Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes
Abstract
:1. Introduction
- 1)
- The cutting line is drawn between the reggeons (Figure 3). This corresponds to the process of diffraction dissociation of projectile particles. The absorption part is equal to:The two terms in the integrand correspond to two possible positions of reggeons in relation to the cutting line.
- 2)
- The cutting line is drawn along one of the reggeons (Figure 4). This is a contribution from the interference of the amplitude of the formation of a multi-peripheral particle comb and the same comb with an additional exchange of reggeon. The equation for the absorption part looks like:Here, the first two terms correspond to the cut reggeon and the position of the reggeon to the left and to the right of the cutting line, and the last two terms correspond to the reggeon cut and the position of the reggeon to the left and to the right of the cutting line.
- 3)
- The cut line is drawn simultaneously on both reggeons (Figure 5). This cutting corresponds to the formation of two multi-peripheral combs. The corresponding absorption part is represented as:Both reggeons are cut here.
2. The Dependence of the Luminosity of a Black Hole on Its Mass
3. Comparison with Experimental Data
4. Conclusions
Conflicts of Interest
Appendix A. Derivation of AGK Relations
References
- Gültekin, K.; Richstone, D.O.; Gebhardt, K.; Lauer, T.R.; Tremaine, S.; Aller, M.C.; Bender, R.; Dressler, A.; Faber, S.M.; Filippenko, A.V.; et al. The M-σ and M-L Relations in Galactic Bulges, and Determinations of their Intrinsic Scatter. Astrophys. J. 2009, 698, 198–221. [Google Scholar] [CrossRef]
- McConnell, N.J.; Ma, C.P.; Gebhardt, K.; Wright, S.A.; Murphy, J.D.; Lauer, T.R.; Graham, J.R.; Richstone, D.O. Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies. Nature 2011, 480, 215–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gültekin, K.; Barth, A.; Gebhardt, K.; Greene, J.; Ho, L.; Juneau, S.; Ma, C.P.; Seth, A.; Valluri, M.; Walsh, J. Astro2020 Science White Paper: Black Holes Across Cosmic Time. arXiv 2019, arXiv:1904.01447. [Google Scholar]
- Abramovskii, V.A.; Kancheli, O.V.; Gribov, V.N. Structure of inclusive spectra and fluctuations in inelastic processes caused by multiple-pomeron exchange. eConf 1972, 720906, 389–413. [Google Scholar]
- Abramovsky, V.A.; Gribov, V.N.; Kancheli, O.V. Character of Inclusive Spectra and Fluctuations Produced in Inelastic Processes by Multi-Pomeron Exchange. Yad. Fiz. 1974, 18, 595–616. (in Russian); English translation: Sov. J. Nucl. Phys. 1974, 18, 308–317. [Google Scholar]
- Abramovsky, V.A.; Leptoukh, G.G. The AGK rules revised. Sov. J. Nucl. Phys. 1992, 55, 903–905. [Google Scholar]
- Cutkosky, R.E. Singularities and discontinuities of Feynman amplitudes. J. Math. Phys. 1960, 1, 429–433. [Google Scholar] [CrossRef]
- Novikov, I.D.; Frolov, V.P. Physics of Black Holes; Kluwer Academic: Dordrecht, The Netherlands, 1989. [Google Scholar]
- Feynman, R.P. Very high-energy collisions of hadrons. Phys. Rev. Lett. 1969, 23, 1415–1417. [Google Scholar] [CrossRef]
- Mueller, A.M. O(2,1) Analysis of Single-Particle Spectra at High Energy. Phys. Rev. D 1970, 2, 2963–2969. [Google Scholar] [CrossRef]
- Kancheli, O.V. Inelastic differential cross sections at high energies and duality. Pisma Zh. Eksp. Teor. Fiz. 1970, 11, 397–400. (in Russian); English translation: JETP Lett. 1970, 11, 267–270. [Google Scholar]
- Abramovsky, V.A.; Kancheli, O.V.; Mandzhavidze, I.D. Total differential cross-sections of inelastic processes at high energies. Yad. Fiz. 1971, 13, 1102–1115. (in Russian); English translation: Sov. J. Nucl. Phys. 1971, 13, 630. [Google Scholar]
- Beckenstein, J.D. Black holes and the second law. Nuovo Cim. Lett. 1972, 4, 737–740. [Google Scholar] [CrossRef]
- Beckenstein, J.D. Black holes and entropy. Phys. Rev. D 1973, 7, 2333–2346. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Commun. Math. Phys. 1975, 43, 199–220. [Google Scholar] [CrossRef]
- Mandelstam, S. Cuts in the Angular-Momentum Plane. Nuovo Cim. 1963, 30, 1148–1162. [Google Scholar] [CrossRef]
Galaxy | |||||
---|---|---|---|---|---|
N4889 | 2.1 × 1010 | 5.5 × 109 | 3.7 × 1010 | 11.42 | 12.5 |
N3842 | 9.7 × 109 | 7.2 × 109 | 1.27 × 1010 | 11.20 | 16.3 |
N4486 (M87) | 6.3 × 109 | 5.9 × 109 | 6.6 × 109 | 11.10 | 20.0 |
N4649 (M60) | 4.7 × 109 | 3.7 × 109 | 5.8 × 109 | 10.99 | 21.2 |
N1332 | 1.45 × 109 | 1.25 × 109 | 1.65 × 109 | 10.14 | 9.5 |
N4291 | 9.2 × 108 | 6.3 × 108 | 1.21 × 109 | 10.20 | 17.2 |
N5845 | 5.4 × 108 | 3.7 × 108 | 7.1 × 109 | 9.84 | 12.8 |
Galaxy | |||||
---|---|---|---|---|---|
N6086 | 3.8 × 109 | 2.6 × 109 | 5.5 × 109 | 11.18 | 39.7 |
IC1459 | 2.8 × 109 | 1.6 × 109 | 3.9 × 109 | 10.96 | 35.8 |
N3115 | 9.6 × 108 | 6.7 × 108 | 1.5 × 109 | 10.40 | 26.1 |
N4026 | 2.1× 108 | 1.7 × 108 | 2.8 × 108 | 10.35 | 34.5 |
Galaxy | |||||
---|---|---|---|---|---|
A1836-BCG | 3.9 × 109 | 3.3 × 109 | 4.3 × 109 | 11.26 | 47 |
N1399 | 1.3 × 109 | 6.4 × 108 | 1.8 × 109 | 10.78 | 46 |
N524 | 8.3 × 108 | 7.9 × 108 | 9.2 × 108 | 10.67 | 56 |
N3608 | 4.7 × 108 | 3.7 × 108 | 5.7 × 108 | 10.35 | 47.8 |
N3379(M105) | 4.6 × 108 | 3.4 × 108 | 5.7 × 108 | 10.37 | 50.9 |
N3377 | 1.9 × 108 | 9.0 × 107 | 2.9 × 108 | 9.98 | 50.3 |
Galaxy | |||||
---|---|---|---|---|---|
A3565-BCG | 1.4 × 109 | 1.2 × 109 | 1.7 × 109 | 11.24 | 124 |
N4374 (M84) | 8.5 × 108 | 7.7 × 108 | 9.4 × 108 | 10.91 | 96.4 |
N1399 | 5.1 × 108 | 4.4 × 108 | 5.8 × 108 | 10.78 | 118 |
N3585 | 3.4 × 108 | 2.8 × 108 | 4.9 × 108 | 10.65 | 131 |
N4697 | 2.0 × 108 | 1.8 × 108 | 2.2 × 108 | 10.45 | 141 |
N5576 | 1.8 × 108 | 1.4 × 108 | 2.1 × 108 | 10.44 | 143 |
N821 | 1.8 × 108 | 1.0 × 108 | 2.6 × 108 | 10.43 | 149 |
N221 (M32) | 3.1 × 106 | 2.5 × 106 | 3.7 × 106 | 8.66 | 147 |
Galaxy | |||||
---|---|---|---|---|---|
N4261 | 5.5 × 108 | 4.3 × 108 | 6.6 × 108 | 11.02 | 190 |
N7052 | 4.0 × 108 | 2.4 × 108 | 6.8 × 108 | 10.87 | 185 |
N5128 | 3.0 × 108 | 2.8 × 108 | 3.4 × 108 | 10.66 | 152 |
N4473 | 1.0 × 108 | 5.0 × 107 | 1.5 × 108 | 10.39 | 245 |
N4459 | 7.4 × 107 | 6.0 × 107 | 8.8 × 107 | 10.36 | 310 |
N1023 | 4.6 × 107 | 4.1 × 107 | 5.1 × 107 | 10.18 | 330 |
N2549 | 1.4 × 107 | 1.0 × 107 | 1.47 × 107 | 9.6 | 284 |
N4486A | 1.3 × 107 | 9.0 × 106 | 1.8 × 107 | 9.41 | 198 |
N4757 | 1.0 × 107 | 4.0 × 106 | 1.6 × 107 | 9.42 | 263 |
© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abramovsky, V.A. Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes. Physics 2019, 1, 253-270. https://doi.org/10.3390/physics1020020
Abramovsky VA. Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes. Physics. 2019; 1(2):253-270. https://doi.org/10.3390/physics1020020
Chicago/Turabian StyleAbramovsky, Victor A. 2019. "Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes" Physics 1, no. 2: 253-270. https://doi.org/10.3390/physics1020020
APA StyleAbramovsky, V. A. (2019). Abramovsky—Gribov—Kancheli Theorem in the Physics of Black Holes. Physics, 1(2), 253-270. https://doi.org/10.3390/physics1020020