Hypervector Approximation of Complex Manifolds for Artificial Intelligence Digital Twins in Smart Cities
Abstract
:Highlights
- The proposed AI approach is effective at hypervector approximation of complex manifolds in smart city settings.
- The Hyperseed algorithm can generate fine-grained local variations that can be tracked for anomalies and temporal changes, as well as incremental changes in dynamic data streams.
- This approach can be integrated into AI digital twins that have to process complex manifolds of high-dimensional datasets and data streams generated by smart cities.
- The interplay between digital twins and novel AI approaches is crucial in unpacking the complexities of urban systems and shaping sustainable and resilient smart cities.
Abstract
1. Introduction
2. Background
2.1. Hypervector Binding
2.2. Fractional Power Encoding
2.3. Resonator Network
3. The Proposed Approach
3.1. K-Means Clustering
Algorithm 1 Algorithmic flow of the proposed approach |
|
Algorithm 2 K-means clustering |
|
3.2. Hypervector Mapping
- : contains distributed representations of data sampled from an arbitrary manifold with unknown structure.
- : represents a subsymbolic data domain as an n-dimensional FPE tensor.
3.3. The Hyperseed Algorithm
3.4. Computational Complexity Analysis
3.4.1. Complexity of the Proposed Approach
Algorithm 3 Hyperseed algorithm |
|
3.4.2. Comparison with Existing Manifold Learning Methods
3.4.3. Advantages of the Proposed Approach
3.5. Incremental Hyperseed Algorithm
Algorithm 4 Incremental hyperseed algorithm |
|
4. Experiments
4.1. Baseline Results with t-SNE
- Low_Profile: a low consistent temperature profile, represented by a constant temperature of 15 °C.
- High_Profile: a high consistent temperature profile, represented by a constant temperature of 27 °C.
- Average_Profile: an average consistent temperature profile, represented by a constant temperature of 20 °C.
- Typical_8-5_Profile: a typical daily temperature profile, with lower temperatures before 8 a.m. and after 5 p.m. and slightly higher temperatures (21 °C) during the 8 a.m. to 5 p.m. working hours.
4.2. Local Clusters with Hyperseed
4.3. Incremental Hyperseed
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cremonini, L.; Carotenuto, F.; Famulari, D.; Fiorillo, E.; Nardino, M.; Neri, L.; Georgiadis, T. Urban Environment and Human Health: Motivations for Urban Regeneration to Adapt. Environ. Sci. Proc. 2023, 27, 28. [Google Scholar] [CrossRef]
- Gracias, J.S.; Parnell, G.S.; Specking, E.; Pohl, E.A.; Buchanan, R. Smart cities—A structured literature review. Smart Cities 2023, 6, 1719–1743. [Google Scholar] [CrossRef]
- Moreno, C.; Allam, Z.; Chabaud, D.; Gall, C.; Pratlong, F. Introducing the “15-Minute City”: Sustainability, resilience and place identity in future post-pandemic cities. Smart Cities 2021, 4, 93–111. [Google Scholar] [CrossRef]
- Syed, A.S.; Sierra-Sosa, D.; Kumar, A.; Elmaghraby, A. IoT in smart cities: A survey of technologies, practices and challenges. Smart Cities 2021, 4, 429–475. [Google Scholar] [CrossRef]
- Lai, C.S.; Jia, Y.; Dong, Z.; Wang, D.; Tao, Y.; Lai, Q.H.; Wong, R.T.; Zobaa, A.F.; Wu, R.; Lai, L.L. A review of technical standards for smart cities. Clean Technol. 2020, 2, 290–310. [Google Scholar] [CrossRef]
- Ramaprasad, A.; Sánchez-Ortiz, A.; Syn, T. A unified definition of a smart city. In Proceedings of the Electronic Government: 16th IFIP WG 8.5 International Conference, EGOV 2017, St. Petersburg, Russia, 4–7 September 2017; Proceedings 16. Springer: Berlin/Heidelberg, Germany, 2017; pp. 13–24. [Google Scholar]
- Nikitas, A.; Michalakopoulou, K.; Njoya, E.T.; Karampatzakis, D. Artificial intelligence, transport and the smart city: Definitions and dimensions of a new mobility era. Sustainability 2020, 12, 2789. [Google Scholar] [CrossRef]
- Cugurullo, F. Urban artificial intelligence: From automation to autonomy in the smart city. Front. Sustain. Cities 2020, 2, 38. [Google Scholar] [CrossRef]
- Dashkevych, O.; Portnov, B.A. How can generative AI help in different parts of research? An experiment study on smart cities’ definitions and characteristics. Technol. Soc. 2024, 77, 102555. [Google Scholar] [CrossRef]
- Xu, H.; Omitaomu, F.; Sabri, S.; Li, X.; Song, Y. Leveraging Generative AI for Smart City Digital Twins: A Survey on the Autonomous Generation of Data, Scenarios, 3D City Models, and Urban Designs. arXiv 2024, arXiv:2405.19464. [Google Scholar]
- OECD. OECD AI Definition. Available online: https://oecd.ai/en/wonk/definition (accessed on 1 October 2024).
- Tupayachi, J.; Xu, H.; Omitaomu, O.A.; Camur, M.C.; Sharmin, A.; Li, X. Towards next-generation urban decision support systems through ai-powered construction of scientific ontology using large language models—A case in optimizing intermodal freight transportation. Smart Cities 2024, 7, 2392–2421. [Google Scholar] [CrossRef]
- Bose, B.K. Artificial intelligence techniques in smart grid and renewable energy systems—Some example applications. Proc. IEEE 2017, 105, 2262–2273. [Google Scholar] [CrossRef]
- De Silva, D.; Yu, X.; Alahakoon, D.; Holmes, G. Semi-supervised classification of characterized patterns for demand forecasting using smart electricity meters. In Proceedings of the 2011 International Conference on Electrical Machines and Systems, Beijing, China, 20–23 August 2011; pp. 1–6. [Google Scholar]
- Nallaperuma, D.; De Silva, D.; Alahakoon, D.; Yu, X. Intelligent detection of driver behavior changes for effective coordination between autonomous and human driven vehicles. In Proceedings of the IECON 2018—44th Annual Conference of the IEEE Industrial Electronics Society, Washington, DC, USA, 21–23 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 3120–3125. [Google Scholar]
- Bandaragoda, T.; De Silva, D.; Kleyko, D.; Osipov, E.; Wiklund, U.; Alahakoon, D. Trajectory clustering of road traffic in urban environments using incremental machine learning in combination with hyperdimensional computing. In Proceedings of the 2019 IEEE Intelligent Transportation Systems Conference (ITSC), Auckland, New Zealand, 27–30 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1664–1670. [Google Scholar]
- Adikari, A.; De Silva, D.; Ranasinghe, W.K.; Bandaragoda, T.; Alahakoon, O.; Persad, R.; Lawrentschuk, N.; Alahakoon, D.; Bolton, D. Can online support groups address psychological morbidity of cancer patients? An artificial intelligence based investigation of prostate cancer trajectories. PLoS ONE 2020, 15, e0229361. [Google Scholar] [CrossRef] [PubMed]
- De Silva, D.; Ranasinghe, W.; Bandaragoda, T.; Adikari, A.; Mills, N.; Iddamalgoda, L.; Alahakoon, D.; Lawrentschuk, N.; Persad, R.; Osipov, E.; et al. Machine learning to support social media empowered patients in cancer care and cancer treatment decisions. PLoS ONE 2018, 13, e0205855. [Google Scholar] [CrossRef] [PubMed]
- Wolniak, R.; Stecuła, K. Artificial Intelligence in Smart Cities—Applications, Barriers, and Future Directions: A Review. Smart Cities 2024, 7, 1346–1389. [Google Scholar] [CrossRef]
- Wang, W.; Chen, L.; Xiong, M.; Wang, Y. Accelerating AI adoption with responsible AI signals and employee engagement mechanisms in health care. Inf. Syst. Front. 2023, 25, 2239–2256. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J.; Bennetot, A.; Tabik, S.; Barbado, A.; García, S.; Gil-López, S.; Molina, D.; Benjamins, R.; et al. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Botín-Sanabria, D.M.; Mihaita, A.S.; Peimbert-García, R.E.; Ramírez-Moreno, M.A.; Ramírez-Mendoza, R.A.; Lozoya-Santos, J.d.J. Digital twin technology challenges and applications: A comprehensive review. Remote Sens. 2022, 14, 1335. [Google Scholar] [CrossRef]
- Shahat, E.; Hyun, C.T.; Yeom, C. City digital twin potentials: A review and research agenda. Sustainability 2021, 13, 3386. [Google Scholar] [CrossRef]
- Ieva, S.; Loconte, D.; Loseto, G.; Ruta, M.; Scioscia, F.; Marche, D.; Notarnicola, M. A Retrieval-Augmented Generation Approach for Data-Driven Energy Infrastructure Digital Twins. Smart Cities 2024, 7, 3095–3120. [Google Scholar] [CrossRef]
- Ramadan, R.; Huang, Q.; Zalhaf, A.S.; Bamisile, O.; Li, J.; Mansour, D.E.A.; Lin, X.; Yehia, D.M. Energy Management in Residential Microgrid Based on Non-Intrusive Load Monitoring and Internet of Things. Smart Cities 2024, 7, 1907–1935. [Google Scholar] [CrossRef]
- Semeraro, C.; Lezoche, M.; Panetto, H.; Dassisti, M. Digital twin paradigm: A systematic literature review. Comput. Ind. 2021, 130, 103469. [Google Scholar] [CrossRef]
- Wright, L.; Davidson, S. How to tell the difference between a model and a digital twin. Adv. Model. Simul. Eng. Sci. 2020, 7, 13. [Google Scholar] [CrossRef]
- White, G.; Zink, A.; Codecá, L.; Clarke, S. A digital twin smart city for citizen feedback. Cities 2021, 110, 103064. [Google Scholar] [CrossRef]
- Ariyachandra, M.M.F.; Wedawatta, G. Digital twin smart cities for disaster risk management: A review of evolving concepts. Sustainability 2023, 15, 11910. [Google Scholar] [CrossRef]
- Jafari, M.; Kavousi-Fard, A.; Chen, T.; Karimi, M. A review on digital twin technology in smart grid, transportation system and smart city: Challenges and future. IEEE Access 2023, 11, 17471–17484. [Google Scholar] [CrossRef]
- Makvandi, M.; Li, W.; Li, Y.; Wu, H.; Khodabakhshi, Z.; Xu, X.; Yuan, P.F. Advancing Urban Resilience Amid Rapid Urbanization: An Integrated Interdisciplinary Approach for Tomorrow’s Climate-Adaptive Smart Cities—A Case Study of Wuhan, China. Smart Cities 2024, 7, 2110–2130. [Google Scholar] [CrossRef]
- Shulajkovska, M.; Smerkol, M.; Noveski, G.; Gams, M. Enhancing Urban Sustainability: Developing an Open-Source AI Framework for Smart Cities. Smart Cities 2024, 7, 2670–2701. [Google Scholar] [CrossRef]
- Hammoumi, L.; Maanan, M.; Rhinane, H. Characterizing Smart Cities Based on Artificial Intelligence. Smart Cities 2024, 7, 1330–1345. [Google Scholar] [CrossRef]
- Kodaira, K. Complex Manifolds and Deformation of Complex Structures; Springer Science & Business Media: Berlin, Germany, 2012; Volume 283. [Google Scholar]
- Schleich, B.; Anwer, N.; Mathieu, L.; Wartzack, S. Shaping the digital twin for design and production engineering. CIRP Ann. 2017, 66, 141–144. [Google Scholar] [CrossRef]
- Ma, Y.; Zhou, H.; He, H.; Jiao, G.; Wei, S.X. A digital twin-based approach for quality control and optimization of complex product assembly. In Proceedings of the 2019 International Conference on Artificial Intelligence and Advanced Manufacturing (AIAM), Dublin, Ireland, 16–18 October 2019. [Google Scholar] [CrossRef]
- Grieves, M.; Vickers, J. Digital twin: Mitigating unpredictable, undesirable emergent behavior in complex systems. In Transdisciplinary Perspectives on Complex Systems; Kahlen, J., Flumerfelt, S., Alves, A., Eds.; Springer: Cham, Switzerland, 2016; pp. 85–113. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital twin driven prognostics and health management for complex equipment. CIRP Ann. 2018, 67, 169–172. [Google Scholar] [CrossRef]
- Osipov, E.; Kahawala, S.; Haputhanthri, D.; Kempitiya, T.; Silva, D.; Alahakoon, D.; Kleyko, D. Hyperseed: Unsupervised Learning With Vector Symbolic Architectures. IEEE Trans. Neural Netw. Learn. Syst. 2022, 35, 6583–6597. [Google Scholar] [CrossRef] [PubMed]
- Plate, T.A. Holographic Reduced Representations: Convolution Algebra for Compositional Distributed Representations. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI), Sydney, Australia, 24–30 August 1991; pp. 30–35. [Google Scholar]
- Kleyko, D.; Osipov, E.; De Silva, D.; Wiklund, U.; Alahakoon, D. Integer self-organizing maps for digital hardware. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–8. [Google Scholar]
- Plate, T.A. Holographic Recurrent Networks. In Proceedings of the Advances in Neural Information Processing Systems (NIPS), Denver, CO, USA, 30 November–3 December 1992; pp. 34–41. [Google Scholar]
- Plate, T.A. Distributed Representations and Nested Compositional Structure. Ph.D. Thesis, University of Toronto, Toronto, ON, Canada, 1994. [Google Scholar]
- Frady, E.P.; Kleyko, D.; Kymn, C.J.; Olshausen, B.A.; Sommer, F.T. Computing on Functions Using Randomized Vector Representations. In Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference, Online, 28 March–1 April 2021; pp. 1–33. [Google Scholar]
- Frady, E.P.; Kent, S.J.; Olshausen, B.A.; Sommer, F.T. Resonator Networks, 1: An Efficient Solution for Factoring High-Dimensional, Distributed Representations of Data Structures. Neural Comput. 2020, 32, 2311–2331. [Google Scholar] [CrossRef] [PubMed]
- Kent, S.J.; Frady, E.P.; Sommer, F.T.; Olshausen, B.A. Resonator Networks, 2: Factorization Performance and Capacity Compared to Optimization-Based Methods. Neural Comput. 2020, 32, 2332–2388. [Google Scholar] [CrossRef] [PubMed]
- Van der Maaten, L.; Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kahawala, S.; Madhusanka, N.; De Silva, D.; Osipov, E.; Mills, N.; Manic, M.; Jennings, A. Hypervector Approximation of Complex Manifolds for Artificial Intelligence Digital Twins in Smart Cities. Smart Cities 2024, 7, 3371-3387. https://doi.org/10.3390/smartcities7060131
Kahawala S, Madhusanka N, De Silva D, Osipov E, Mills N, Manic M, Jennings A. Hypervector Approximation of Complex Manifolds for Artificial Intelligence Digital Twins in Smart Cities. Smart Cities. 2024; 7(6):3371-3387. https://doi.org/10.3390/smartcities7060131
Chicago/Turabian StyleKahawala, Sachin, Nuwan Madhusanka, Daswin De Silva, Evgeny Osipov, Nishan Mills, Milos Manic, and Andrew Jennings. 2024. "Hypervector Approximation of Complex Manifolds for Artificial Intelligence Digital Twins in Smart Cities" Smart Cities 7, no. 6: 3371-3387. https://doi.org/10.3390/smartcities7060131
APA StyleKahawala, S., Madhusanka, N., De Silva, D., Osipov, E., Mills, N., Manic, M., & Jennings, A. (2024). Hypervector Approximation of Complex Manifolds for Artificial Intelligence Digital Twins in Smart Cities. Smart Cities, 7(6), 3371-3387. https://doi.org/10.3390/smartcities7060131