Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach
Abstract
:1. Introduction
2. Mathematical Model for the Flow Problem
2.1. Expressions and Thermophysical Properties of the HNF
2.2. Similarity Transformation
2.3. Exact Solution for Momentum Equation
2.4. Exact Solution for Temperature and Concentration
3. Results
3.1. Velocity Profiles
3.2. Temperature Profiles
3.3. Concentration Profiles
3.4. Validation
4. Conclusions
- the physical solution’s effect is directly determined by Vc, , and Q;
- Vc has a direct impact on surface velocity and Marangoni number, M;
- by increasing the values of the magnetic field, Q, and porosity, , the fluid velocity decreases;
- on the other hand, by increasing the Marangoni number, M, the fluid velocity increases;
- the velocity and thermal boundary layer decrease by increasing the volume fraction of TiO2 and Ag within H2O;
- furthermore, the (TiO2, H2O) mixture presents higher velocity values, but less heat and chemical energy compared to the (TiO2-Ag, H2O);
- the thermal boundary layers increase when increases and decrease when increases;
- the thermal and chemical boundary layers increase by increasing the value of ;
- the concentration profile decreases when Sc and K increase.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Latin symbols | |
constants | |
applied magnetic field | |
dimensional concentration | |
specific heat, constant pressure | |
Mass diffusivity | |
constants | |
inverse Darcy number | |
velocity similarity | |
Constant | |
transverse velocity | |
confluent hypergeometric function | |
permeability | |
K | chemical reaction coefficient |
characteristic/reference length | |
M | Marangoni number |
constants | |
radiation parameter | |
heat source and sink parameter | |
Pr | Prandtl number |
radiative heat flux | |
local heat flux at the wall | |
Q | magnetic field |
constants | |
Schmidt number | |
T | temperature |
T0 | constant |
mass transformation | |
suction condition | |
impermeability condition | |
injection condition | |
axes | |
velocities along x- and y-directions | |
Greek symbols | |
thermal diffusivity | |
coefficient | |
discriminates | |
η | similarity variable |
thermal conductivity | |
dynamic viscosity | |
kinematic viscosity | |
density | |
electrical conductivity | |
surface tension | |
equilibrium surface tension | |
electrical conductivities, respectively, of TiO2 and Ag nanoparticles | |
Stefan-Boltzmann constant | |
nanoparticle volume fractions of TiO2 and Ag, respectively | |
concentration similarity variable | |
stream function | |
Subscripts | |
solutal quantity | |
thermal quantity | |
base fluid | |
Nanofluid | |
hybrid nanofluid | |
First, second and third order derivatives with respect to | |
Abbreviations | |
Ag | silver |
BC | boundary condition |
BLF | boundary layer flow |
CNT | carbon nanotube |
EHD | electrohydrodynamics |
H2O | water |
HNF | hybrid nanofluid |
MC | Marangoni convection |
MHD | magnetohydrodynamics |
ODE | ordinary differential equation |
PDE | partial differantial equation |
TiO2 | titanium dioxide |
TS | thermosolutal |
References
- Ahmed, S.E.; Oztop, H.F.; Elshehabey, H.M. Thermosolutal Marangoni Convection of Bingham Non-Newtonian Fluids within Inclined Lid-Driven Enclosures Full of Porous Media. Heat Transfer 2021, 50, 7898–7917. [Google Scholar] [CrossRef]
- Qayyum, S. Dynamics of Marangoni Convection in Hybrid Nanofluid Flow Submerged in Ethylene Glycol and Water Base Fluids. Int. Comm. Heat Mass Transfer 2020, 119, 104962. [Google Scholar] [CrossRef]
- Butzhammer, L.; Köhler, W. Thermocapillary and Thermosolutal Marangoni Convection of Ethanol and Ethanol–Water Mixtures in a Microfluidic Device. Microfl. Nanofl. 2017, 21, 155. [Google Scholar] [CrossRef]
- Napolitano, L.G. Marangoni Boundary Layers. In Proceedings of the 3rd European Symposium on Materials Sciences in Space, Grenoble, France, 24–27 April 1979; pp. 349–358. [Google Scholar]
- Napolitano, L.G. Microgravity Fluid Dynamics. In Proceedings of the 2nd Levitch Conference, Washington, DC, USA, November 1978. [Google Scholar]
- Pop, I.; Postelnicu, A.; Groşan, T. Thermosolutal Marangoni Forced Convection Boundary Layers. Meccanica 2001, 36, 555–571. [Google Scholar] [CrossRef]
- Al-Mudhaf, A.; Chamkha, A.J. Similarity Solutions for MHD Thermosolutal Marangoni Convection over a Flat Surface in the Presence of Heat Generation or Absorption Effects. Heat Mass Transfer 2005, 42, 112–121. [Google Scholar] [CrossRef]
- Magyari, E.; Chamkha, A.J. Exact Analytical Solutions for Thermosolutal Marangoni Convection in the Presence of Heat and Mass Generation or Consumption. Heat Mass Transfer 2007, 43, 965–974. [Google Scholar] [CrossRef] [Green Version]
- Mahabaleshwar, U.S.; Nagaraju, K.R.; Vinay Kumar, P.N.; Azese, M.N. Effect of Radiation on Thermosolutal Marangoni Convection in a Porous Medium with Chemical Reaction and Heat Source/Sink. Phys. Fluids 2020, 32, 113602. [Google Scholar] [CrossRef]
- Hassan, M. Thermosolutal Marangoni Convection Effect on the MHD Flow over an Unsteady Stretching Sheet. J. Egypt. Math. Soc. 2018, 26, 58–71. [Google Scholar] [CrossRef]
- Mackolil, J.; Mahanthesh, B. Heat Transfer Optimization and Sensitivity Analysis of Marangoni Convection in Nanoliquid with Nanoparticle Interfacial Layer and Cross-Diffusion Effects. Int. Comm. Heat Mass Transfer 2021, 126, 105361. [Google Scholar] [CrossRef]
- Patil, P.M.; Kulkarni, M. Analysis of MHD Mixed Convection in a Ag-TiO2 Hybrid Nanofluid Flow Past a Slender Cylinder. Chin. J. Phys. 2021, 73, 406–419. [Google Scholar] [CrossRef]
- Shoaib, M.; Tabassum, R.; Nisar, K.S.; Raja, M.A.Z.; Rafiq, A.; Khan, M.I.; Jamshed, W.; Abdel-Aty, A.-H.; Yahia, I.S.; Mahmoud, E.E. Entropy Optimized Second Grade Fluid with MHD and Marangoni Convection Impacts: An Intelligent Neuro-Computing Paradigm. Coatings 2021, 11, 1492. [Google Scholar] [CrossRef]
- Ullah, I. Heat Transfer Enhancement in Marangoni Convection and Nonlinear Radiative Flow of Gasoline Oil Conveying Boehmite Alumina and Aluminum Alloy Nanoparticles. Int. Comm. Heat Mass Transfer 2022, 132, 105920. [Google Scholar] [CrossRef]
- Suresh, S.; Venkitaraj, K.P.; Selvakumar, P.; Chandrasekar, M. Synthesis of Al2O3–Cu/Water Hybrid Nanofluids Using Two Step Method and Its Thermo Physical Properties. Colloid. Surf. A: Physicochem. Eng. Aspects 2011, 388, 41–48. [Google Scholar] [CrossRef]
- Choi, S.U.S.; Eastman, J.A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. In Proceedings of the ASME International Mechanical Engineering Congress and Exhibition, San Francisco, CA, USA, 12–17 November 1995; Available online: https://digital.library.unt.edu/ark:/67531/metadc671104/ (accessed on 15 December 2022).
- Zhuang, Y.J.; Zhu, Q.Y. Numerical Study on Combined Buoyancy–Marangoni Convection Heat and Mass Transfer of Power-Law Nanofluids in a Cubic Cavity Filled with a Heterogeneous Porous Medium. Int. J. Heat Fluid Flow 2018, 71, 39–54. [Google Scholar] [CrossRef]
- Kasaeian, A.; Daneshazarian, R.; Mahian, O.; Kolsi, L.; Chamkha, A.J.; Wongwises, S.; Pop, I. Nanofluid Flow and Heat Transfer in Porous Media: A Review of the Latest Developments. Int. J. Heat Mass Transfer 2017, 107, 778–791. [Google Scholar] [CrossRef]
- Tripathi, R. Marangoni Convection in the Transient Flow of Hybrid Nanoliquid Thin Film over a Radially Stretching Disk. Proc. Inst. Mech. Eng. E: J. Proc. Mech. Eng. 2021, 235, 800–811. [Google Scholar] [CrossRef]
- Li, Y.-X.; Khan, M.I.; Gowda, R.J.P.; Ali, A.; Farooq, S.; Chu, Y.-M.; Khan, S.U. Dynamics of Aluminum Oxide and Copper Hybrid Nanofluid in Nonlinear Mixed Marangoni Convective Flow with Entropy Generation: Applications to Renewable Energy. Chin. J. Phys. 2021, 73, 275–287. [Google Scholar] [CrossRef]
- Jawad, M.; Saeed, A.; Tassaddiq, A.; Khan, A.; Gul, T.; Kumam, P.; Shah, Z. Insight into the Dynamics of Second Grade Hybrid Radiative Nanofluid Flow within the Boundary Layer Subject to Lorentz Force. Sci. Rep. 2021, 11, 4894. [Google Scholar] [CrossRef]
- Forchheimer, P. Wasserbewegung durch Boden. Z. Ver. Deutsch. Ing. 1901, 45, 1782–1788. [Google Scholar]
- Muskat, M. The Flow of Homogeneous Fluids through Porous Media; McGraw-Hill Book Company: New York, NY, USA, 1937; Available online: https://blasingame.engr.tamu.edu/z_zCourse_Archive/P620_18C/P620_zReference/PDF_Txt_Msk_Flw_Fld_(1946).pdf (accessed on 15 December 2022).
- Hayat, T.; Haider, F.; Muhammad, T.; Alsaedi, A. On Darcy-Forchheimer Flow of Carbon Nanotubes due to a Rotating Disk. Int. J. Heat Mass Transfer 2017, 112, 248–254. [Google Scholar] [CrossRef]
- Vishnu Ganesh, N.; Abdul Hakeem, A.K.; Ganga, B. Darcy–Forchheimer Flow of Hydromagnetic Nanofluid Over a Stretching/Shrinking Sheet in a Thermally Stratified Porous Medium with Second Order Slip, Viscous and Ohmic Dissipations Effects. Ain Shams Eng. J. 2018, 9, 939–951. [Google Scholar] [CrossRef]
- Muhammad, T.; Alsaedi, A.; Shehzad, A.S.; Hayat, T. A Revised Model for Darcy-Forchheimer Flow of Maxwell Nanofluid Subject to Convective Boundary Condition. Chin. J. Phys. 2017, 55, 963–976. [Google Scholar] [CrossRef]
- Jawad, M.; Saeed, A.; Kumam, P.; Shah, Z.; Khan, A. Analysis of Boundary Layer MHD Darcy-Forchheimer Radiative Nanofluid Flow with Soret and Dufour Effects by Means of Marangoni Convection. Case Stud. Therm. Eng. 2021, 23, 100792. [Google Scholar] [CrossRef]
- Moatimid, G.M.; Hassan, M.A. The Instability of an Electrohydrodynamic Viscous Liquid Micro-Cylinder Buried in a Porous Medium: Effect of Thermosolutal Marangoni Convection. Math. Probl. Eng. 2013, 2013, e416562. [Google Scholar] [CrossRef]
- Mahdy, A.; Ahmed, S.E. Thermosolutal Marangoni Boundary Layer Magnetohydrodynamic Flow with the Soret and Dufour Effects Past a Vertical Flat Plate. Eng. Sci. Tech. Int. J. 2015, 18, 24–31. [Google Scholar] [CrossRef] [Green Version]
- Siddheshwar, P.G.; Mahabaleswar, U.S. Effects of Radiation and Heat Source on MHD Flow of a Viscoelastic Liquid and Heat Transfer over a Stretching Sheet. Int. J. Non-Lin. Mech. 2005, 40, 807–820. [Google Scholar] [CrossRef] [Green Version]
- Mahanthesh, B.; Gireesha, B.J. Thermal Marangoni Convection in Two-Phase Flow of Dusty Casson Fluid. Results Phys. 2018, 8, 537–544. [Google Scholar] [CrossRef]
- Lin, Y.; Zheng, L.; Zhang, X. Radiation Effects on Marangoni Convection Flow and Heat Transfer in Pseudo-Plastic Non-Newtonian Nanofluids with Variable Thermal Conductivity. Int. J. Heat Mass Transfer 2014, 77, 708–716. [Google Scholar] [CrossRef]
- Patil, P.M.; Pop, I. Effects of Surface Mass Transfer on Unsteady Mixed Convection Flow over a Vertical Cone with Chemical Reaction. Heat Mass Transfer 2011, 47, 1453–1464. [Google Scholar] [CrossRef]
- Li, B.; Zheng, L.; Zhang, X. Comparison Between Thermal Conductivity Models on Heat Transfer in Power-Law Non-Newtonian Fluids. J. Heat Transfer 2012, 134, 041702. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Yasmeen, T. Impact of Marangoni Convection in the Flow of Carbon–Water Nanofluid with Thermal Radiation. Int. J. Heat Mass Transfer 2017, 106, 810–815. [Google Scholar] [CrossRef]
- Khan, U.; Zaib, A.; Ishak, A.; Roy, N.C.; Bakar, S.A.; Muhammad, T.; Abdel-Aty, A.-H.; Yahia, I.S. Exact Solutions for MHD Axisymmetric Hybrid Nanofluid Flow and Heat Transfer over a Permeable Non-Linear Radially Shrinking/Stretching Surface with Mutual Impacts of Thermal Radiation. Eur. Phys. J. Spec. Top. 2022, 231, 1195–1204. [Google Scholar] [CrossRef]
- Anusha, T.; Huang, H.-N.; Mahabaleshwar, U.S. Two Dimensional Unsteady Stagnation Point Flow of Casson Hybrid Nanofluid over a Permeable Flat Surface and Heat Transfer Analysis with Radiation. J. Taiwan Inst. Chem. Eng. 2021, 127, 79–91. [Google Scholar] [CrossRef]
- Sneha, K.N.; Mahabaleshwar, U.S.; Chan, A.; Hatami, M. Investigation of Radiation and MHD on Non-Newtonian Fluid Flow over a Stretching/Shrinking Sheet with CNTs and Mass Transpiration. Waves Rand. Compl. Media 2022, 1–20. [Google Scholar] [CrossRef]
Term | Equivalent Property for the HNF Model |
---|---|
Dynamic viscosity | |
Density | |
Heat capacity | |
Thermal conductivity for the HNF | |
(to simplify the thermal conductivity for the HNF, we use the constant term ) | |
Electrical conductivity for the HNF | |
(to simplify the electrical conductivity for the HNF, we use the constant term ) |
Physical Parameters | Fluid Phase (H2O) | TiO2 | Ag |
---|---|---|---|
4179 | 686.2 | 235 | |
997.1 | 4250 | 10,500 | |
0.613 | 8.9528 | 429 | |
0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahabaleshwar, U.S.; Mahesh, R.; Sofos, F. Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach. Physics 2023, 5, 24-44. https://doi.org/10.3390/physics5010003
Mahabaleshwar US, Mahesh R, Sofos F. Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach. Physics. 2023; 5(1):24-44. https://doi.org/10.3390/physics5010003
Chicago/Turabian StyleMahabaleshwar, Ulavathi Shettar, Rudraiah Mahesh, and Filippos Sofos. 2023. "Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach" Physics 5, no. 1: 24-44. https://doi.org/10.3390/physics5010003
APA StyleMahabaleshwar, U. S., Mahesh, R., & Sofos, F. (2023). Thermosolutal Marangoni Convection for Hybrid Nanofluid Models: An Analytical Approach. Physics, 5(1), 24-44. https://doi.org/10.3390/physics5010003