Tectonic Control of Aseismic Creep and Potential for Induced Seismicity Along the West Valley Fault in Southeastern Metro Manila, Philippines
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Topographic, Lithologic, and Structural Context of Creep
3.2. Creep Displacements and Pre-Creep Scarp Heights
3.3. Paleoseismic Mapping of Creeping Segment Exposure
3.4. Potential for Induced Seismicity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nelson, A.R.; Personius, S.F.; Rimando, R.E.; Punongbayan, R.S.; Tungol, N.; Mirabueno, H.; Rasdas, A. Multiple large earthquakes in the past 1500 years on a fault in metropolitan Manila, the Philippines. Bull. Seismol. Soc. Am. 2000, 90, 73–85. [Google Scholar] [CrossRef]
- Rimando, R.E. Neotectonic and Paleoseismic Study of the Marikina Valley Fault System, Philippines. Ph.D. Dissertation, State University of New York at Binghamton, Binghamton, NY, USA, 2002; 232p. [Google Scholar]
- Rimando, R.E.; Knuepfer, P.L. Neotectonics of the Marikina Valley fault system (MVFS) and tectonic framework of structures in northern and central Luzon, Philippines. Tectonophysics 2006, 415, 17–38. [Google Scholar] [CrossRef]
- Rimando, R.E.; Kurita, K.; Kinugasa, Y. Spatial and temporal variation of aseismic creep along the dilational jog of the West Valley Fault, Philippines: Hazard implications. Front. Earth Sci. 2022, 10, 935161. [Google Scholar] [CrossRef]
- Seno, T.; Stein, S.; Gripp, A.E. A model for the motion of the Philippine Sea Plate consistent with NUVEL-l and geological data. J. Geophys. Res. 1993, 98, 17941–17948. [Google Scholar] [CrossRef]
- Philippine Institute of Volcanology and Seismology (PHIVOLCS). Available online: http://faultfinder.phivolcs.dost.gov.ph/ (accessed on 30 July 2024).
- Ramos, E.G. Subsidence, a serious hazard caused by groundwater extraction in Metro Manila. In Proceedings of the 11th Annual Convention of the Geological Society of the Philippines, Pasig City, Philippines, 2–4 December 1998; pp. 18–30. [Google Scholar]
- Raucoules, D.; Le Cozannet, G.; Wöppelmann, G.; Michele, M.; Gravelle, M.; Daag, A.; Marcos, M. High nonlinear urban ground motion in Manila (Philippines) from 1993 to 2010 observed by DInSAR: Implications for sea-level measurement. Remote Sens. Environ. 2013, 139, 386–397. [Google Scholar] [CrossRef]
- Eco, R.C.; Rodolfo, K.S.; Sulapas, J.J.; Morales Rivera, A.M.; Lagmay, A.M.F.; Amelung, F. Disaster in slow motion: Widespread land subsidence in and around Metro Manila, Philippines quantified by Insar time-series analysis. JSM Environ. Sci. Ecol. 2020, 8, 1068. [Google Scholar]
- Burford, R.O.; Harsh, P.W. Slip on the San Andreas fault in central California from alinement array surveys. Bull. Seismol. Soc. Am. 1980, 70, 1233–1261. [Google Scholar]
- Savage, J.C.; Prescott, W.H.; Lisowski, M.; King, N. Geodolite measurements of deformation near Hollister, California, 1971–1978. J. Geophys. Res. 1979, 84, 7599–7615. [Google Scholar] [CrossRef]
- Lienkaemper, J.J.; Borchardt, G.; Lisowski, M. Historic creep rate and potential for seismic slip along the Hayward fault, California. J. Geophys. Res. 1991, 96, 18261–18283. [Google Scholar] [CrossRef]
- Kelson, K.I.; Simpson, G.D.; Lettis, W.R.; Haraden, C.C. Holocene slip rate and earthquake recurrence of the northern Calaveras fault at Leyden Creek, northern California. J. Geophys. Res. 1996, 101, 5961–5975. [Google Scholar] [CrossRef]
- Stenner, H.D.; Ueta, K. Looking for evidence of large surface rupturing events on the rapidly creeping Southern Calaveras fault, California. In Proceedings of the Hokudan International Symposium and School on Active Faulting, Hokudan-cho, Awaji Island, Japan, 13–17 January 2000; pp. 479–486. [Google Scholar]
- Yu, S.B.; Liu, C.C. Fault creep on the central segment of the Longitudinal Valley fault, eastern Taiwan. Proc. Geol. Soc. China 1989, 32, 209–231. [Google Scholar]
- Ambraseys, N.N. Some characteristic features of the Anatolian fault zone. Tectonophysics 1970, 9, 143–165. [Google Scholar] [CrossRef]
- Bureau of Mines and Geosciences. Geology and Mineral Resources of the Philippines, 1st ed.; Bureau of Mines and Geosciences: Manila, Philippines, 1981; pp. 152–153.
- Rockwell, T.K. Recognition of individual paleoseismic events in strike-slip environments. In Directions in Paleoseismology, Proceedings of Conference XXXIX, Albuquerque, NM, USA, 21–23 April 1987; Crone, A.J., Omdahl, E.M., Eds.; United States Geological Survey: Denver, CO, USA, 1987. Available online: https://pubs.usgs.gov/of/1987/0673/report.pdf (accessed on 16 April 2024).
- Sieh, K.E.; Williams, P.L. Behavior of the southernmost San Andreas Fault during the past 300 years. J. Geophys. Res. 1990, 95, 6629–6645. [Google Scholar] [CrossRef]
- McCalpin, J.P. Nelson AR Introduction to paleoseismology. In Paleoseismology; McCalpin, J.P., Ed.; Academic Press: Orlando, FL, USA, 1996; pp. 1–32. [Google Scholar]
- Pavlides, S. First palaeoseismological results from Greece. Ann. Geofis. 1996, 39, 545–555. [Google Scholar] [CrossRef]
- Weldon, R.J.; McCalpin, J.P.; Rockwell, T.K. Paleoseismology of strike-slip tectonic environments. In Paleoseismology; McCalpin, J.P., Ed.; Academic Press: Orlando, FL, USA, 1996; pp. 271–329. [Google Scholar]
- Ferreli, L.; Michetti, A.M.; Serva, L.; Vittori, E. Stratigraphic evidence of coseismic faulting and aseismic fault creep from exploratory trenches at Mt. Etna Volcano (Sicily, Italy). In Ancient Seismites; Ettensohn, F., Rast, N., Brett, C., Eds.; Geological Society of America: Boulder, CO, USA, 2002; pp. 49–62. [Google Scholar] [CrossRef]
- Carver, G.A. Geologic criteria for recognition of individual paleoseismic events in compressional tectonic environments. In Directions in Paleoseismology, Proceedings of Conference XXXIX, Albuquerque, NM, USA, 21–23 April 1987; Crone, A.J., Omdahl, E.M., Eds.; United States Geological Survey: Denver, CO, USA, 1987. [Google Scholar]
- McCalpin, J.P. Geologic criteria for recognition of individual paleoseismic events in extensional environments. In Directions in Paleoseismology, Proceedings of Conference XXXIX, Albuquerque, NM, USA, 21–23 April 1987; Crone, A.J., Omdahl, E.M., Eds.; United States Geological Survey: Denver, CO, USA, 1987. [Google Scholar]
- Bonilla, M.G.; Lienkaemper, J.J. Factors Affecting the Recognition of Faults Exposed in Exploratory Trenches; U.S. Government Printing Office: Washington, DC, USA, 1991; pp. 1–54. [CrossRef]
- Holzer, T.L. Ground failure induced by ground-water withdrawal from unconsolidated sediment. In Man-Induced Land Subsidence; Holzer, T., Ed.; Geological Society of America: Boulder, CO, USA, 1984; Volume 6, pp. 67–105. [Google Scholar]
- Hernández-Madrigal, V.M.; Muñiz-Jáuregui, J.A.; Garduño-Monroy, V.H.; Flores-Lázaro, N.; Figueroa-Miranda, S. Depreciation factor equation to evaluate the economic losses from ground failure due to subsidence related to groundwater withdrawal. Nat. Sci. 2014, 6, 108–113. [Google Scholar] [CrossRef]
- Holzer, T.L.; Davis, S.N.; Lofgren, B.E. Faulting caused by groundwater extraction in southcentral Arizona. J. Geophys. Res. 1979, 84, 603–612. [Google Scholar] [CrossRef]
- Segall, P. Earthquakes triggered by fluid extraction. Geology 1989, 17, 942–946. [Google Scholar] [CrossRef]
- Gonzalez, P.J.; Tiampo, K.F.; Palano, M.; Cannavo, F.; Fernandez, J. The 2011 Lorca earthquake slip distribution controlled by groundwater crustal unloading. Nat. Geosci. 2012, 5, 821–825. [Google Scholar] [CrossRef]
- Amos, C.B.; Audet, P.; Hammond, W.C.; Bürgmann, R.; Johanson, I.A.; Blewitt, G. Uplift and seismicity driven by groundwater depletion in central California. Nature 2014, 509, 483–486. [Google Scholar] [CrossRef]
- Kundu, B.; Vissa, N.K.; Gahalaut, V.K. Influence of anthropogenic groundwater unloading in Indo-Gangetic plains on the 25 April 2015 Mw 7.8 Gorkha, Nepal earthquake. Geophys. Res. Lett. 2015, 42, 10607–10613. [Google Scholar] [CrossRef]
- Kundu, B.; Vissa, N.K.; Gahalaut, K.; Gahalaut, V.K.; Panda, D.; Malik, K. Influence of anthropogenic groundwater pumping on the 2017 November 12 M7.3 Iran-Iraq border earthquake. Geophys. J. Int. 2019, 218, 833–839. [Google Scholar] [CrossRef]
- Foulger, G.R.; Wilson, M.P.; Gluyas, J.G.; Julian, B.R.; Davies, R.J. Global review of human-induced earthquakes. Earth Sci. Rev. 2018, 178, 438–514. [Google Scholar] [CrossRef]
- Wu, W. A review of unloading-induced fault instability. Undergr. Space 2021, 6, 528–538. [Google Scholar] [CrossRef]
- Ellsworth, W.L. Injection-induced earthquakes. Science 2013, 341, 142–147. [Google Scholar] [CrossRef]
- Tiwari, D.K.; Jha, B.; Kundu, B.; Gahalaut, V.K.; Vissa, N.K. Groundwater extraction-induced seismicity around Delhi region, India. Sci. Rep. 2021, 11, 10097. [Google Scholar] [CrossRef]
- Segall, P. Stress and subsidence resulting from subsurface fluid withdrawal in the epicentral region of the 1983 Coalinga earthquake. J. Geophys. Res. 1985, 90, 6801–6816. [Google Scholar] [CrossRef]
- Segall, P. Induced stresses due to fluid extraction from axisymmetric reservoirs. Pure Appl. Geophys. 1992, 139, 535–560. [Google Scholar] [CrossRef]
- Guglielmi, Y.; Cappa, F.; Avouac, J.P.; Henry, P.; Elsworth, D. Seismicity triggered by fluid injection-induced aseismic slip. Science 2015, 348, 1224–1226. [Google Scholar] [CrossRef]
- Pennington, W.D.; Davis, S.D.; Carlson, S.M.; Dupree, J.; Ewing, T.E. The evolution of seismic barriers and asperities caused by the depressuring of fault planes in oil and gas fields of South Texas. Bull. Seismol. Soc. Am. 1986, 76, 939–948. [Google Scholar]
- Frohlich, C.; DeShon, H.; Stump, B.; Hayward, C.; Hornbach, M.; Walter, J.I. A historical review of induced earthquakes in Texas. Seismol. Res. Lett. 2016, 87, 1022–1038. [Google Scholar] [CrossRef]
- Scholz, C.; Engelder, J.T. The role of asperity indentation and ploughing in rock friction. I. Asperity creep and stick slip. Int. J. Rock Mech. Min. Sci. 1976, 13, 149–154. [Google Scholar] [CrossRef]
- Aki, K. Characterization of barriers on an earthquake fault. J. Geophys. Res. 1979, 84, 6140–6148. [Google Scholar] [CrossRef]
- Lay, T.; Kanamori, H.; Ruff, L. The asperity model and the nature of large subduction zone earthquakes. Earthq. Predict. Res. 1982, 1, 3–71. [Google Scholar]
- Sibson, R.N. Effects of fault heterogeneity on rupture propagation. In Directions in Paleoseismology, Proceedings of Conference XXXIX, Albuquerque, NM, USA, 21–23 April 1987; Crone, A., Omdahl, E., Eds.; United States Geological Survey: Denver, CO, USA, 1987. [Google Scholar]
- Bakun, W.H.; Stewart, R.M.; Bufe, C.G.; Marks, S.M. Implication of seismicity for failure of a section of the San Andreas fault. Bull. Seismol. Soc. Am. 1980, 70, 185–201. [Google Scholar] [CrossRef]
- King, G.; Nábělek, J. Role of fault bends in the initiation and termination of earthquake rupture. Science 1985, 228, 984–987. [Google Scholar] [CrossRef]
- King, G.C.P. Speculations on the geometry of the initiation and termination processes of earthquake rupture and its relation to morphology and geological structure. Pure Appl. Geophys. 1986, 124, 567–585. [Google Scholar] [CrossRef]
- Perkins, D.M. Contagious fault rupture, probabilistic hazard, and contagion observability. In Directions in Paleoseismology, Proceedings of Conference XXXIX, Albuquerque, NM, USA, 21–23 April 1987; Crone, A.J., Omdahl, E.M., Eds.; United States Geological Survey: Denver, CO, USA, 1987; pp. 428–439. Available online: https://pubs.usgs.gov/of/1987/0673/report.pdf (accessed on 20 April 2024).
Unit No. | Genesis | Matrix Texture | Texture | Clast Distribution | Lower Boundary | Stratification | Other Features | |
---|---|---|---|---|---|---|---|---|
% Pebbles | % Cobbles | |||||||
1 | Fluvial/Colluvial | Silty Clay | 0 | 0 | Isolated | Not Exposed | Massive and as lenses | Clay as lenses and as cobble-sized or larger clay balls |
2 | Fluvial/Colluvial | Matrix-supported (sandy) | ~80 | 0 | Evenly distributed | Not Exposed | Massive | Sandy and pebbly with balls of clay and lenses of clay and sand |
3 | Stream Channel | Clayey sand | >50 in upper 10–15 cm | 0 | Upper: stratified, continuous Lower: evenly dispersed | Upthrown: clear, smooth to wavy Downthrown: not exposed | Upper: clear, interbedded Lower: Massive | Upper 10–15 cm cross stratified and with larger fragments of pebbles; lower is coarse sand |
4a | Stream Channel | Matrix-supported (coarse sand matrix) | 40–50 | 0 | Semi-stratified, discontinuous | Wavy, clear to diffused | Weak to massive | - |
4b | Weathered 4a | Silty clay | 0 | 0 | NA | Gradual, wavy | Massive | With dark mottles |
4c | Weathered 4a | Silty clay loam | 7% | 0 | Evenly dispersed | Gradual, wavy | Massive | Lighter than 4b; also with mottles |
5 | Stream Channel | Matrix-supported (sandy) | ~80 | 0 | Stratified, continuous | Very abrupt, smooth | Weak to distinct, interbedded | - |
6 | Stream Channel | Matrix-supported (silty clay loam) | 0–85 | 0 | Evenly dispersed | Gradual, clear to wavy | Weak to massive | With rounded pebbles, coarser than pebbles as unit 5 |
7a | Colluvium | Sandy clay loam | 25–40 | 0 | Evenly dispersed | Gradual, wavy | Weak to massive | - |
7b | Weathered 7a | Sandy loam | 7–15 | 0 | Evenly dispersed | Gradual to abrupt, wavy | Massive | - |
7c | Soil | Sandy loam | 0 | 1 | Isolated | Gradual to abrupt, wavy | Massive | - |
Fill | Fill | Loamy sand | 40–50 | 15–20 | Evenly dispersed | Abrupt, clear to smooth | Massive | With glass and plastic fragments |
Unit Offset | Displacing Fault Strand | Amount of Offset (m) |
---|---|---|
1 and 2 | a | Bottom offset indistinct |
3 | c2 and g | Bottom offset indistinct |
4 | c2 and g | ~0.60 |
4b | e4 | 0.04 |
4b | c2 | 0.06 |
6 | g | ~0.35 |
6 | d4 | 0.06 |
7 | g | 0.35 |
7b and 7c | e2 | 0.18 |
7c | g | 0.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rimando, R.E.; Knuepfer, P.L.K. Tectonic Control of Aseismic Creep and Potential for Induced Seismicity Along the West Valley Fault in Southeastern Metro Manila, Philippines. GeoHazards 2024, 5, 1172-1189. https://doi.org/10.3390/geohazards5040055
Rimando RE, Knuepfer PLK. Tectonic Control of Aseismic Creep and Potential for Induced Seismicity Along the West Valley Fault in Southeastern Metro Manila, Philippines. GeoHazards. 2024; 5(4):1172-1189. https://doi.org/10.3390/geohazards5040055
Chicago/Turabian StyleRimando, Rolly E., and Peter L. K. Knuepfer. 2024. "Tectonic Control of Aseismic Creep and Potential for Induced Seismicity Along the West Valley Fault in Southeastern Metro Manila, Philippines" GeoHazards 5, no. 4: 1172-1189. https://doi.org/10.3390/geohazards5040055
APA StyleRimando, R. E., & Knuepfer, P. L. K. (2024). Tectonic Control of Aseismic Creep and Potential for Induced Seismicity Along the West Valley Fault in Southeastern Metro Manila, Philippines. GeoHazards, 5(4), 1172-1189. https://doi.org/10.3390/geohazards5040055