Magnetic Field in Nuclear Collisions at Ultra High Energies
Abstract
:1. Introduction
2. Definitions and Notations
2.1. Models for Magnetic Field
2.2. Beam Characteristics
3. Results
4. Discussion
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
CODATA | Committee on Data for Science and Technology |
FCC | Integrated project of the Future Circular Collider |
FCC–hh | Work mode of the FCC with proton and nuclear beams |
HE–LHC | Project of the future high-energy hadron collider based on the present Large Hadron Collider |
HIJING | Heavy-Ion Jet INteraction Generator |
HSD | Hadron String Dynamics |
QCD | Quantum chromodynamics |
QED | Quantum electrodynamics |
UrQMD | Ultra relativistic Quantum Molecular Dynamics |
References
- Minakata, H.; Müller, B. Disoriented chiral condensate and strong electromagnetic field. Phys. Lett. B 1996, 377, 135–139. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Warringa, H.J. Chiral magnetic conductivity. Phys. Rev. D 2009, 80, 034028. [Google Scholar] [CrossRef] [Green Version]
- Kharzeev, D.E.; McLerran, L.D.; Warringa, H.J. The effects of topological charge change in heavy ion collisions: “Event by event and violation”. Nucl. Phys. A 2008, 803, 227–253. [Google Scholar] [CrossRef]
- Kharzeev, D. Can gluons trace baryon number? Phys. Lett. B 1996, 378, 238–246. [Google Scholar] [CrossRef] [Green Version]
- Tanabashi, M.; Hagiwara, K.; Hikasa, K.; Nakamura, K.; Sumino, Y.; Takahashi, F.; Tanaka, J.; Agashe, K.; Aielli, G.; Amsler, C.; et al. Review of particle physics. Phys. Rev. D 2018, 98, 030001. [Google Scholar] [CrossRef]
- Okorokov, V.A. Estimation of -odd correlators in heavy ion collisions at RHIC energies 62.4 – 200 GeV. arXiv 2009, arXiv:0908.2522. [Google Scholar]
- Okorokov, V.A. Dependence of the charge asymmetry parameters on the initial energy in heavy ion collisions. Yad. Fiz. Inzhin. 2013, 4, 805. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. Future Circular Collider Study. Volume 4: The High Energy LHC (HE–LHC) Conceptual Design Report; Zimmermann, F., Benedikt, M., Capeans, M., Cerutti, F., Goddard, B., Gutleber, J., Jiménez, J.M., Mangano, M., Mertens, V., Osborne, J., et al., Eds.; CERN Accelerator Reports CERN-ACC-2018-0059; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Abada, A.; Abbrescia, M.; AbdusSalam, S.S.; Abdyukhanov, I.; Abelleira Fernandez, J.; Abramov, A.; Aburaia, M.; Acar, A.O.; Adzic, P.R.; Agrawal, P.; et al. Future Circular Collider Study. Volume 3: The Hadron Collider (FCC–hh) Conceptual Design Report; Benedikt, M., Capeans, M., Cerutti, F., Goddard, B., Gutleber, J., Jiménez, J.M., Mangano, M., Mertens, V., Osborne, J., Otto, T., et al., Eds.; CERN Accelerator Reports CERN-ACC-2018-0058; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Aichelin, J.; Angerami, A.; Apolinario, L.; Arleo, F.; Armesto, N.; Arnaldi, R.; Arslandok, M.; Azzi, P.; Bailhache, R.; Bass, S.A.; et al. Future Physics Opportunities for High-Density QCD at the LHC with Heavy-Ion and Proton Beams. Report from Working Group 5 on the Physics of the HL–LHC, and Perspectivies at the HE–LHC; Citron, Z., Dainese, A., Grosse-Oetringhaus, J.F., Jowett, J.M., Lee, Y.-J., Wiedemann, U.A., Winn, M., Eds.; CERN Report CERN–LPCC–2018–07; CERN: Geneva, Switzerland, 2018. [Google Scholar]
- Valentin, L. Subatomic Physics: Nuclei and Particles; Hermann: Paris, France, 1982. [Google Scholar]
- Mukhin, K.N. Experimental Nuclear Physics; Mir: Moscow, Russia, 1987. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. On Similarities of Bulk Observables in Nuclear and Particle Collisions; CERN Report CERN-PH-TH-2004-213; CERN: Geneva, Switzerland, 2004. [Google Scholar]
- Sarkisyan, E.K.G.; Sakharov, A.S. Multihadron production features in different reactions. AIP Conf. Proc. 2006, 828, 35–41. [Google Scholar] [Green Version]
- Sarkisyan, E.K.G.; Sakharov, A.S. Relating multihadron production in hadronic and nuclear collisions. Eur. Phys. J. C 2010, 70, 533–541. [Google Scholar] [CrossRef] [Green Version]
- Sarkisyan, E.K.G.; Mishra, A.N.; Sahoo, R.; Sakharov, A.S. Multihadron production dynamics exploring the energy balance in hadronic and nuclear collisions. Phys. Rev. D 2016, 93, 054046. [Google Scholar] [CrossRef]
- Tuchin, K. Particle production in strong electromagnetic fields in relativistic heavy-ion collisions. Adv. High Energy Phys. 2013, 2013, 490495. [Google Scholar] [CrossRef]
- Huang, X.G. Electromagnetic fields and anomalous transports in heavy-ion collisions—A pedagogical review. Rep. Prog. Phys. 2016, 79, 076302. [Google Scholar] [CrossRef] [PubMed]
- Paquet, J.-F. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions. J. Phys. Conf. Ser. 2017, 832, 012035. [Google Scholar] [CrossRef] [Green Version]
- Zhong, Y.; Yang, C.-B.; Cai, X.; Feng, S.-Q. A systematic study of magnetic field in relativistic heavy-ion collisions in the RHIC and LHC energy regions. Adv. High Energy Phys. 2014, 2014, 193039. [Google Scholar] [CrossRef]
- Skokov, V.V.; Illarionov, A.Y.; Toneev, V.D. Estimate of the magnetic field strength in heavy-ion collisions. Int. J. Mod. Phys. A 2009, 24, 5925–5932. [Google Scholar] [CrossRef]
- Deng, W.-T.; Huang, X.-G. Event-by-event generation of electromagnetic fields in heavyion collisions. Phys. Rev. D 2012, 85, 044907. [Google Scholar]
- Voronyuk, V.; Toneev, V.D.; Cassing, W.; Bratkovskaya, E.L.; Konchakovski, V.P.; Voloshin, S.A. Electromagnetic field evolution in relativistic heavy-ion collisions. Phys. Rev. C 2011, 83, 054911. [Google Scholar] [CrossRef]
- Petrov, V.A.; Okorokov, V.A. The size seems to matter or where lies the “asymptopia”? Int. J. Mod. Phys. A 2018, 33, 1850077. [Google Scholar] [CrossRef]
- Okorokov, V.; Parfenov, P. Particle correlators and possible local parity violation in nuclear collisions. J. Phys. Conf. Ser. 2016, 668, 012129. [Google Scholar] [CrossRef] [Green Version]
- Okorokov, V.; Parfenov, P. Charge-dependent azimuthal correlations of secondary particles in heavy ion collisions. J. Phys. Conf. Ser. 2016, 675, 022021. [Google Scholar] [CrossRef] [Green Version]
- Okorokov, V.A. Chiral effects in nucleus–nucleus collisions: Experimental review. Phys. At. Nucl. 2017, 80, 1133–1140. [Google Scholar] [CrossRef]
- Kharzeev, D.E.; Liao, J.; Voloshin, S.A.; Wang, G. Chiral magnetic and vortical effects in high-energy nuclear collisions—A status report. Prog. Part. Nucl. Phys. 2016, 88, 1–28. [Google Scholar] [CrossRef]
- Grasso, D.; Rubinstein, H.R. Magnetic fields in the early Universe. Phys. Rep. 2001, 348, 163–266. [Google Scholar] [CrossRef] [Green Version]
- Bruce, R.; d’Enterria, D.; de Roeck, A.; Drewes, M.; Farrar, G.R.; Giammanco, A.; Gould, O.; Hajer, J.; Harland-Lang, L.; Heisig, J.; et al. New physics searches with heavy-ion collisions at the LHC. arXiv 2018, arXiv:1812.07688. [Google Scholar]
- Okorokov, V.A. Geometry and space-time extent of pion emission region at FCC energies. Adv. High Energy Phys. 2016, 2016, 5972709. [Google Scholar] [CrossRef]
- Liu, Y.; Zahed, I. Pion condensation by rotation in a vagnetic field. Phys. Rev. Lett. 2018, 120, 032001. [Google Scholar] [CrossRef] [PubMed]
- Ambjorn, J.; Olesen, P. W-condensate formation in high energy collisions. Phys. Lett. B 1991, 257, 201–206. [Google Scholar] [CrossRef]
Parameter | Incoming Particle | ||||||
---|---|---|---|---|---|---|---|
, TeV | 13.50 | 6.750 | 6.075 | 6.750 | 6.231 | 5.651 | 5.322 |
50.00 | 25.00 | 22.50 | 25.00 | 23.08 | 20.93 | 19.71 | |
10.31 | 9.576 | 9.472 | 9.576 | 9.492 | 9.396 | 9.341 | |
11.51 | 10.82 | 10.77 | 10.82 | 10.58 | 10.73 | 10.70 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okorokov, V.A. Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics 2019, 1, 183-193. https://doi.org/10.3390/physics1020017
Okorokov VA. Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics. 2019; 1(2):183-193. https://doi.org/10.3390/physics1020017
Chicago/Turabian StyleOkorokov, Vitalii A. 2019. "Magnetic Field in Nuclear Collisions at Ultra High Energies" Physics 1, no. 2: 183-193. https://doi.org/10.3390/physics1020017
APA StyleOkorokov, V. A. (2019). Magnetic Field in Nuclear Collisions at Ultra High Energies. Physics, 1(2), 183-193. https://doi.org/10.3390/physics1020017