Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides
Abstract
:1. Introduction
2. Methodology
2.1. Numerical Model: OpenFOAM
2.2. Benchmark Simulation
2.3. Numerical Settings
2.4. Sensitivity Studies
3. Results
3.1. Wave Amplitudes
3.2. Wave Periods, Celerity, and Wavelength
3.3. Predictive Equations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fritz, H.M.; Hager, W.H.; Minor, H.-E. Lituya Bay case rockslide impact and wave run-up. Sci. Tsunami Hazards 2001, 19, 3–22. [Google Scholar]
- Miller, D.J. Giant waves in Lituya Bay, Alaska. In Geological Survey Professional Paper; US Government Printing Office: Washington, DC, USA, 1960; pp. 51–86. [Google Scholar]
- Genevois, R.; Ghirotti, M. The 1963 Vaiont landslide. G. Di Geol. Appl. 2005, 1, 41–52. [Google Scholar] [CrossRef]
- Müller, L. The rock slide in the Vajont valley. Rock. Mech. Eng. Geol. 1964, 2, 148–212. [Google Scholar]
- Panizzo, A.; De Girolamo, P.; Di Risio, M.; Maistri, A.; Petaccia, A. Great landslide events in Italian artificial reservoirs. Nat. Hazards Earth Syst. Sci. 2005, 5, 733–740. [Google Scholar] [CrossRef]
- Brideau, M.A.; Sturzenegger, M.; Stead, D.; Jaboyedoff, M.; Lawrence, M.; Roberts, N.J.; Clague, J.J. Stability analysis of the 2007 Chehalis lake landslide based on long-range terrestrial photogrammetry and airborne LiDAR data. Landslides 2012, 9, 75–91. [Google Scholar] [CrossRef]
- Fritz, H.M.; Hillaire, J.V.; Molière, E.; Wei, Y.; Mohammed, F. Twin tsunamis triggered by the 12 January 2010 Haiti Earthquake. Pure Appl. Geophys. 2013, 170, 1463–1474. [Google Scholar] [CrossRef]
- Grilli, S.T.; Tappin, D.R.; Carey, S.; Wattm, S.F.L.; Ward, S.N.; Grilli, A.R.; Engwell, S.L.; Zhang, C.; Kirby, J.T.; Schambach, L.; et al. Modelling of the tsunami from the 22 December 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Sci. Rep. 2019, 9, 11946. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Ishibe, T.; Sandanbata, O.; Muhari, A.; Wijanarto, A.B. Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami, Indonesia. Ocean Eng. 2020, 195, 106733. [Google Scholar] [CrossRef]
- Takabatake, T.; Shibayama, T.; Esteban, M.; Achiari, H.; Nurisman, N.; Gelfi, M.; Tarigan, T.A.; Kencana, E.R.; Fauzi, M.A.R.; Panalaran, S.; et al. Field survey and evacuation behaviour during the 2018 Sunda Strait tsunami. Coast. Eng. J. 2019, 61, 423–443. [Google Scholar] [CrossRef]
- Fine, I.V.; Rabinovich, A.B.; Bornhold, B.D.; Thomson, R.E.; Kulikov, E.A. The Grand Banks landslide-generated tsunami of 18 November 1929: Preliminary analysis and numerical modeling. Mar. Geol. 2005, 215, 45–57. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; McMurtry, G.M.; Lafoy, Y.; Matsumoto, T. The Sissano, Papua New Guinea tsunami of July 1998-offshore evidence on the source mechanism. Mar. Geol. 2001, 175, 1–23. [Google Scholar] [CrossRef]
- Tappin, D.R.; Watts, P.; Grilli, S.T. The Papua New Guinea tsunami of 1998: Anatomy of a catastrophic event. Nat. Hazards Earth Syst. Sci. 2008, 8, 243–266. [Google Scholar] [CrossRef]
- Aranguiz, R.; Esteban, M.; Takagi, H.; Mikami, T.; Takabatake, T.; Gomez, M.; Gonzalez, J.; Shibayama, T.; Okuwaki, R.; Yagi, Y.; et al. The 2019 Sulawesi tsunami in Palu city as a result of several landslides and coseismic tsunamis. Coast. Eng. J. 2020, 62, 445–459. [Google Scholar] [CrossRef]
- Arikawa, T.; Muhari, A.; Okumura, Y.; Dohi, Y.; Afriyanto, B.; Sujatmiko, K.A.; Imamura, F. Coastal subsidence induced several tsunamis during the 2018 Sulawesi earthquake. J. Disaster Res. 2018, 13, sc20181204. [Google Scholar] [CrossRef]
- Heidarzadeh, M.; Muhari, A.; Wijanarto, A.B. Insights on the source of the 28 September 2018 Sulawesi tsunami, Indonesia based on spectral analyses and numerical simulations. Pure Appl. Geophys. 2018, 176, 25–43. [Google Scholar] [CrossRef]
- Omira, R.; Dogan, G.G.; Hidayat, R.; Husrin, S.; Prasetya, G.; Annunziato, A.; Proietti, C.; Probst, P.; Paparo, M.A.; Wronna, M.; et al. The 28 September 2018, tsunami in Palu-Sulawesi, Indonesia: A post-event field survey. Pure Appl. Geophys. 2019, 176, 1379–1395. [Google Scholar] [CrossRef]
- Sassa, S.; Takagawa, T. Liquefied gravity flow-induced tsunami: First evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters. Landslides 2019, 16, 195–200. [Google Scholar] [CrossRef]
- Harnantyari, A.; Takabatake, T.; Esteban, M.; Valenzuela, P.; Nishida, Y.; Shibayama, T.; Achiari, H.; Marzuki, A.; Marzuki, M.; Aránguiz, R.; et al. Tsunami awareness and evacuation behaviour during the 2018 Sulawesi Earthquake tsunami. Int. J. Disaster Risk Reduct. 2020, 43, 101389. [Google Scholar] [CrossRef]
- Kamphuis, J.W.; Bowering, R.J. Impulse Waves Generated by Landslides. In Proceedings of the 12th Coastal Engineering Conference, Washington, DC, USA, 13–18 September 1970; Volume 1, pp. 575–588. [Google Scholar]
- Panizzo, A.; De Girolamo, P.; Petaccia, A. Forecasting impulse waves generated by subaerial landslides. J. Geophys. Res. Ocean. 2005, 110, C12025. [Google Scholar] [CrossRef]
- Heller, V.; Spinneken, J. On the effect of the water body geometry on landslide–tsunamis: Physical insight from laboratory tests and 2D to 3D wave parameter transformation. Coast. Eng. 2015, 104, 113–134. [Google Scholar] [CrossRef]
- Grilli, S.T.; Watts, P. Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. J. Waterw. Port. Coast. Ocean. Eng. 2005, 131, 283–297. [Google Scholar] [CrossRef]
- Watts, P.; Grilli, S.T.; Tappin, D.R.; Fryer, G.J. Tsunami generation by submarine mass failure. II: Predictive equations and case studies. J. Waterw. Port. Coast. Ocean. Eng. 2005, 131, 298–310. [Google Scholar] [CrossRef]
- Fritz, H.M.; Hager, W.H.; Minor, H.-E. Near field characteristics of landslide generated impulse waves. J. Waterw. Port. Coast. Ocean. Eng. 2004, 130, 287–302. [Google Scholar] [CrossRef]
- McFall, B.C.; Fritz, H.M. Physical modelling of tsunamis generated by three-dimensional deformable granular landslides on planar and conical island slopes. Proc. R. Soc. A 2016, 472, 20160052. [Google Scholar] [CrossRef] [PubMed]
- Miller, G.S.; Take, W.A.; Mulligan, R.P.; McDougall, S. Tsunamis generated by long and thin granular landslides in a large flume. J. Geophys. Res. Ocean. 2017, 122, 653–668. [Google Scholar] [CrossRef]
- Grilli, S.T.; Shelby, M.; Kimmoun, O.; Dupont, G.; Nicolsky, D.; Gangfeng, M.; Shi, F. Modeling coastal tsunami hazard from submarine mass failures: Effect of slide rheology, experimental validation, and case studies off the US East Coast. Nat. Hazards 2017, 86, 353–391. [Google Scholar] [CrossRef]
- Mohammed, F.; Fritz, H.M. Physical modeling of tsunamis generated by three-dimensional deformable granular landslides. J. Geophys. Res. Ocean. 2012, 117, C11015. [Google Scholar] [CrossRef]
- McFall, B.C.; Mohammed, F.; Fritz, H.M.; Liu, Y. Laboratory experiments on three-dimensional deformable granular landslides on planar and conical slopes. Landslides 2018, 15, 1713–1730. [Google Scholar] [CrossRef]
- Bullard, G.K.; Mulligan, R.P.; Carreira, A.; Take, W.A. Experimental analysis of tsunamis generated by the impact of landslides with high mobility. Coast. Eng. 2019, 152, 103538. [Google Scholar] [CrossRef]
- Takabatake, T.; Mäll, M.; Han, D.C.; Inagaki, N.; Kisizaki, D.; Esteban, M.; Shibayama, T. Physical modeling of tsunamis generated by subaerial, partially submerged, and submarine landslides. Coast. Eng. J. 2020, 62, 582–601. [Google Scholar] [CrossRef]
- Robbe-Saule, M.; Morize, C.; Henaff, R.; Bertho, Y.; Sauret, A.; Gondret, P. Experimental investigation of tsunami waves generated by granular collapse into water. J. Fluid. Mech. 2021, 907, A11. [Google Scholar] [CrossRef]
- Takabatake, T.; Han, D.C.; Valdez, J.J.; Inagaki, N.; Mäll, M.; Esteban, M.; Shibayama, T. Three-dimensional physical modeling of tsunamis generated by partially submerged landslides. J. Geophys. Res. Ocean. 2022, 127, e2021JC017826. [Google Scholar] [CrossRef]
- Ataie-Ashtiani, B.; Najafi-Jilani, A. Laboratory investigations on impulsive waves caused by underwater landslide. Coast. Eng. 2008, 55, 989–1004. [Google Scholar] [CrossRef]
- Fujii, N.; Matsuyama, M.; Mori, H. Hydraulic experiments of tsunami generation with plane water tank due to landslide. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2018, 74, 145–150. [Google Scholar] [CrossRef] [PubMed]
- Gómez, J.; Berezowsky, M.; Lara, A.; González, E. Prediction of the water waves generated by a potential semisubmerged landslide in La Yesca reservoir, Mexico. Landslides 2016, 13, 1509–1518. [Google Scholar] [CrossRef]
- Cabrera, M.A.; Pinzon, G.; Take, W.A.; Mulligan, R.P. Wave generation across a continuum of landslide conditions from the collapse of partially submerged to fully submerged granular columns. J. Geophys. Res. Ocean. 2020, 125, e2020JC016465. [Google Scholar] [CrossRef]
- Huang, B.; Zhang, Q.; Wang, J.; Luo, C.L.; Chen, X.T.; Chen, L.C. Experimental study on impulse waves generated by gravitational collapse of rectangular granular piles. Phys. Fluids 2020, 32, 033301. [Google Scholar] [CrossRef]
- Liapidevskii, V.Y.; Dutykh, D.; Gisclon, M. On the modelling of shallow turbidity flows. Adv. Water Resour. 2018, 113, 310–327. [Google Scholar] [CrossRef]
- Jiang, L.; LeBlond, P.H. The coupling of a submarine slide and the surface waves which it generates. J. Geophys. Res. Ocean. 1992, 97, 12731–12744. [Google Scholar] [CrossRef]
- Jiang, L.; Leblond, P.H. Numerical modeling of an underwater Bingham plastic mudslide and the waves which it generates. J. Geophys. Res. Ocean. 1993, 98, 10303–10317. [Google Scholar] [CrossRef]
- Imamura, F.; Imteaz, M.M.A. Long waves in two-layers: Governing equations and numerical model. J. Sci. Tsunami Hazards 1995, 13, 3–24. [Google Scholar]
- Maeno, F.; Imamura, F. Tsunami generation by a rapid entrance of pyroclastic flow into the sea during the 1883 Krakatau eruption, Indonesia. J. Geophys. Res. 2011, 116, B09205. [Google Scholar] [CrossRef]
- Ren, Z.; Wang, Y.; Wang, P.; Hou, J.; Gao, Y.; Zhao, L. Numerical study of the triggering mechanism of the 2018 Anak Krakatau Tsunami: Eruption or collapsed landslide? Nat. Hazards 2020, 102, 1–13. [Google Scholar] [CrossRef]
- Wang, Y.; Heidarzadeh, M.; Satake, K.; Mulia, I.E.; Yamada, M. A tsunami warning system based on offshore bottom pressure gauges and data assimilation for Crete Island in the Eastern Mediterranean Basin. J. Geophys. Res. Solid. Earth 2020, 125, e2020JB020293. [Google Scholar] [CrossRef]
- Koyano, K.; Takabatake, T.; Esteban, M.; Shibayama, T. Influence of edge waves on tsunami characteristics along Kujukuri beach, Japan. J. Waterw. Port. Coast. Ocean. Eng. 2021, 147, 04020049. [Google Scholar] [CrossRef]
- Kim, G.-B.; Cheng, W.; Sunny, R.C.; Horrillo, J.J.; McFall, B.C.; Mohammed, F.; Fritz, H.M.; Beget, J.; Kowalik, Z. Three dimensional landslide generated tsunamis: Numerical and physical model comparisons. Landslides 2020, 17, 1145–1161. [Google Scholar] [CrossRef]
- Ma, G.; Kirby, J.T.; Hsu, T.-J.; Shi, F. A two-layer granular landslide model for tsunami wave generation: Theory and computation. Ocean. Model. 2015, 93, 40–55. [Google Scholar] [CrossRef]
- Baba, T.; Gon, Y.; Imai, K.; Yamashita, K.; Matsuno, T.; Hayashi, M.; Ichihara, H. Modeling of a dispersive tsunami caused by a submarine landslide based on detailed bathymetry of the continental slope in the Nankai trough, southwest Japan. Tectonophysics 2019, 768, 228182. [Google Scholar] [CrossRef]
- Dutykh, D.; Kalisch, H. Boussinesq modeling of surface waves due to underwater landslides. Nonlin. Processes Geophys. 2013, 20, 267–285. [Google Scholar] [CrossRef]
- Paris, A.; Heinrich, P.; Paris, R.; Abadie, S. The 22 December 2018 Anak Krakatau, Indonesia, landslide and tsunami: Preliminary modeling results. Pure Appl. Geophys. 2020, 177, 571–590. [Google Scholar] [CrossRef]
- Liu, P.L.-F.; Wu, T.-R.; Raichlen, F.; Synolakis, C.E.; Borrero, J.C. Runup and rundown generated by three-dimensional masses. J. Fluid. Mech. 2005, 536, 107–144. [Google Scholar] [CrossRef]
- Abadie, S.; Morichon, D.; Grilli, S.T.; Glockner, S. Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coast. Eng. 2010, 57, 779–794. [Google Scholar] [CrossRef]
- Montagna, F.; Bellotti, G.; Di Risio, M. 3D numerical modeling of landslide-generated tsunamis around a conical island. Nat. Hazards 2011, 58, 591–608. [Google Scholar] [CrossRef]
- Horrillo, J.; Wood, A.; Kim, G.-B.; Parambath, A. A simplified 3-D Navier- Stokes numerical model for landslide-tsunami: Application to the Gulf of Mexico. J. Geophys. Res. Ocean. 2011, 118, 6934–6950. [Google Scholar] [CrossRef]
- Urakami, K.; Yoneyama, N. Reproducibility verification of 3D fluid-rigid body coupled analysis method to tsunamis generated by landslide. JDSM 2021, 40, 243–259. [Google Scholar] [CrossRef]
- Sabeti, R.; Heidarzadeh, M. Numerical simulations of tsunami wave generation by submarine landslides: Validation and sensitivity analysis to landslide parameters. J. Waterw. Port. Coast. Ocean. Eng. 2022, 148, 05021016. [Google Scholar] [CrossRef]
- Clous, L.; Abadie, S. Simulation of energy transfers in waves generated by granular slides. Landslides 2019, 16, 1663–1679. [Google Scholar] [CrossRef]
- Mohammed, F.; McFall, B.C.; Fritz, H.M. Tsunami generation by 3D deformable granular landslides. In Proceedings of the 2011 Solutions to Coastal Disasters Conference, Anchorage, Alaska, 25–29 June 2011. [Google Scholar]
- Douglas, S.; Nistor, I. On the effect of bed condition on the development of tsunami-induced loading on structures using OpenFOAM. Nat. Hazards 2015, 76, 1335–1356. [Google Scholar] [CrossRef]
- Ishii, H.; Takabatake, T.; Esteban, M.; Stolle, J.; Shibayama, T. Experimental and numerical investigation on tsunami run-up flow around coastal buildings. Coast. Eng. J. 2021, 63, 485–503. [Google Scholar] [CrossRef]
- Romano, A.; Lara, J.; Barajas, G.; Di Paolo, B.; Bellotti, G.; Di Risio, M.; Losada, I.; De Girolamo, P. Tsunamis generated by submerged landslides: Numerical analysis of the near-field wave characteristics. J. Geophys. Res. Ocean. 2020, 125, e2020JC016157. [Google Scholar] [CrossRef]
- Huang, C.-S.; Chan, I.-C. Effects of slide shape on impulse waves generated by a subaerial solid slide. Water 2022, 14, 2643. [Google Scholar] [CrossRef]
- Sabeti, R.; Heidarzadeh, M.; Romano, A.; Ojeda, G.B.; Lara, J.L. Three-dimensional simulations of subaerial landslide-generated waves: Comparing OpenFOAM and FLOW-3D HYDRO models. Pure Appl. Geophys. 2024, 181, 1075–1093. [Google Scholar] [CrossRef]
- Hosaka, K.; Matsuyama, M.; Mori, H. Three-dimensional numerical simulation of tsunami generation by landslide. J. Jpn. Soc. Civ. Eng. Ser. B2 (Coast. Eng.) 2019, 75, 1075–1093. [Google Scholar] [CrossRef] [PubMed]
- Paris, A.; Heinrich, P.; Abadie, S. Landslide tsunamis: Comparison between depth-averaged and Navier–Stokes models. Coast. Eng. 2021, 170, 104022. [Google Scholar] [CrossRef]
- Rauter, M.; Hoße, L.; Mulligan, R.P.; Take, W.A.; Løvholt, F. Numerical simulation of impulse wave generation by idealized landslides with OpenFOAM. Coast. Eng. 2021, 165, 103815. [Google Scholar] [CrossRef]
- Rauter, M.; Viroulet, S.; Gylfadóttir, S.S.; Fellin, W.; Løvholt, F. Granular porous landslide tsunami modelling–The 2014 Lake Askja flank collapse. Nat. Commun. 2022, 13, 678. [Google Scholar] [CrossRef]
- Romano, A.; Lara, J.L.; Barajas, G.; Losada, I.J. Numerical modeling of tsunamis generated by granular landslides in OpenFOAM®: A Coulomb viscoplastic rheology. Coast. Eng. 2023, 186, 104391. [Google Scholar] [CrossRef]
- Leblanc, J.; Turmel, D.; Locat, J.; Harbitz, C.B.; Løvholt, F.; Kim, J.; Grenon, M.; Locat, A. Tsunami generation by potential, partially submerged rockslides in an abandoned open-pit mine: The case of Black Lake, Quebec, Canada. Can. Geotech. J. 2018, 55, 1769–1780. [Google Scholar] [CrossRef]
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten years of industrial experience with the SST turbulence model. Proc. Fourth Int. Symp. Turbul. Heat. Mass. Transf. 2003, 4, 625–632. [Google Scholar]
- Sadaka, G.; Dutykh, D. Adaptive numerical modeling of tsunami wave generation and propagation with FreeFem++. Geosciences 2020, 10, 351. [Google Scholar] [CrossRef]
- Khakimzyanov, G.S.; Dutykh, D.; Mitsotakis, D.; Shokina, N.Y. Numerical simulation of conservation laws with moving grid nodes: Application to tsunami wave modelling. Geosciences 2019, 9, 197. [Google Scholar] [CrossRef]
Parameters | Subaerial | Partially Submerged | Submarine |
---|---|---|---|
θ (°) | 30, 45, 60 | 30, 45, 60 | 30, 45, 60 |
m (kg) | 5, 10, 15 | 5, 10, 15 | 5, 10, 15 |
h (m) | 0.20, 0.25, 0.30, 0.35, 0.40 | 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55 | 0.40, 0.45, 0.50, 0.55, 0.60, 0.65 |
hi (m) | 0.40 | 0.20, 0.40 | 0.20, 0.40 |
ha (m) | 0–0.20 | 0.01–0.23 | – |
hs (m) | – | 0.05–0.25 | 0.02–0.27 |
M | 0.08–0.94 | 0.04–0.60 | 0.03–0.23 |
A | 0–1.00 | 0.02–0.93 | – |
S | – | 0.11–0.56 | 0.03–0.67 |
I | 1.00–2.00 | 0.44–0.89 | 0.33–0.73 |
X | 2.50–30.00 | 1.67–24.00 | 1.54–15.00 |
Subaerial | Partially Submerged | Submarine | |
---|---|---|---|
ac1 for all | 21.94 | 43.15 | 42.47 |
ac1 for 45° | 16.33 | 29.61 | 35.84 |
ac1 for 30° | 16.89 | 25.69 | 37.02 |
at1 for 60° | 41.01 | 67.61 | 69.75 |
at1 for all | 20.64 | 19.62 | 8.89 |
at1 for 45° | 15.42 | 6.97 | 9.00 |
at1 for 30° | 23.09 | 11.30 | 5.14 |
at1 for 60° | 31.24 | 37.48 | 14.56 |
ac2 for all | 27.97 | 21.39 | 17.48 |
ac2 for 45° | 16.81 | 12.88 | 16.80 |
ac2 for 30° | 33.03 | 16.27 | 20.15 |
ac2 for 60° | 50.80 | 33.09 | 15.10 |
Subaerial | Partially Submerged | Submarine | |
---|---|---|---|
ac1 for all at WG1 | 23.04 | 34.27 | 27.67 |
ac1 for all at WG2 | 19.96 | 38.88 | 34.42 |
ac1 for all at WG3 | 20.57 | 46.49 | 47.30 |
ac1 for all at WG4 | 24.18 | 52.97 | 60.48 |
ac1 for 45° at WG1 | 19.38 | 21.58 | 23.26 |
ac1 for 45° at WG2 | 13.74 | 26.40 | 30.08 |
ac1 for 45° at WG3 | 15.04 | 32.09 | 42.72 |
ac1 for 45° at WG4 | 17.16 | 38.37 | 47.28 |
ac1 for 30° at WG1 | 13.96 | 20.66 | 27.62 |
ac1 for 30° at WG2 | 16.43 | 24.84 | 28.19 |
ac1 for 30° at WG3 | 17.83 | 25.69 | 37.02 |
ac1 for 30° at WG4 | 19.33 | 31.56 | 69.75 |
ac1 for 60° at WG1 | 41.27 | 55.48 | 40.09 |
ac1 for 60° at WG2 | 39.07 | 60.13 | 56.58 |
ac1 for 60° at WG3 | 37.14 | 73.90 | 77.10 |
ac1 for 60° at WG4 | 46.57 | 80.95 | 105.24 |
Subaerial | Partially Submerged | Submarine | |
---|---|---|---|
Tc1 for all | 8.92 | 4.48 | 4.32 |
Tc1 for 45° | 7.73 | 3.61 | 3.86 |
Tc1 for 30° | 13.62 | 5.58 | 4.33 |
Tc1 for 60° | 7.21 | 4.68 | 5.58 |
Cc1 for all | 5.33 | 6.69 | 9.63 |
Cc1 for 45° | 5.01 | 6.53 | 8.86 |
Cc1 for 30° | 4.72 | 5.66 | 9.25 |
Cc1 for 60° | 6.71 | 7.49 | 12.39 |
Lc1 for all | 10.55 | 8.42 | 10.89 |
Lc1 for 45° | 9.04 | 7.17 | 9.88 |
Lc1 for 30° | 15.04 | 6.95 | 10.59 |
Lc1 for 60° | 9.84 | 10.59 | 14.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takabatake, T.; Takemoto, R. Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides. GeoHazards 2024, 5, 1152-1171. https://doi.org/10.3390/geohazards5040054
Takabatake T, Takemoto R. Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides. GeoHazards. 2024; 5(4):1152-1171. https://doi.org/10.3390/geohazards5040054
Chicago/Turabian StyleTakabatake, Tomoyuki, and Ryosei Takemoto. 2024. "Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides" GeoHazards 5, no. 4: 1152-1171. https://doi.org/10.3390/geohazards5040054
APA StyleTakabatake, T., & Takemoto, R. (2024). Numerical Modeling of Tsunamis Generated by Subaerial, Partially Submerged, and Submarine Landslides. GeoHazards, 5(4), 1152-1171. https://doi.org/10.3390/geohazards5040054