Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI
Abstract
:Highlights
- LightGBM, among the selected black-box models, was identified as requiring explanation due to its performance in solar power generation forecasting.
- “Distance from the Noon” and its interaction with “Sky Cover” were highlighted as the primary environmental factors influencing solar power generation.
- Understanding the key environmental factors enables more accurate placement and optimization of solar power stations in smart cities.
- The use of Explainable AI provides valuable insights that can guide policymakers and engineers in enhancing solar energy infrastructure.
Abstract
1. Introduction
2. Methodology
2.1. Standardized Usage Procedures of Machine Learning
2.1.1. Consistent Training Data
2.1.2. Splitting of the Dataset
2.2. Ensemble Learning
2.3. Deep Learning
2.3.1. Artificial Neural Networks
2.3.2. RNN-Based Models
2.3.3. Bi-RNN-Based Models
2.4. Objective Function
2.5. Explainable AI
3. Data Visualization and Variable Analysis
4. Results and Discussion
4.1. Data Preprocessing
4.2. Forecasting Performance
4.3. Influencing Factors Analysis
4.4. Application Example
5. Discussion
5.1. Analysis of the Reasons for the Optimal Overall Performance of Long-Term Forecasting in LightGBM
5.2. Limitations of SHAP Applications to Deep Neural Networks
5.3. Scalability and Infrastructure in Smart Cities
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Hyperparameters and Configurations
- Computer configuration: 11th Gen Intel(R) Core(TM) i5-11600K @ 3.90 GHz 3.91 GHz.
- Requirement: Tensorflow—2.7.0; Optuna—3.2.0; XGBoost—1.7.4; LightGBM—3.3.5; CatBoost—1.2; Numpy—1.23.5; Pandas—1.5.2; matplotlib—3.6.2; Seaborn—0.12.2; Sklearn—1.2.1
Hyperp | Max Depth | Learning Rate | n Estimators | Min Child Weight | Gamma | Subsample | Colsample Bytree | Reg Alpha | Reg Lambda |
---|---|---|---|---|---|---|---|---|---|
Range | [1–9] | [0.01–1] | [50–500] | [1–10] | [0.001-1] | [0.01–1] | [0.01–1] | [0.001–1] | [0.001–1] |
XGB | 2 | 0.083 | 117 | 6 | 0.137 | 0.753 | 0.825 | 0.329 | 0.090 |
Hyperp | Max Depth | Learning Rate | n Estimators | Min Child Weight | Subsample | Colsample Bytree | Reg Alpha | Reg Lambda |
---|---|---|---|---|---|---|---|---|
Range | [1–9] | [0.01–1] | [50–500] | [1–10] | [0.01–1] | [0.01–1] | [0.001–1] | [0.001–2] |
LGB | 3 | 0.015 | 424 | 1 | 0.948 | 0.709 | 0.009 | 1.819 |
Hyperp | Learning Rate | l2 Leaf Reg | Colsample Bylevel | Depth | Boosting Type | Bootstrap Type | Min Data in Leaf | One Hot Max Size |
---|---|---|---|---|---|---|---|---|
Range | [0.001–1] | [0.01–1] | [0.01–1] | [1–10] | - | - | [2–20] | [2–20] |
Cat | 0.289 | 0.013 | 0.082 | 3 | ‘Ordered’ | ‘Bernoulli’ | 6 | 5 |
Hyperp | Hidden Layers | Activation | Optimizer | Learning Rate | Batch Size | Epochs | Dropout |
---|---|---|---|---|---|---|---|
ANN | (100–50) | ReLU | SGD | 0.01 | 128 | 100 | 0.1 |
RNN | (100–50) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
LSTM | (100–50) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
GRU | (100–50) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
Bi-RNN | (100) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
Bi-LSTM | (100) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
Bi-GRU | (100) | ReLU | Adam | 0.001 | 128 | 100 | 0.1 |
References
- Hoang, A.T.; Nguyen, X.P. Integrating renewable sources into energy system for smart city as a sagacious strategy towards clean and sustainable process. J. Clean. Prod. 2021, 305, 127161. [Google Scholar] [CrossRef]
- Khalil, M.I.; Jhanjhi, N.Z.; Humayun, M. Hybrid smart grid with sustainable energy efficient resources for smart cities. Sustain. Energy Technol. Assess. 2021, 46, 101211. [Google Scholar] [CrossRef]
- Salama, R.; Al-Turjman, F. Sustainable energy production in smart cities. Sustainability 2023, 15, 16052. [Google Scholar] [CrossRef]
- Patrão, C.; Moura, P.; Almeida, A.T. Review of smart city assessment tools. Smart Cities 2020, 3, 1117–1132. [Google Scholar] [CrossRef]
- Belli, L.; Cilfone, A.; Davoli, L. IoT-enabled smart sustainable cities: Challenges and approaches. Smart Cities 2020, 3, 1039–1071. [Google Scholar] [CrossRef]
- Lu, Y.; Khan, Z.A.; Alvarez-Alvarado, M.S. A critical review of sustainable energy policies for the promotion of renewable energy sources. Sustainability 2020, 12, 5078. [Google Scholar] [CrossRef]
- Stübinger, J.; Schneider, L. Understanding smart city—A data-driven literature review. Sustainability 2020, 12, 8460. [Google Scholar] [CrossRef]
- Alotaibi, I.; Abido, M.A.; Khalid, M. A comprehensive review of recent advances in smart grids: A sustainable future with renewable energy resources. Energies 2020, 13, 6269. [Google Scholar] [CrossRef]
- Ruggieri, R.; Ruggeri, M.; Vinci, G. Electric mobility in a smart city: European overview. Energies 2021, 14, 315. [Google Scholar] [CrossRef]
- Arrieta, A.B.; Díaz-Rodríguez, N.; Del Ser, J. Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fusion 2020, 58, 82–115. [Google Scholar] [CrossRef]
- Saeed, W.; Omlin, C. Explainable AI (XAI): A systematic meta-survey of current challenges and future opportunities. Knowl.-Based Syst. 2023, 263, 110273. [Google Scholar] [CrossRef]
- van der Waa, J.; Nieuwburg, E.; Cremers, A. Evaluating XAI: A comparison of rule-based and example-based explanations. Artif. Intell. 2021, 291, 103404. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, F.; Zou, J. XAI Evaluation: Evaluating Black-Box Model Explanations for Prediction. In Proceedings of the IEEE 2021 II International Conference on Neural Networks and Neurotechnologies (NeuroNT), Saint Petersburg, Russia, 16 June 2021; pp. 13–16. [Google Scholar]
- Gorjian, S.; Sharon, H.; Ebadi, H. Recent technical advancements, economics and environmental impacts of floating photovoltaic solar energy conversion systems. J. Clean. Prod. 2021, 278, 124285. [Google Scholar] [CrossRef]
- Sharadga, H.; Hajimirza, S.; Balog, R.S. Time series forecasting of solar power generation for large-scale photovoltaic plants. Renew. Energy 2020, 150, 797–807. [Google Scholar] [CrossRef]
- Dong, S.; Wang, P.; Abbas, K. A survey on deep learning and its applications. Comput. Sci. Rev. 2021, 40, 100379. [Google Scholar] [CrossRef]
- Shadab, A.; Ahmad, S.; Said, S. Spatial forecasting of solar radiation using ARIMA model. Remote Sens. Appl. Soc. Environ. 2020, 20, 100427. [Google Scholar] [CrossRef]
- Zhou, Z.H. Ensemble Learning; Springer: Singapore, 2021. [Google Scholar]
- da Silva, R.G.; Ribeiro, M.H.D.M.; Moreno, S.R. A novel decomposition-ensemble learning framework for multi-step ahead wind energy forecasting. Energy 2021, 216, 119174. [Google Scholar] [CrossRef]
- Qiu, R.; Liu, C.; Cui, N. Generalized Extreme Gradient Boosting model for predicting daily global solar radiation for locations without historical data. Energy Convers. Manag. 2022, 258, 115488. [Google Scholar] [CrossRef]
- Ribeiro, F.; Gradvohl, A.L.S. Machine learning techniques applied to solar flares forecasting. Astron. Comput. 2021, 35, 100468. [Google Scholar] [CrossRef]
- Fan, J.; Wang, X.; Zhang, F. Predicting daily diffuse horizontal solar radiation in various climatic regions of China using support vector machine and tree-based soft computing models with local and extrinsic climatic data. J. Clean. Prod. 2020, 248, 119264. [Google Scholar] [CrossRef]
- Cabaneros, S.M.; Calautit, J.K.; Hughes, B.R. A review of artificial neural network models for ambient air pollution prediction. Environ. Model. Softw. 2019, 119, 285–304. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Cossu, A.; Carta, A.; Lomonaco, V. Continual learning for recurrent neural networks: An empirical evaluation. Neural Netw. 2021, 143, 607–627. [Google Scholar] [CrossRef] [PubMed]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. The M4 Competition: 100,000 time series and 61 forecasting methods. Int. J. Forecast. 2020, 36, 54–74. [Google Scholar] [CrossRef]
- Makridakis, S.; Spiliotis, E.; Assimakopoulos, V. M5 accuracy competition: Results, findings, and conclusions. Int. J. Forecast. 2022, 38, 1346–1364. [Google Scholar] [CrossRef]
- Al Daoud, E. Comparison between XGBoost, LightGBM and CatBoost using a home credit dataset. Int. J. Comput. Inf. Eng. 2019, 13, 6–10. [Google Scholar]
- Hong, J. An Application of XGBoost, LightGBM, CatBoost Algorithms on House Price Appraisal System. Hous. Financ. Res. 2020, 4, 33–64. [Google Scholar] [CrossRef]
- Bae, D.J.; Kwon, B.S.; Song, K.B. XGBoost-based day-ahead load forecasting algorithm considering behind-the-meter solar PV generation. Energies 2021, 15, 128. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, R.; Liu, J. Comparison and explanation of forecasting algorithms for energy time series. Mathematics 2021, 9, 2794. [Google Scholar] [CrossRef]
- Aksoy, N.; Genc, I. Predictive models development using gradient boosting based methods for solar power plants. J. Comput. Sci. 2023, 67, 101958. [Google Scholar] [CrossRef]
- Pazikadin, A.R.; Rifai, D.; Ali, K. Solar irradiance measurement instrumentation and power solar generation forecasting based on Artificial Neural Networks (ANN): A review of five years research trend. Sci. Total Environ. 2020, 715, 136848. [Google Scholar] [CrossRef] [PubMed]
- Vu, B.H.; Chung, I.Y. Optimal generation scheduling and operating reserve management for PV generation using RNN-based forecasting models for stand-alone microgrids. Renew. Energy 2022, 195, 1137–1154. [Google Scholar] [CrossRef]
- Neshat, M.; Nezhad, M.M.; Mirjalili, S. Short-term solar radiation forecasting using hybrid deep residual learning and gated LSTM recurrent network with differential covariance matrix adaptation evolution strategy. Energy 2023, 278, 127701. [Google Scholar] [CrossRef]
- Peng, T.; Zhang, C.; Zhou, J. An integrated framework of Bi-directional long-short term memory (BiLSTM) based on sine cosine algorithm for hourly solar radiation forecasting. Energy 2021, 221, 119887. [Google Scholar] [CrossRef]
- Alshemali, B.; Kalita, J. Improving the reliability of deep neural networks in NLP: A review. Knowl.-Based Syst. 2020, 191, 105210. [Google Scholar] [CrossRef]
- Liang, Y.; Li, S.; Yan, C. Explaining the black-box model: A survey of local interpretation methods for deep neural networks. Neurocomputing 2021, 419, 168–182. [Google Scholar] [CrossRef]
- Alshawaf, M.; Poudineh, R.; Alhajeri, N.S. Solar PV in Kuwait: The effect of ambient temperature and sandstorms on output variability and uncertainty. Renew. Sustain. Energy Rev. 2020, 134, 110346. [Google Scholar] [CrossRef]
- Belhaouas, N.; Mehareb, F.; Assem, H. A new approach of PV system structure to enhance performance of PV generator under partial shading effect. J. Clean. Prod. 2021, 317, 128349. [Google Scholar] [CrossRef]
- Tu, J.; Qi, C.; Tang, Z. Experimental study on the influence of bionic channel structure and nanofluids on power generation characteristics of waste heat utilisation equipment. Appl. Therm. Eng. 2022, 202, 117893. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 2017, 30, 4765–4774. [Google Scholar]
- Lundberg, S.M.; Erion, G.; Chen, H. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020, 2, 56–67. [Google Scholar] [CrossRef] [PubMed]
- Shapley,, L.S. A value for n person games. Contrib. Theory Games 1953, 2, 125. [Google Scholar]
- Wu, H.; Elizaveta, D.; Zhadan, A. Forecasting online adaptation methods for energy domain. Eng. Appl. Artif. Intell. 2023, 123, 106499. [Google Scholar] [CrossRef]
- Badillo, S.; Banfai, B.; Birzele, F. An introduction to machine learning. Clin. Pharmacol. Ther. 2020, 107, 871–885. [Google Scholar] [CrossRef] [PubMed]
- Azizi, N.; Yaghoubirad, M.; Farajollahi, M. Deep learning based long-term global solar irradiance and temperature forecasting using time series with multi-step multivariate output. Renew. Energy 2023, 206, 135–147. [Google Scholar] [CrossRef]
- Montesinos Lopez, O.A.; Crossa, J. Overfitting, Model Tuning, and Evaluation of Prediction Performance, Multivariate Statistical Machine Learning Methods for Genomic Prediction; Springer International Publishing: Cham, Switzerland, 2022; pp. 109–139. [Google Scholar]
- Liew, X.Y.; Hameed, N.; Clos, J. An investigation of XGBoost-based algorithm for breast cancer classification. Mach. Learn. Appl. 2021, 6, 100154. [Google Scholar] [CrossRef]
- Gao, H.; Cai, G.; Yang, D. Real-time long-term voltage stability assessment based on eGBDT for large-scale power system with high renewables penetration. Electr. Power Syst. Res. 2023, 214, 108915. [Google Scholar] [CrossRef]
- Chen, X.; Wang, B.; Gao, Y. Symmetric binary tree based co-occurrence texture pattern mining for fine-grained plant leaf image retrieval. Pattern Recognit. 2022, 129, 108769. [Google Scholar] [CrossRef]
- Niaze, A.A.; Sahu, R.; Sunkara, M.K. Model construction and optimization for raising the concentration of industrial bioethanol production by using a data-driven ANN model. Renew. Energy 2023, 216, 119031. [Google Scholar] [CrossRef]
- Langer, S. Approximating smooth functions by deep neural networks with sigmoid activation function. J. Multivar. Anal. 2021, 182, 104696. [Google Scholar] [CrossRef]
- Shen, Z.; Yang, H.; Zhang, S. Optimal approximation rate of ReLU networks in terms of width and depth. J. De Math. Pures Et Appl. 2022, 157, 101–135. [Google Scholar] [CrossRef]
- De Ryck, T.; Lanthaler, S.; Mishra, S. On the approximation of functions by tanh neural networks. Neural Netw. 2021, 143, 732–750. [Google Scholar] [CrossRef] [PubMed]
- Sun, W.; Huang, C. A carbon price prediction model based on secondary decomposition algorithm and optimized back propagation neural network. J. Clean. Prod. 2020, 243, 118671. [Google Scholar] [CrossRef]
- Sherstinsky, A. Fundamentals of recurrent neural network (RNN) and long short-term memory (LSTM) network. Phys. D Nonlinear Phenom. 2020, 404, 132306. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Long, G. Episodic memory governs choices: An rnn-based reinforcement learning model for decision-making task. Neural Netw. 2021, 134, 1–10. [Google Scholar] [CrossRef]
- Yang, W.; Li, P.; Yang, W. Audio-Visual Multi-modal Meeting Recording System. In International Conference on Intelligent Information Technologies for Industry; Springer Nature: Cham, Switzerland, 2023; pp. 168–178. [Google Scholar]
- Rehmer, A.; Kroll, A. On the vanishing and exploding gradient problem in Gated Recurrent Units. IFAC-PapersOnLine 2020, 53, 1243–1248. [Google Scholar] [CrossRef]
- Landi, F.; Baraldi, L.; Cornia, M. Working memory connections for LSTM. Neural Netw. 2021, 144, 334–341. [Google Scholar] [CrossRef]
- Niu, Z.; Yu, Z.; Tang, W. Wind power forecasting using attention-based gated recurrent unit network. Energy 2020, 196, 117081. [Google Scholar] [CrossRef]
- Mirzaei, S.; Kang, J.L.; Chu, K.Y. A comparative study on long short-term memory and gated recurrent unit neural networks in fault diagnosis for chemical processes using visualization. J. Taiwan Inst. Chem. Eng. 2022, 130, 104028. [Google Scholar] [CrossRef]
- ArunKumar, K.E.; Kalaga, D.V.; Kumar, C.M.S. Comparative analysis of Gated Recurrent Units (GRU), long Short-Term memory (LSTM) cells, autoregressive Integrated moving average (ARIMA), seasonal autoregressive Integrated moving average (SARIMA) for forecasting COVID-19 trends. Alex. Eng. J. 2022, 61, 7585–7603. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; He, X. Improved deep bidirectional recurrent neural network for learning the cross-sensitivity rules of gas sensor array. Sens. Actuators B Chem. 2024, 401, 134996. [Google Scholar] [CrossRef]
- Pooja, T.S.; Shrinivasacharya, P. Evaluating neural networks using Bi-Directional LSTM for network IDS (intrusion detection systems) in cyber security. Glob. Transit. Proc. 2021, 2, 448–454. [Google Scholar]
- Ghasemlounia, R.; Gharehbaghi, A.; Ahmadi, F. Developing a novel framework for forecasting groundwater level fluctuations using Bi-directional Long Short-Term Memory (BiLSTM) deep neural network. Comput. Electron. Agric. 2021, 191, 106568. [Google Scholar] [CrossRef]
- Zou, J.; Xu, F.; Petrosian, O. Explainable AI: Graph Based Sampling Approach for High Dimensional AI System. In International Conference on Intelligent Information Technologies for Industry; Springer Nature: Cham, Switzerland, 2023; pp. 410–422. [Google Scholar]
- Zhang, Y.; Sun, Q.; Qi, D. ShapTime: A General XAI Approach for Explainable Time Series Forecasting. In Intelligent Systems Conference; Springer Nature: Cham, Switzerland, 2023; pp. 659–673. [Google Scholar]
- Zhang, Y.; Sun, Q.; Liu, J. Long-Term Forecasting of Air Pollution Particulate Matter (PM2.5) and Analysis of Influencing Factors. Sustainability 2023, 16, 19. [Google Scholar] [CrossRef]
Abbreviation | Explanation | Abbreviation | Explanation |
---|---|---|---|
XAI | Explainable Artificial Intelligence | ARIMA | Autoregressive Integrated Moving Average |
XGBoost | Extreme Gradient Boosting | ANN | Artificial Neural Networks |
LightGBM | Light Gradient Boosting Machine | CNN | Convolutional Neural Networks |
CatBoost | Categorical Gradient Boosting | SHAP | Shapley Additive Explanations |
RNN | Recurrent Neural Networks | Bi-RNN | Bidirectional RNN |
LSTM | Long Short-Term Memory | Bi-LSTM | Bidirectional LSTM |
GRU | Gated Recurrent Unit | Bi-GRU | Bidirectional GRU |
GOSS | Gradient-Based One-Side Sampling | STBS | Symmetric Tree-Based Sampling |
MLP | Multilayer Perceptron | IoT | Internet of Things |
Metrics | MSE | MAE | |||||||
---|---|---|---|---|---|---|---|---|---|
Horizon | 56 | 120 | 240 | 56 | 120 | 240 | 56 | 120 | 240 |
XGB | 0.8950 | 0.8803 | 0.9365 | 0.1186 | 0.1488 | 0.0895 | 0.2436 | 0.2653 | 0.1429 |
LGB | 0.8856 | 0.9180 | 0.9407 | 0.1126 | 0.1038 | 0.0799 | 0.2199 | 0.1738 | 0.1498 |
Cat | 0.9117 | 0.9153 | 0.9405 | 0.0982 | 0.1041 | 0.0832 | 0.1912 | 0.1771 | 0.1433 |
ANN | 0.8851 | 0.8635 | 0.8152 | 0.1262 | 0.1812 | 0.1989 | 0.1979 | 0.2212 | 0.2595 |
RNN | 0.9196 | 0.8486 | 0.8544 | 0.0971 | 0.1820 | 0.1742 | 0.1854 | 0.2440 | 0.2530 |
LSTM | 0.9064 | 0.8649 | 0.8393 | 0.1042 | 0.1433 | 0.1611 | 0.1772 | 0.2204 | 0.2452 |
GRU | 0.9116 | 0.8785 | 0.8535 | 0.1049 | 0.1519 | 0.1662 | 0.1873 | 0.2290 | 0.2442 |
Bi-R | 0.9095 | 0.8439 | 0.8723 | 0.1023 | 0.1988 | 0.1597 | 0.1934 | 0.2562 | 0.2439 |
Bi-L | 0.9051 | 0.8635 | 0.8426 | 0.1050 | 0.1463 | 0.1585 | 0.1762 | 0.2285 | 0.2425 |
Bi-G | 0.9131 | 0.8704 | 0.8434 | 0.1050 | 0.1586 | 0.1744 | 0.1877 | 0.2319 | 0.2565 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrosian, O.; Zhang, Y. Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI. Smart Cities 2024, 7, 3388-3411. https://doi.org/10.3390/smartcities7060132
Petrosian O, Zhang Y. Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI. Smart Cities. 2024; 7(6):3388-3411. https://doi.org/10.3390/smartcities7060132
Chicago/Turabian StylePetrosian, Ovanes, and Yuyi Zhang. 2024. "Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI" Smart Cities 7, no. 6: 3388-3411. https://doi.org/10.3390/smartcities7060132
APA StylePetrosian, O., & Zhang, Y. (2024). Solar Power Generation Forecasting in Smart Cities and Explanation Based on Explainable AI. Smart Cities, 7(6), 3388-3411. https://doi.org/10.3390/smartcities7060132