Food Desires, Negative Emotions and Behaviour Change Techniques: A Computational Analysis
Abstract
:1. Introduction
2. The Interplay and Regulation of Emotions and Desires
3. Behaviour Change Interventions
4. Networking-Oriented Modelling Technique
- Each connection carries some weight ωX,Y. from state X to state Y called casual impact;
- Multiple incoming causal impacts ωX,YX(t) to state Y from some states X are aggregated using combination function cY(..);
- There exists a notion of speed of change of each state to define how fast a state changes because of the incoming impact (speed factor ηY).
5. Computational Model
6. Simulation Results
7. Discussion
Author Contributions
Funding
Conflicts of Interest
Appendix A
mbConnectivity: Base Connectivity | 1 | 2 | 3 | 4 | 5 | mcwConnectivity:Connection Weights | 1 | 2 | 3 | 4 | 5 | |||
X1 | wss | X1 | X43 | X1 | wss | 1 | −0.1 | |||||||
X2 | sss | X1 | X2 | sss | 1 | |||||||||
X3 | srss | X2 | X3 | srss | 1 | |||||||||
X4 | dss | X3 | X12 | X13 | X4 | dss | 0.5 | 0.3 | −0.7 | |||||
X5 | psa | X4 | X9 | X16 | X5 | psa | 0.3 | −0.8 | 0.4 | |||||
X6 | esa | X5 | X6 | esa | 1 | |||||||||
X7 | ssb− | X11 | X7 | ssb− | 1 | |||||||||
X8 | srsb− | X7 | X10 | X8 | srsb− | 0.5 | 0.5 | |||||||
X9 | fsb− | X8 | X9 | fsb− | 1 | |||||||||
X10 | psb− | X9 | X12 | X13 | X39 | X10 | psb− | 0.8 | −0.3 | 0.8 | −0.4 | |||
X11 | esb− | X10 | X11 | esb− | 1 | |||||||||
X12 | bs+ | X3 | X13 | X28 | X12 | bs+ | 0.7 | −0.4 | 0.3 | |||||
X13 | bs_ | X3 | X12 | X47 | X13 | bs_ | 0.4 | −0.4 | 0.3 | |||||
X14 | ssb+ | X18 | X14 | ssb+ | 1 | |||||||||
X15 | srsb+ | X14 | X17 | X15 | srsb+ | 0.4 | 0.4 | |||||||
X16 | fsb+ | X15 | X16 | fsb+ | 0.9 | |||||||||
X17 | psb+ | X12 | X13 | X16 | X31 | X39 | X17 | psb+ | 0.6 | −0.8 | 0.5 | −0.8 | 0.15 | |
X18 | esb+ | X17 | X18 | esb+ | 1 | |||||||||
X19 | wsg.o | X19 | X19 | wsg.o | 1 | |||||||||
X20 | ssg.o | X19 | X20 | ssg.o | 1 | |||||||||
X21 | srsg.o | X20 | X21 | srsg.o | 1 | |||||||||
X22 | psg.o | X21 | X22 | psg.o | 0.8 | |||||||||
X23 | ssg.b | X27 | X23 | ssg.b | 1 | |||||||||
X24 | srsg.b | X23 | X26 | X24 | srsg.b | 0.5 | 0.6 | |||||||
X25 | fsg.b | X24 | X25 | fsg.b | 0.8 | |||||||||
X26 | psg.b | X22 | X25 | X26 | psg.b | 0.8 | 0.6 | |||||||
X27 | esg.b | X26 | X27 | esg.b | 0.8 | |||||||||
X28 | csreapp | X12 | X25 | X43 | X28 | csreapp | 0.4 | 0.4 | −1 | |||||
X29 | ssb.strs | X33 | X29 | ssb.strs | 0.8 | |||||||||
X30 | srsb.strs | X29 | X32 | X30 | srsb.strs | 0.6 | 0.5 | |||||||
X31 | fsb.strs | X30 | X31 | fsb.strs | 0.8 | |||||||||
X32 | psb.strs | X31 | X34 | X32 | psb.strs | 0.6 | 0.6 | |||||||
X33 | esb.strs | X32 | X33 | esb.strs | 0.8 | |||||||||
X34 | bsstrs.− | X6 | X46 | X34 | bsstrs.− | 0.9 | −0.4 | |||||||
X35 | bsanx.− | X36 | X42 | X35 | bsanx.− | 0.7 | −0.5 | |||||||
X36 | wsanx | X36 | X44 | X36 | wsanx | 1 | 0.1 | |||||||
X37 | ssb.anx | X41 | X37 | ssb.anx | 1 | |||||||||
X38 | srsb.anx | X37 | X40 | X38 | srsb.anx | 0.5 | 0.48 | |||||||
X39 | fsb.anx | X38 | X39 | fsb.anx | 1 | |||||||||
X40 | psb.anx | X6 | X35 | X39 | X40 | psb.anx | −.6 | 0.6 | 0.5 | |||||
X41 | esb.anx | X40 | X41 | esb.anx | 1 | |||||||||
X42 | csreapp | X25 | X35 | X39 | X44 | X45 | X42 | csreapp | 0.1 | 0.2 | 0.2 | −1 | 0.1 | |
X43 | csd-s.m | X16 | X25 | X45 | X43 | csd-s.m | 1 | 0.1 | 0.3 | |||||
X44 | cse-p.solv | X25 | X39 | X45 | X44 | cse-p.solv | 1 | 1 | 0.3 | |||||
X45 | Iar.n.e | X45 | X45 | Iar.n.e | 1 | |||||||||
X46 | Ibstrs.mgt | X46 | X46 | Ibstrs.mgt | 1 | |||||||||
X47 | Icinf.beh | X47 | X47 | Icinf.beh | 1 |
Appendix B
mcfw Aggregation: Combination Function Weights | 2 Alogistic | 21 id | 3 ssum | mcfp Aggregation: Combination Function Parameters | 2 | 21 | 30 | ms Timing: Speed Factor | η | ||||||
σ | τ | id | λ | ||||||||||||
X1 | wss | 1 | X1 | wss | 0.94 | X1 | wss | 0.05 | |||||||
X2 | sss | 1 | X2 | sss | 1 | X2 | sss | 1 | |||||||
X3 | srss | 1 | X3 | srss | 1 | X3 | srss | 1 | |||||||
X4 | dss | 1 | X4 | dss | 8 | 0.3 | X4 | dss | 0.5 | ||||||
X5 | psa | 1 | X5 | psa | 8 | 0.6 | X5 | psa | 0.2 | ||||||
X6 | esa | 1 | X6 | esa | 1 | X6 | esa | 1 | |||||||
X7 | ssb− | 1 | X7 | ssb− | 1 | X7 | ssb− | 0.5 | |||||||
X8 | srsb− | 1 | X8 | srsb− | 5 | 0.4 | X8 | srsb− | 0.5 | ||||||
X9 | fsb− | 1 | X9 | fsb− | 1 | X9 | fsb− | 0.5 | |||||||
X10 | psb− | 1 | X10 | psb− | 5 | 0.4 | X10 | psb− | 0.5 | ||||||
X11 | esb− | 1 | X11 | esb− | 1 | X11 | esb− | 0.5 | |||||||
X12 | bs+ | 1 | X12 | bs+ | 8 | 0.2 | X12 | bs+ | 0.5 | ||||||
X13 | bs_ | 1 | X13 | bs_ | 8 | 0.5 | X13 | bs_ | 0.2 | ||||||
X14 | ssb+ | 1 | X14 | ssb+ | 1 | X14 | ssb+ | 0.5 | |||||||
X15 | srsb+ | 1 | X15 | srsb+ | 8 | 0.3 | X15 | srsb+ | 0.5 | ||||||
X16 | fsb+ | 1 | X16 | fsb+ | 1 | X16 | fsb+ | 0.5 | |||||||
X17 | psb+ | 1 | X17 | psb+ | 8 | 0.3 | X17 | psb+ | 0.5 | ||||||
X18 | esb+ | 1 | X18 | esb+ | 1 | X18 | esb+ | 0.5 | |||||||
X19 | wsg.o | 1 | X19 | wsg.o | 1 | X19 | wsg.o | 1 | |||||||
X20 | ssg.o | 1 | X20 | ssg.o | 1 | X20 | ssg.o | 1 | |||||||
X21 | srsg.o | 1 | X21 | srsg.o | 1 | X21 | srsg.o | 1 | |||||||
X22 | psg.o | 1 | X22 | psg.o | 1 | X22 | psg.o | 1 | |||||||
X23 | ssg.b | 1 | X23 | ssg.b | 1 | X23 | ssg.b | 1 | |||||||
X24 | srsg.b | 1 | X24 | srsg.b | 8 | 0.1 | X24 | srsg.b | 1 | ||||||
X25 | fsg.b | 1 | X25 | fsg.b | 1 | X25 | fsg.b | 1 | |||||||
X26 | psg.b | 1 | X26 | psg.b | 8 | 0.1 | X26 | psg.b | 1 | ||||||
X27 | esg.b | 1 | X27 | esg.b | 1 | X27 | esg.b | 1 | |||||||
X28 | csreapp | 1 | X28 | csreapp | 8 | 0.5 | X28 | csreapp | 0.1 | ||||||
X29 | ssb.strs | 1 | X29 | ssb.strs | 1 | X29 | ssb.strs | 1 | |||||||
X30 | srsb.strs | 1 | X30 | srsb.strs | 7 | 0.4 | X30 | srsb.strs | 1 | ||||||
X31 | fsb.strs | 1 | X31 | fsb.strs | 1 | X31 | fsb.strs | 1 | |||||||
X32 | psb.strs | 1 | X32 | psb.strs | 7 | 0.4 | X32 | psb.strs | 1 | ||||||
X33 | esb.strs | 1 | X33 | esb.strs | 1 | X33 | esb.strs | 1 | |||||||
X34 | bsstrs.− | 1 | X34 | bsstrs.− | 7 | 0.4 | X34 | bsstrs.− | 1 | ||||||
X35 | bsanx.− | 1 | X35 | bsanx.− | 8 | 0.3 | X35 | bsanx.− | 0.3 | ||||||
X36 | wsanx | 1 | X36 | wsanx | 0.94 | X36 | wsanx | 0.05 | |||||||
X37 | ssb.anx | 1 | X37 | ssb.anx | 1 | X37 | ssb.anx | 0.5 | |||||||
X38 | srsb.anx | 1 | X38 | srsb.anx | 8 | 0.4 | X38 | srsb.anx | 0.5 | ||||||
X39 | fsb.anx | 1 | X39 | fsb.anx | 1 | X39 | fsb.anx | 0.5 | |||||||
X40 | psb.anx | 1 | X40 | psb.anx | 8 | 0.4 | X40 | psb.anx | 0.5 | ||||||
X41 | esb.anx | 1 | X41 | esb.anx | 1 | X41 | esb.anx | 0.5 | |||||||
X42 | csreapp | 1 | X42 | csreapp | 8 | 0.4 | X42 | csreapp | 0.1 | ||||||
X43 | csd-s.m | 1 | X43 | csd-s.m | 10 | 1.3 | X43 | csd-s.m | 0.2 | ||||||
X44 | cse-p.solv | 1 | X44 | cse-p.solv | 10 | 1.3 | X44 | cse-p.solv | 0.2 | ||||||
X45 | Iar.n.e | 1 | X45 | Iar.n.e | 1 | X45 | Iar.n.e | 0 | |||||||
X46 | Ibstrs.mgt | 1 | X46 | Ibstrs.mgt | 1 | X46 | Ibstrs.mgt | 0 | |||||||
X47 | Icinf.beh | 1 | X47 | Icinf.beh | 1 | X47 | Icinf.beh | 0 |
References
- Michie, S.; Wood, C.E.; Johnston, M.; Abraham, C.; Francis, J.J.; Hardeman, W. Behaviour Change Techniques: The Development and Evaluation of a Taxonomic Method for Reporting and Describing Behaviour Change Interventions (a Suite of Five Studies Involving Consensus Methods, Randomised Controlled Trials and Analysis of Qualitative Da. Health Technol. Assess. 2015, 19, 1–188. [Google Scholar] [CrossRef] [Green Version]
- Michie, S.; Richardson, M.; Johnston, M.; Abraham, C.; Francis, J.; Hardeman, W.; Eccles, M.P.; Cane, J.; Wood, C.E. The Behavior Change Technique Taxonomy (v1) of 93 Hierarchically Clustered Techniques: Building an International Consensus for the Reporting of Behavior Change Interventions. Ann. Behav. Med. 2013, 46, 81–95. [Google Scholar] [CrossRef]
- Michie, S.; Abraham, C.; Whittington, C.; McAteer, J.; Gupta, S. Effective Techniques in Healthy Eating and Physical Activity Interventions: A Meta-Regression. Health Psychol. 2009, 28, 690–701. [Google Scholar] [CrossRef] [Green Version]
- Michie, S.; Ashford, S.; Sniehotta, F.F.; Dombrowski, S.U.; Bishop, A.; French, D.P. A Refined Taxonomy of Behaviour Change Techniques to Help People Change Their Physical Activity and Healthy Eating Behaviours: The CALO-RE Taxonomy. Psychol. Health 2011, 26, 1479–1498. [Google Scholar] [CrossRef] [PubMed]
- Gross, J.J. The Emerging Field of Emotion Regulation: An Integrative Review. Rev. Gen. Psychol. 1998, 2, 271–299. [Google Scholar] [CrossRef]
- Evers, C.; Dingemans, A.; Junghans, A.F.; Boevé, A. Feeling Bad or Feeling Good, Does Emotion Affect Your Consumption of Food? A Meta-Analysis of the Experimental Evidence. Neurosci. Biobehav. Rev. 2018, 92, 195–208. [Google Scholar] [CrossRef]
- Schuster, M.J. Consumers’ Feelings of Guilt as a Function of Snack Type. EC Nutr. 2017, 6, 291–297. [Google Scholar]
- De Ridder, D.; Evers, C. Affective Determinants of Health Behavior; Williams, D.M., Rhodes, R.E., Conner, M.T., Eds.; Oxford University Press: Oxford, UK, 2018; Volume 1. [Google Scholar] [CrossRef]
- Ekman, P. An Argument for Basic Emotions. Cogn. Emot. 1992, 6, 169–200. [Google Scholar] [CrossRef]
- Macht, M.; Dettmer, D. Everyday Mood and Emotions after Eating a Chocolate Bar or an Apple. Appetite 2006, 46, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Yeomans, M.R.; Coughlan, E. Mood-Induced Eating. Interactive Effects of Restraint and Tendency to Overeat. Appetite 2009, 52, 290–298. [Google Scholar] [CrossRef]
- Aldao, A.; Sheppes, G.; Gross, J.J. Emotion Regulation Flexibility. Cognit. Ther. Res. 2015, 39, 263–278. [Google Scholar] [CrossRef]
- Suri, G.; Sheppes, G.; Young, G.; Abraham, D.; McRae, K.; Gross, J.J. Emotion Regulation Choice: The Role of Environmental Affordances. Cogn. Emot. 2018, 32, 963–971. [Google Scholar] [CrossRef]
- Gross, J.J. Handbook of Emotion Regulation; Guilford Publications: New York, NY, USA, 2013. [Google Scholar]
- Boon, B.; Stroebe, W.; Schut, H.; Jansen, A. Food for Thought: Cognitive Regulation of Food Intake. Br. J. Health Psychol. 1998, 3, 27–40. [Google Scholar] [CrossRef]
- Ullah, N.; Treur, J. The Choice Between Bad and Worse: A Cognitive Agent Model for Desire Regulation Under Stress. In Principles and Practice of Multi-Agent Systems. PRIMA 2019; Lecture Notes in Computer Science; Baldoni, M., Dastani, M., Liao, B., Sakurai, Y., Zalila Wenkstern, R., Eds.; Springer International Publishing: Cham, Switzerland, 2019; Volume 11873, pp. 496–504. [Google Scholar] [CrossRef]
- Ullah, N.; Treur, J.; Koole, S.L. A Computational Model for Flexibility in Emotion Regulation. In Proceedings of the 9th Annual International Conference on Biologically Inspired Cognitive Architectures, BICA 2018, Prague, Czech Republic, 22–24 August 2018; Samsonovich, A.V., Lebiere, C.J., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 145, pp. 572–580. [Google Scholar] [CrossRef]
- Ullah, N.; Koole, S.L.; Treur, J. Take It or Leave It: A Computational Model for Flexibility in Decision-Making in Downregulating Negative Emotions. In Proceedings of the International Conferenec on Intelligent Computing, ICIC’20, Bari, Italy, 2–5 October 2020; De-Shuang, H., Kang-Hyun, J., Eds.; Springer Notes in Computer Science. Springer Nature: Cham, Switzerland, 2020; p. 12. [Google Scholar]
- Silvers, J.A.; Weber, J.; Wager, T.D.; Ochsner, K.N. Bad and Worse: Neural Systems Underlying Reappraisal of High- and Low-Intensity Negative Emotions. Soc. Cogn. Affect. Neurosci. 2015, 10, 172–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Bockstaele, B.; Atticciati, L.; Hiekkaranta, A.P.; Larsen, H.; Verschuere, B. Choose Change: Situation Modification, Distraction, and Reappraisal in Mild versus Intense Negative Situations. Motiv. Emot. 2020, 44, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Billings, A.G.; Moos, R.H. The Role of Coping Responses and Social Resources in Attenuating the Stress of Life Events. J. Behav. Med. 1981, 4, 139–157. [Google Scholar] [CrossRef] [PubMed]
- Davis, R.; Campbell, R.; Hildon, Z.; Hobbs, L.; Michie, S. Theories of Behaviour and Behaviour Change across the Social and Behavioural Sciences: A Scoping Review. Health Psychol. Rev. 2015, 9, 323–344. [Google Scholar] [CrossRef] [PubMed]
- Michie, S.; Johnston, M. Behavior Change Techniques. In Encyclopedia of Behavioral Medicine; Gellman, M.D., Turner, J.R., Eds.; Springer: New York, NY, USA, 2013; pp. 182–187. [Google Scholar] [CrossRef]
- Michie, S.; Johnston, M. Theories and Techniques of Behaviour Change: Developing a Cumulative Science of Behaviour Change. Health Psychol. Rev. 2012, 6, 1–6. [Google Scholar] [CrossRef]
- Michie, S.; Hyder, N.; Walia, A.; West, R. Development of a Taxonomy of Behaviour Change Techniques Used in Individual Behavioural Support for Smoking Cessation. Addict. Behav. 2011, 36, 315–319. [Google Scholar] [CrossRef]
- Michie, S.; Whittington, C.; Hamoudi, Z.; Zarnani, F.; Tober, G.; West, R. Identification of Behaviour Change Techniques to Reduce Excessive Alcohol Consumption. Addiction 2012, 107, 1431–1440. [Google Scholar] [CrossRef]
- De Vasconcelos, S.; Toskin, I.; Cooper, B.; Chollier, M.; Stephenson, R.; Blondeel, K.; Troussier, T.; Kiarie, J. Behaviour Change Techniques in Brief Interventions to Prevent HIV, STI and Unintended Pregnancies: A Systematic Review. PLoS ONE 2018, 13, e0204088. [Google Scholar] [CrossRef] [PubMed]
- Treur, J. Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models; Studies in Systems Decision and Control; Kacprzyk, J., Ed.; Springer Nature Publishing: Cham, Switzerland, 2020; Volume 251. [Google Scholar] [CrossRef]
- Treur, J. Network-Oriented Modeling; Understanding Complex Systems; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef] [Green Version]
- Damasio, A.R. Emotion in the Perspective of an Integrated Nervous System1Published on the World Wide Web on 27 January 1998. Brain Res. Rev. 1998, 26, 83–86. [Google Scholar] [CrossRef]
- Heatherton, T.F.; Baumeister, R.F. Binge Eating as Escape from Self-Awareness. Psychol. Bull. 1991, 110, 86–108. [Google Scholar] [CrossRef] [PubMed]
- Ullah, N.; Treur, J. How Motivated Are You? A Mental Network Model for Dynamic Goal Driven Emotion Regulation. In Proceedings of the 19th International Conference on Artificial Intelligence and Soft Computing, ICAISC’20, Online Conference, 12–14 October 2020. [Google Scholar]
S. # | BCTs | Description |
---|---|---|
1. | Information about health consequences [5.1] | Provide information (e.g., written, verbal, visual) about the health consequences of performing the behaviour |
2. | Reduce negative emotions [11.2] | Advise on ways of reducing negative emotions to facilitate the performance of the behaviour |
3. | Stress management [11.2] | Advise on ways of reducing stress |
4. | Problem solving/coping planning [1.2] | Analyse, or prompt the person to analyse, factors influencing the behaviour and generate or select strategies that include overcoming barriers and/or increasing facilitators (includes ‘relapse prevention’ and ‘coping planning’) |
Goal setting (outcome) [1.3] | Set or agree on a goal defined in terms of a positive outcome of wanted behaviour | |
Goal setting (behaviour) [1.1] | Set or agree on a goal defined in terms of the behaviour to be achieved |
Concept | Conceptual Representation | Explanation |
---|---|---|
States and connections | X, Y, X→Y | Describes the nodes and links of a network structure (e.g., in graphical or matrix form) |
Connection weight | ωX,Y | The connection weight ωX,Y usually in [–1,1] represents the strength of the causal impact of state X on state Y through connection X→Y |
Aggregating multiple impacts on a state | cY(..) | For each state Y a combination function cY(..) is chosen to combine the causal impacts of other states on state Y |
Timing of the effect of causal impact | ηY | For each state Y a speed factor ηY ≥ 0 is used to represent how fast a state is changing upon causal impact |
Concept | Numerical Representation | Explanation |
State values over time t | Y(t) | At each time point t, each state Y in the model has a real number value, usually in [0,1] |
Single causal impact | impactX,Y(t) = ωX,Y X(t) | At t state X with a connection to state Y has an impact on Y, using connection weight ωX,Y |
Aggregating multiple causal impacts | aggimpactY(t) = cY(impactX1,Y(t),…, impactXk,Y(t)) = cY(ωX1,YX1(t), …, ωXk,YXk(t)) | The aggregated causal impact of multiple states Xi on Y at t, is determined using combination function cY(..) |
Timing of the causal effect | Y(t+Δt) = Y(t) + ηY [aggimpactY(t) − Y(t)] Δt = Y(t) + ηY [cY(ωX1,YX1(t), …, ωXk,YXk(t)) − Y(t)] Δt | The causal impact on Y is exerted over time gradually, using speed factor ηY; here the Xi are all states with outgoing connections to state Y |
Name | Description |
---|---|
ws(s, g.o, anx) | World state for stimulus ‘s’, goal setting (outcome) ‘g.o’, anxiety ‘anx’ |
ss(s, b−, b+, g.o, g.b, b.strs, b.anx) | Sensor state for stimulus ‘s’, negative body state ‘b−’, goal outcome ‘g.o’, goal behaviour ‘g.b’, body stress ‘b.strs’, body anxiety ‘b.anx’ |
srs(s, b−, b+, g.o, g.b, b.strs, b.anx) | Sensor representation state for stimulus ‘s’, negative body state ‘b−’, positive body state ‘b+’, goal outcome ‘g.o’, goal behaviour ‘g.b’, body stress ‘b.strs’, body anxiety ‘b.anx’ |
fs(b−, b+, g.b, b.strs, b.anx) | Feeling state for body state ‘b−’, goal behaviour ‘g.b’, stress ‘b.strs’, anxiety ‘b.anx’ |
ps(a, b−, b+, g.o, g.b, b.strs, b.anx) | Preparation state for action ‘a’, body state ‘b−’, body state ‘b+’, goal outcome ‘g.o’, goal behaviour ‘g.b’, body stress ‘b.strs’, body anxiety ‘b.anx’ |
es(a, b−, b+, g.o, g.b, b.strs, b.anx) | Execution state for action ‘a’, body state ‘b-’, body state ‘b+’, goal outcome ‘g.o’, goal behaviour ‘g.b’, body stress ‘b.strs’, body anxiety ‘b.anx’ |
dss | Desire state for stimulus ‘s’ |
bs(+, −, strs.−, anx.−) | Belief state for positive ‘+’, negative ‘−’, negative stress ‘strs.−’, and negative anxiety ‘anx.−’ beliefs |
cs(reapp, e.reapp, d-s.m, e-p.solv) | Control state for (desires) reappraisal ‘reapp’, (emotion) reappraisal ‘e.reapp’, (desire) situation modification ‘d-s.m’, (emotion) problem solving ‘e-p.solv’ |
Ia,b,c(r.n.e, strs.mgt, inf.beh) | Intervention ‘a’ for regulation of negative emotions ‘r.n.e’, ‘b’ for stress management ‘strs.mgt’, ‘c’ for information about health consequences ‘inf.beh’ |
S. # | Interventions | Stimulus | Behaviour | ||||
---|---|---|---|---|---|---|---|
wsg.o | Icinf.beh | Iar.n.e | Ibstrs.mgt | wss | wsanx | Strategies | |
1. | 1 | 0 | 0 | 0 | 0.5 | 0 | Reappraisal of food desire fails (lack of information) |
1 | Reappraise food desire | ||||||
2. | 1 | 1 | 0 | 0 | 1 | 0 | Reappraisal fails: eat food ←→ feel stressed |
1 | Efficiently manages stress after eating | ||||||
3. | 1 | 1 | 0 | 0 | 0.5 | 0.5 | Reappraise food desires only but also feel anxiety |
1 | Reappraises both food desire and anxiety | ||||||
4. | 1 | 1 | 1 | 0 | 1 | 1 | Reappraisal fails: eat food←→feel stressed |
1 | Reappraisal fails: eat food←→feel stressed. Hence, stress management and situation modification (food) and problem solving (emotions) leads to stable situation |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ullah, N.; Klein, M.; Treur, J. Food Desires, Negative Emotions and Behaviour Change Techniques: A Computational Analysis. Smart Cities 2021, 4, 938-951. https://doi.org/10.3390/smartcities4020048
Ullah N, Klein M, Treur J. Food Desires, Negative Emotions and Behaviour Change Techniques: A Computational Analysis. Smart Cities. 2021; 4(2):938-951. https://doi.org/10.3390/smartcities4020048
Chicago/Turabian StyleUllah, Nimat, Michel Klein, and Jan Treur. 2021. "Food Desires, Negative Emotions and Behaviour Change Techniques: A Computational Analysis" Smart Cities 4, no. 2: 938-951. https://doi.org/10.3390/smartcities4020048
APA StyleUllah, N., Klein, M., & Treur, J. (2021). Food Desires, Negative Emotions and Behaviour Change Techniques: A Computational Analysis. Smart Cities, 4(2), 938-951. https://doi.org/10.3390/smartcities4020048