Research Structure and Trends of Smart Urban Mobility
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Publication Trends
3.2. Most Influential Sources
3.3. Influential References
3.4. Most Influential Authors
3.5. Countries with the Most Contributions
3.6. Overall Thematic Focus
3.7. Thematic Evolution
3.7.1. The First Period (1968–2010)
3.7.2. The Second Period (2011–2015)
3.7.3. The Third Period (2016–2019)
3.7.4. The Fourth Period (2020–2021)
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Newman, P.; Beatley, T.; Boyer, H. Resilient Cities: Overcoming Fossil Fuel Dependence, 2nd ed.; Island Press: Washington, DC, USA, 2017. [Google Scholar]
- Jarah, S.H.A.; Zhou, B.; Abdullah, R.J.; Lu, Y.; Yu, W. Urbanization and Urban Sprawl Issues in City Structure: A Case of the Sulaymaniah Iraqi Kurdistan Region. Sustainability 2019, 11, 485. [Google Scholar] [CrossRef] [Green Version]
- Duany, A.; Plater-Zyberk, E.; Speck, J. Suburban Nation: The Rise of Sprawl and the Decline of the American; Dream North Point: New York, NY, USA, 2000. [Google Scholar]
- Melosi, M.V. The Automobile Shapes the City. Available online: http://www.autolife.umd.umich.edu/Environment/E_Casestudy/E_casestudy5.htm (accessed on 4 December 2020).
- Moss, D. The True Cost of Congestion. Available online: https://internationalfleetworld.com/the-true-cost-of-congestion/ (accessed on 10 December 2021).
- International Monetary Fund. Projected GDP Ranking. Available online: https://statisticstimes.com/economy/projected-world-gdp-ranking.php (accessed on 10 December 2021).
- UN Environment Programme. Transport. Available online: https://www.unep.org/explore-topics/energy/what-we-do/transport (accessed on 10 December 2021).
- Anderson, E. Electric Vehicle Market Size 2021-2026: Share, Trends, Industry Analysis, Top Companies, and Outlook. Available online: https://www.einnews.com/pr_news/549338817/electric-vehicle-market-size-2021-2026-share-trends-industry-analysis-top-companies-and-outlook (accessed on 4 September 2021).
- Kopestinsky, A. Electric Car Statisticsin the US and Abroad. Available online: https://policyadvice.net/insurance/insights/electric-car-statistics/#:~:text=Well%2C%20the%20latest%20figures%20show,3.4%20million%20to%205.6%20million (accessed on 10 December 2021).
- Kaneda, T.; Greenbaum, C.; Kline, K. 2020 World Population Data Sheet; Population Reference Bureau (PRB): Washington, DC, USA, 2020; p. 22. [Google Scholar]
- Ningrum, T. Smart City: The main assist factor for smart cities. Int. J. Innov. Enterp. Syst. 2021, 5, 46–54. [Google Scholar] [CrossRef]
- Faria, R.; Brito, L.; Baras, K.; Silva, J. Smart mobility: A survey. In Proceedings of the 2017 International Conference on Internet of Things for the Global Community (IoTGC), Funchal, Portugal, 10–13 July 2017; pp. 1–8. [Google Scholar]
- Porru, S.; Misso, F.E.; Pani, F.E.; Repetto, C. Smart mobility and public transport: Opportunities and challenges in rural and urban areas. J. Traffic Transp. Eng. 2020, 7, 88–97. [Google Scholar] [CrossRef]
- Guislain, P.; Dasgupta, A. Who Needs Cars? Smart Mobility Can Make Cities Sustainable. Available online: https://blogs.worldbank.org/transport/who-needs-cars-smart-mobility-can-make-cities-sustainable (accessed on 10 December 2021).
- Leal Filho, W.; Will, M.; Shiel, C.; Paço, A.; Farinha, C.S.; Orlovic Lovren, V.; Avila, L.V.; Platje, J.; Sharifi, A.; Vasconcelos, C.R.P.; et al. Towards a common future: Revising the evolution of university-based sustainability research literature. Int. J. Sustain. Dev. World Ecol. 2021, 28, 503–517. [Google Scholar] [CrossRef]
- Leal Filho, W.; Sima, M.; Sharifi, A.; Luetz, J.M.; Salvia, A.L.; Mifsud, M.; Olooto, F.M.; Djekic, I.; Anholon, R.; Rampasso, I.; et al. Handling climate change education at universities: An overview. Environ. Sci. Eur. 2021, 33, 109. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. VOSviewer manual. Leiden Univeristeit Leiden 2022, 1, 1–53. [Google Scholar]
- Bureau of Transportation Statistics. World Motor Vehicle Production, Selected Countries. Available online: https://www.bts.gov/archive/publications/national_transportation_statistics/table_01_23 (accessed on 10 December 2021).
- Petit, S. World Vehicle Population Rose 4.6% in 2016. Available online: https://wardsintelligence.informa.com/WI058630/World-Vehicle-Population-Rose-46-in-2016 (accessed on 10 December 2021).
- World Meter. World Population by Year. Available online: https://www.worldometers.info/world-population/world-population-by-year/ (accessed on 10 December 2021).
- Carlier, M. Number of Vehicles in Use Worldwide 2006–2015. Available online: https://www.statista.com/statistics/281134/number-of-vehicles-in-use-worldwide/#:~:text=In%202015%2C%20around%20947%20million,vehicles%20were%20in%20operation%20worldwide (accessed on 10 December 2021).
- Gil-García, I.C.; García-Cascales, M.S.; Dagher, H.; Molina-García, A. Electric Vehicle and Renewable Energy Sources: Motor Fusion in the Energy Transition from a Multi-Indicator Perspective. Sustainability 2021, 13, 3430. [Google Scholar] [CrossRef]
- Allam, Z.; Moreno, C.; Chabaud, D.; Pratlong, F. Proximity-Based Planning and the “15-Minute City”: A Sustainable Model for the City of the Future. In The Palgrave Handbook of Global Sustainability; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–20. [Google Scholar] [CrossRef]
- Allam, Z.; Bibri, S.E.; Jones, D.S.; Chabaud, D.; Moreno, C. Unpacking the “15-Minute City” via 6G, IoT, and Digital Twins: Towards a New Narrative for Increasing Urban Efficiency, Resilience, and Sustainability. Sensors 2022, 22, 1369. [Google Scholar] [CrossRef]
- Allam, Z.; Nieuwenhuijsen, M.; Chabaud, D.; Moreno, C. The 15-minute city offers a new framework for sustainability, liveability, and health. Lancet Planet. Health 2022, 6, e181–e183. [Google Scholar] [CrossRef]
- Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [Google Scholar] [CrossRef] [Green Version]
- Caragliu, A.; Del Bo, C.; Nijkamp, P. Smart Cities in Europe. J. Urban Technol. 2011, 18, 65–82. [Google Scholar] [CrossRef]
- Albino, V.; Berardi, U.; Dangelico, R.M. Smart Cities: Definitions, Dimensions, Performance, and Initiatives. J. Urban Technol. 2015, 22, 3–21. [Google Scholar] [CrossRef]
- Rayle, L.; Dai, D.; Chan, N.; Cervero, R.; Shaheen, S. Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy 2016, 45, 168–178. [Google Scholar] [CrossRef] [Green Version]
- Fagnant, D.J.; Kockelman, K. Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transp. Res. Part A Policy Pract. 2015, 77, 167–181. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M. The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios. Transp. Res. Part C: Emerg. Technol. 2014, 40, 1–13. [Google Scholar] [CrossRef]
- Clewlow, R.R.; Mishra, G.S. Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States; Institute of Transportation Studies: Davis, CA, USA, 2017. [Google Scholar]
- Krueger, R.; Rashidi, T.H.; Rose, J.M. Preferences for shared autonomous vehicles. Transp. Res. Part C: Emerg. Technol. 2016, 69, 343–355. [Google Scholar] [CrossRef]
- Alonso-Mora, J.; Samaranayake, S.; Wallar, A.; Frazzoli, E.; Rus, D. On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment. Comput. Sci. 2017, 114, 462–467. [Google Scholar] [CrossRef] [Green Version]
- Agatz, N.; Erera, A.; Savelsbergh, M.; Wang, X. Optimization for dynamic ride-sharing: A review. Eur. J. Oper. Res. 2012, 223, 295–303. [Google Scholar] [CrossRef]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic flow prediction with big data: A deep learning approach. IEEE Trans. Intell. Transp. Syst. 2014, 16, 865–873. [Google Scholar] [CrossRef]
- Zanella, A.; Bui, N.; Castellani, A.; Vangelista, L.; Zorzi, M. Internet of things for smart cities. IEEE Internet Things J. 2014, 1, 22–32. [Google Scholar] [CrossRef]
- Furuhata, M.; Dessouky, M.; Ordóñez, F.; Brunet, M.-E.; Wang, X.; Koenig, S. Ridesharing: The state-of-the-art and future directions. Transp. Res. Part B Methodol. 2013, 57, 28–46. [Google Scholar] [CrossRef]
- Zhang, W.; Guhathakurta, S.; Fang, J.; Zhang, G. Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach. Sustain. Cities Soc. 2015, 19, 34–45. [Google Scholar] [CrossRef]
- Santi, P.; Resta, G.; Szell, M.; Sobolevsky, S.; Strogatz, S.; Ratti, C. Taxi pooling in New York City: A network-based approach to social sharing problems. arXiv 2013, arXiv:1310.2963. [Google Scholar]
- Hall, J.D.; Palsson, C.; Price, J. Is Uber a substitute or complement for public transit? J. Urban Econ. 2018, 108, 36–50. [Google Scholar] [CrossRef] [Green Version]
- Milakis, D.; Van Arem, B.; Van Wee, B. Policy and society related implications of automated driving: A review of literature and directions for future research. J. Intell. Transp. Syst. 2017, 21, 324–348. [Google Scholar] [CrossRef]
- Henao, A.; Marshall, W.E. The impact of ride-hailing on vehicle miles traveled. Transportation 2019, 46, 2173–2194. [Google Scholar] [CrossRef]
- Fagnant, D.J.; Kockelman, K.M. Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas. Transportation 2018, 45, 143–158. [Google Scholar] [CrossRef]
- Alemi, F.; Circella, G.; Handy, S.; Mokhtarian, P. What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California. Travel Behav. Soc. 2018, 13, 88–104. [Google Scholar] [CrossRef]
- Haboucha, C.J.; Ishaq, R.; Shiftan, Y. User preferences regarding autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 78, 37–49. [Google Scholar] [CrossRef]
- Wadud, Z.; MacKenzie, D.; Leiby, P. Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles. Transp. Res. Part A Policy Pract. 2016, 86, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Bösch, P.M.; Becker, A.; Becker, H.; Axhausen, K.W. Cost-based analysis of autonomous vehicle services. In ETH IVV Seminar; IVT, ETH Zurich: Zurich, Switzerland, 2017. [Google Scholar]
- Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961. [Google Scholar]
- Salingaros, N.A. A New Theory of Architecture; Sustasis Press: Portland, OR, USA, 2013. [Google Scholar]
- De Janosi, P.E. Factors Influencing the Demand for New Automobiles. J. Mark. 1959, 23, 412–418. [Google Scholar] [CrossRef]
- Wang, L.; Xue, X.; Zhao, Z.; Wang, Z. The Impacts of Transportation Infrastructure on Sustainable Development: Emerging Trends and Challenges. Int. J. Environ. Res. Public Health 2018, 15, 1172. [Google Scholar] [CrossRef] [Green Version]
- Allam, Z. Big Data, Artificial Intelligence and the Rise of Autonomous Smart Cities. In The Rise of Autonomous Smart Cities: Technology, Economic Performance and Climate Resilience; Springer International Publishing: Cham, Switzerland, 2021; pp. 7–30. [Google Scholar] [CrossRef]
- Sharifi, A.; Allam, Z.; Feizizadeh, B.; Ghamari, H. Three Decades of Research on Smart Cities: Mapping Knowledge Structure and Trends. Sustainability 2021, 13, 7140. [Google Scholar] [CrossRef]
- Dias, F.F.; Lavieri, P.S.; Garikapati, V.M.; Astroza, S.; Pendyala, R.M.; Bhat, C.R. A behavioral choice model of the use of car-sharing and ride-sourcing services. Transportation 2017, 44, 1307–1323. [Google Scholar] [CrossRef]
- Laetz, T.J. Predictions and perceptions: Defining the traffic congestion problem. Technol. Forecast. Soc. Chang. 1990, 38, 287–292. [Google Scholar] [CrossRef]
- Meng, X. Labor Market Outcomes and Reforms in China. J. Econ. Perspect. 2012, 26, 75–101. [Google Scholar] [CrossRef] [Green Version]
- Speece, M.W.; Kawahara, Y. Transportation in China in the 1990s. Int. J. Phys. Distrib. Logist. Manag. 1995, 25, 53–71. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.; Thondoo, M. (Eds.) Climate Change Mitigation and Urban Liveability. In Cities and Climate Change: Climate Policy, Economic Resilience and Urban Sustainability; Springer International Publishing: Cham, Switzerland, 2020; pp. 55–81. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.; Thondoo, M. Cities and Climate Change: Climate Policy, Economic Resilience and Urban Sustainability; Springer International Publishing: Cham, Switzerland, 2020. [Google Scholar]
- Soltani-Sobh, A.; Heaslip, K.; Stevanovic, A.; Bosworth, R.; Radivojevic, D. Analysis of the Electric Vehicles Adoption over the United States. Transp. Res. Procedia 2017, 22, 203–212. [Google Scholar] [CrossRef]
- United Nations Development Programme (UNDP). Sustainable Development Goals; UNDP: Geneva, Switzerland, 2015; p. 24. [Google Scholar]
- United Nations Framework Convention on Climate Change. Paris Agreement. Available online: https://unfccc.int/sites/default/files/english_paris_agreement.pdf (accessed on 8 August 2021).
- United Nations. New Urban Agenda; Habitat III: Quito, Ecuador, 17–20 October 2017; pp. 1–66. [Google Scholar]
- United Nations Framework Conventon on Climate Change. Glasgow Climate Pact; UNFCCC: Glasgow, UK, 2021. [Google Scholar]
- Grelier, F. CO2 Emissions from Cars: The Facts; Transport & Environment: Brussels, Belgium, 2018; p. 53. [Google Scholar]
- European Parliament. CO2 Emissions from Cars: Facts and Figures (Infographics). Available online: https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics (accessed on 11 December 2021).
- Allam, Z.; Jones, D.S. Future (post-COVID) digital, smart and sustainable cities in the wake of 6G: Digital twins, immersive realities and new urban economies. Land Use Policy 2021, 101, 105201. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.S. Pandemic stricken cities on lockdown. Where are our planning and design professionals [now, then and into the future]? Land Use Policy 2020, 97, 104805. [Google Scholar] [CrossRef]
- Allam, Z. Surveying the COVID-19 Pandemic and Its Implications: Urban Health, Data Technology and Political Economy; Elsevier Science: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Allam, Z. Chapter 1—The First 50 days of COVID-19: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the Pandemic. In Surveying the COVID-19 Pandemic and Its Implications; Allam, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 1–7. [Google Scholar] [CrossRef]
- Allam, Z. Chapter 2—The Second 50 days: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the COVID-19 Pandemic From Day 50 to Day 100. In Surveying the COVID-19 Pandemic and Its Implications; Allam, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 9–39. [Google Scholar] [CrossRef]
- Allam, Z. Chapter 3—The Third 50 Days: A Detailed Chronological Timeline and Extensive Review of Literature Documenting the COVID-19 Pandemic From Day 100 to Day 150. In Surveying the COVID-19 Pandemic and Its Implications; Allam, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 41–69. [Google Scholar] [CrossRef]
- Allam, Z. Chapter 7—Vital COVID-19 Economic Stimulus Packages Pose a Challenge for Long-Term Environmental Sustainability. In Surveying the COVID-19 Pandemic and Its Implications; Allam, Z., Ed.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 97–105. [Google Scholar] [CrossRef]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, Resilience and Place Identity in Future Post-Pandemic Cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Guarneri, M.; Ramalho, T.; Straus, F.; Maitumbi, I.; Chiramba, T.; Ngomsi, C.; Muriithi, M. UN-Habitat Sub-Saharan Africa Atlas; UN-Habitat: Nairobi, Kenya, 2020; p. 53. [Google Scholar]
- Turok, I.; McGranahan, G. Urbanization and economic growth: The arguments and evidence for Africa and Asia. Environ. Urban. 2013, 25, 465–482. [Google Scholar] [CrossRef]
- Allam, Z. Data as the New Driving Gears of Urbanization. In Cities and the Digital Revolution: Aligning Technology and Humanity; Allam, Z., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 1–29. [Google Scholar] [CrossRef]
- Allam, Z. On Culture, Technology and Global Cities. In Cities and the Digital Revolution: Aligning Technology and Humanity; Allam, Z., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 107–124. [Google Scholar] [CrossRef]
- Allam, Z.; Jones, D.; Biyik, C.; Allam, Z.; Raisah Takun, Y. Rewriting city narratives and spirit: Post-pandemic urban recovery mechanisms in the shadow of the global ‘black lives matter’ movement. Res. Glob. 2021, 3, 100064. [Google Scholar] [CrossRef]
- Allam, Z.; Sharifi, A.; Giurco, D.; Sharpe, S.A. On the Theoretical Conceptualisations, Knowledge Structures and Trends of Green New Deals. Sustainability 2021, 13, 2529. [Google Scholar] [CrossRef]
- Carlier, M. Autonomous Driving Level 4—Projected Revenue by Major Market 2030. Available online: https://www.statista.com/statistics/472316/projected-autonomous-driving-revenue-by-major-market/#:~:text=Autonomous%20driving%20level%204%20%2D%20projected%20revenue%20by%20major%20market%202030&text=Level%204%20autonomous%20vehicle%20sales,scale%20market%20commercialization%20by%202022 (accessed on 11 December 2021).
- Kane, M. China: NIO Report 4 Millionth EV Battery Swap. Available online: https://insideevs.com/news/537644/nio-4-million-battery-swaps/ (accessed on 11 December 2021).
- Moss, S. End of Car Age: How Cities Are Outgrowing the Automobile. Available online: https://www.theguardian.com/cities/2015/apr/28/end-of-the-car-age-how-cities-outgrew-the-automobile (accessed on 11 December 2021).
- Majchrzak, A.; Griffith, T.L.; Reetz, D.K.; Alexy, O. Catalyst Organizations as a New Organization Design for Innovation: The Case of Hyperloop Transportation Technologies. Acad. Manag. Discov. 2018, 4, 472–496. [Google Scholar] [CrossRef]
- Yaghoubi, H. The Most Important Maglev Applications. J. Eng. 2013, 2013, 537986. [Google Scholar] [CrossRef] [Green Version]
Title | Citations | Ref |
---|---|---|
Just a better taxi? A survey-based comparison of taxis, transit, and ridesourcing services in San Francisco | 177 | Rayle, et al. [29] |
Preparing a nation for autonomous vehicles: opportunities, barriers and policy recommendations | 155 | Fagnant and Kockelman [30] |
The travel and environmental implications of shared autonomous vehicles, using agent-based model scenarios | 124 | Fagnant and Kockelman [31] |
Disruptive Transportation: The Adoption, Utilization, and Impacts of Ride-Hailing in the United States | 100 | Clewlow and Mishra [32] |
Preferences for shared autonomous vehicles | 87 | Krueger, et al. [33] |
On-demand high-capacity ride-sharing via dynamic trip-vehicle assignment | 83 | Alonso-Mora, et al. [34] |
Optimization for dynamic ride-sharing: A review | 77 | Agatz, et al. [35] |
Traffic flow prediction with big data: a deep learning approach | 75 | Lv, et al. [36] |
Internet of things for smart cities | 75 | Zanella, et al. [37] |
Ridesharing: The state-of-the-art and future directions | 70 | Furuhata, et al. [38] |
Exploring the impact of shared autonomous vehicles on urban parking demand: An agent-based simulation approach | 70 | Zhang, et al. [39] |
Taxi pooling in New York City: a network-based approach to social sharing problems | 68 | Santi, et al. [40] |
Is Uber a substitute or complement for public transit? | 67 | Hall, et al. [41] |
Policy and society related implications of automated driving: A review of literature and directions for future research | 63 | Milakis, et al. [42] |
The impact of ride-hailing on vehicle miles traveled | 62 | Henao and Marshall [43] |
Dynamic ride-sharing and fleet sizing for a system of shared autonomous vehicles in Austin, Texas | 61 | Fagnant and Kockelman [44] |
What influences travelers to use Uber? Exploring the factors affecting the adoption of on-demand ride services in California | 60 | Alemi, et al. [45] |
User preferences regarding autonomous vehicles | 60 | Haboucha, et al. [46] |
Help or hindrance? The travel, energy and carbon impacts of highly automated vehicles | 60 | Wadud, et al. [47] |
Cost-based analysis of autonomous vehicle services | 59 | Bösch, et al. [48] |
Author Name | Affiliation | Citations | Total Link Strength |
---|---|---|---|
Daniel J. Fagnant | The University of Texas at Austin | 394 | 2092 |
Susan A. Shaheen | UC Berkeley | 372 | 1832 |
Hai Yang | The Hong Kong University of Science and Technology | 205 | 639 |
Lisa Rayle | UC Berkeley | 199 | 1044 |
Robert Cervero | UC Berkeley | 185 | 692 |
Todd Litman | Victoria Transport Policy Institute | 182 | 826 |
Chao Chen | Tsinghua Unversity | 166 | 417 |
Fei-Yue Wang | Chinese Academy of Sciences | 166 | 439 |
Yang Liu | National University of Singapore | 163 | 543 |
Carlos Daganzo | UC Berkeley | 157 | 417 |
Tan Yigitcanlar | Queensland University of Technology | 152 | 579 |
Ye Li | Tongji University | 149 | 420 |
Yu Zheng | JD Technology, Beijin | 149 | 279 |
Eleni I. Vlahogianni | National Technical University of Athens | 147 | 263 |
prateek bansal | Imperial College London | 146 | 900 |
Dimitris Milakis | German Aerospace Centre | 145 | 820 |
Alejandro Henao | National Renewable Energy Laboratory | 137 | 836 |
Alejandro Tirachini | Universidad de Chile | 137 | 851 |
Farzad Alemi | 136 | 826 | |
Junping Zhang | Fudan University | 132 | 363 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Allam, Z.; Sharifi, A. Research Structure and Trends of Smart Urban Mobility. Smart Cities 2022, 5, 539-561. https://doi.org/10.3390/smartcities5020029
Allam Z, Sharifi A. Research Structure and Trends of Smart Urban Mobility. Smart Cities. 2022; 5(2):539-561. https://doi.org/10.3390/smartcities5020029
Chicago/Turabian StyleAllam, Zaheer, and Ayyoob Sharifi. 2022. "Research Structure and Trends of Smart Urban Mobility" Smart Cities 5, no. 2: 539-561. https://doi.org/10.3390/smartcities5020029
APA StyleAllam, Z., & Sharifi, A. (2022). Research Structure and Trends of Smart Urban Mobility. Smart Cities, 5(2), 539-561. https://doi.org/10.3390/smartcities5020029