. Phys. Chem. 1989, 93, 2181–2184. [Google Scholar] [CrossRef]
- Vitus, C.M.; Chang, S.C.; Schardt, B.C.; Weaver, M.J. In Situ Scanning Tunneling Microscopy as a Probe of Adsorbate-Induced Reconstruction at Ordered Monocrystalline Electrodes: Carbon Monoxide on Platinum(100). J. Phys. Chem. 1991, 95, 7559–7563. [Google Scholar] [CrossRef]
- Gewirth, A.A.; Craston, D.H.; Bard, A.J. Fabrication and Characterization of Microtips for in Situ Scanning Tunneling Microscopy. J. Electroanal. Chem. Interfacial Electrochem. 1989, 261, 477–482. [Google Scholar] [CrossRef]
- Chen, Z.F.; Wang, E. Fabrication and Characterization of Tips for Electrochemical Scanning Tunneling Microscopy. Electroanalysis 1994, 6, 672–676. [Google Scholar] [CrossRef]
- Breuer, N.; Stimming, U.; Vogel, R. An Investigation of the Temporal Dynamics of Metal Cluster on Electrode Surfaces. Surf. Coat. Technol. 1994, 67, 145–149. [Google Scholar] [CrossRef]
- Silva, E.L.; Neto, M.A.; Fernandes, A.J.S.; Bastos, A.C.; Silva, R.F.; Zheludkevich, M.L.; Oliveira, F.J. Fast Coating of Ultramicroelectrodes with Boron-Doped Nanocrystalline Diamond. Diam. Relat. Mater. 2010, 19, 1330–1335. [Google Scholar] [CrossRef]
- Wang, E. Electrochemical Scanning Tunneling Microscopy. Anal. Sci. 1994, 10, 155–156. [Google Scholar] [CrossRef]
- Phan, T.H.; Kosmala, T.; Wandelt, K. Potential Dependence of Self-Assembled Porphyrin Layers on a Cu(111) Electrode Surface: In-Situ STM Study. Surf. Sci. 2015, 631, 207–212. [Google Scholar] [CrossRef]
- Phan, T.; Wandelt, K. Molecular Self-Assembly at Metal-Electrolyte Interfaces. Int. J. Mol. Sci. 2013, 14, 4498–4524. [Google Scholar] [CrossRef] [PubMed]
- Wiechers, J.; Twomey, T.; Kolb, D.M.; Behm, R.J. An In-Situ Scanning Tunneling Microscopy Study of Au (111) with Atomic Scale Resolution. J. Electroanal. Chem. Interfacial Electrochem. 1988, 248, 451–460. [Google Scholar] [CrossRef]
- Nagahara, L.A.; Thundat, T.; Lindsay, S.M. Preparation and Characterization of STM Tips for Electrochemical Studies. Rev. Sci. Instrum. 1989, 60, 3128–3130. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Yokota, Y.; Wong, R.A.; Hong, M.; Takeya, J.; Osawa, S.; Ishiwari, F.; Shoji, Y.; Harimoto, T.; Sugimoto, K.; et al. Single-Molecule Observation of Redox Reactions Enabled by Rigid and Isolated Tripodal Molecules. J. Phys. Chem. C 2023, 127, 746–758. [Google Scholar] [CrossRef]
- Kazinczi, R.; Szõcs, E.; Kálmán, E.; Nagy, P. Novel Methods for Preparing EC STM Tips. Appl. Phys. A Mater. Sci. Process. 1998, 66, S535–S538. [Google Scholar] [CrossRef]
- Hugelmann, P.; Schindler, W. In-Situ Voltage Tunneling Spectroscopy at Electrochemical Interfaces. J. Phys. Chem. B 2005, 109, 6262–6267. [Google Scholar] [CrossRef]
- Holland, I.; Davies, J.A. Automation in the Life Science Research Laboratory. Front. Bioeng. Biotechnol. 2020, 8, 571777. [Google Scholar] [CrossRef] [PubMed]
- Kosmala, T.; Wasielewski, R.; Nowicki, M.; Wandelt, K. Unveiling the Interplay between a Au(100) Electrode, Adsorbed TTMAPP Porphyrin Cations, and Iodide Anions: An EC-STM and CV Study. J. Phys. Chem. C 2024, 128, 1773–1789. [Google Scholar] [CrossRef]
- Madry, B.; Morawski, I.; Kosmala, T.; Wandelt, K.; Nowicki, M. Porphyrin Layers at Cu/Au(111)–Electrolyte Interfaces: In Situ EC-STM Study. Top. Catal. 2018, 61, 1335–1349. [Google Scholar] [CrossRef]
- Matsubara, Y. A Small yet Complete Framework for a Potentiostat, Galvanostat, and Electrochemical Impedance Spectrometer. J. Chem. Educ. 2021, 98, 3362–3370. [Google Scholar] [CrossRef]
- Wilms, M.; Kruft, M.; Bermes, G.; Wandelt, K. A New and Sophisticated Electrochemical Scanning Tunneling Microscope Design for the Investigation of Potentiodynamic Processes. Rev. Sci. Instrum. 1999, 70, 3641. [Google Scholar] [CrossRef]
- Bussetti, G.; Yivlialin, R.; Alliata, D.; Li Bassi, A.; Castiglioni, C.; Tommasini, M.; Casari, C.S.; Passoni, M.; Biagioni, P.; Ciccacci, F.; et al. Disclosing the Early Stages of Electrochemical Anion Intercalation in Graphite by a Combined Atomic Force Microscopy/Scanning Tunneling Microscopy Approach. J. Phys. Chem. C 2016, 120, 6088–6093. [Google Scholar] [CrossRef]
- Schnyder, B.; Alliata, D.; Kötz, R.; Siegenthaler, H. Electrochemical Intercalation of Perchlorate Ions in HOPG: An SFM/LFM and XPS Study. Appl. Surf. Sci. 2001, 173, 221–232. [Google Scholar] [CrossRef]
- Yivlialin, R.; Bussetti, G.; Brambilla, L.; Castiglioni, C.; Tommasini, M.; Duò, L.; Passoni, M.; Ghidelli, M.; Casari, C.S.; Li Bassi, A. Microscopic Analysis of the Different Perchlorate Anions Intercalation Stages of Graphite. J. Phys. Chem. C 2017, 121, 14246–14253. [Google Scholar] [CrossRef]
- Xu, R.; Yin, L.-J.; Qiao, J.-B.; Bai, K.-K.; Nie, J.-C.; He, L. Direct Probing of the Stacking Order and Electronic Spectrum of Rhombohedral Trilayer Graphene with Scanning Tunneling Microscopy. Phys. Rev. B 2015, 91, 035410. [Google Scholar] [CrossRef]
- Tománek, D.; Louie, S.G.; Mamin, H.J.; Abraham, D.W.; Thomson, R.E.; Ganz, E.; Clarke, J. Theory and Observation of Highly Asymmetric Atomic Structure in Scanning-Tunneling-Microscopy Images of Graphite. Phys. Rev. B 1987, 35, 7790–7793. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurczak, R.; Wira, P.; Futyma, A.; Wasielewski, R.; Kosmala, T. Highly Reproducible Automated Tip Coater for In Situ and Operando EC-STM Measurements. Surfaces 2024, 7, 990-1002. https://doi.org/10.3390/surfaces7040065
Kurczak R, Wira P, Futyma A, Wasielewski R, Kosmala T. Highly Reproducible Automated Tip Coater for In Situ and Operando EC-STM Measurements. Surfaces. 2024; 7(4):990-1002. https://doi.org/10.3390/surfaces7040065
Chicago/Turabian StyleKurczak, Robert, Paulina Wira, Anna Futyma, Radosław Wasielewski, and Tomasz Kosmala. 2024. "Highly Reproducible Automated Tip Coater for In Situ and Operando EC-STM Measurements" Surfaces 7, no. 4: 990-1002. https://doi.org/10.3390/surfaces7040065
APA StyleKurczak, R., Wira, P., Futyma, A., Wasielewski, R., & Kosmala, T. (2024). Highly Reproducible Automated Tip Coater for In Situ and Operando EC-STM Measurements. Surfaces, 7(4), 990-1002. https://doi.org/10.3390/surfaces7040065