Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei
Abstract
:1. Introduction
2. Physics Cases
2.1. Nuclear Structure
2.2. QED and Beyond Standard Model (BSM)
3. Theory Considerations
4. Experimental Considerations
5. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, C.S.; Wilets, L. Muonic atoms and nuclear structure. Annu. Rev. Nucl. Sci. 1969, 19, 527–606. [Google Scholar] [CrossRef]
- Friar, J.L. Nuclear finite-size effects in light muonic atoms. Ann. Phys. 1979, 122, 151–196. [Google Scholar] [CrossRef]
- Friar, J.L. The structure of light nuclei and its effect on precise atomic measurements. In Precision Physics of Simple Atomic Systems; Karshenboim, S.G., Smirnov, V.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 59–79. [Google Scholar] [CrossRef]
- Karshenboim, S.G. Precision physics of simple atoms: QED tests, nuclear structure and fundamental constants. Phys. Rep. 2005, 422, 1–63. [Google Scholar] [CrossRef]
- Kanda, S.; Ishida, K.; Iwasaki, M.; Ma, Y.; Okada, S.; Takamine, A.; Ueno, H.; Midorikawa, K.; Saito, N.; Wada, S.; et al. Measurement of the proton Zemach radius from the hyperfine splitting in muonic hydrogen atom. J. Phys. Conf. Ser. 2018, 1138, 012009. [Google Scholar] [CrossRef]
- Pizzolotto, C.; Adamczak, A.; Bakalov, D.; Baldazzi, G.; Baruzzo, M.; Benocci, R.; Bertoni, R.; Bonesini, M.; Bonvicini, V.; Cabrera, H.; et al. The FAMU experiment: Muonic hydrogen high precision spectroscopy studies. Eur. Phys. J. A 2020, 56, 185. [Google Scholar] [CrossRef]
- Antognini, A.; Bacca, S.; Fleischmann, A.; Gastaldo, L.; Hagelstein, F.; Indelicato, P.; Knecht, A.; Lensky, V.; Ohayon, B.; Pascalutsa, V.; et al. Muonic-atom spectroscopy and impact on nuclear structure and precision QED theory. arXiv 2022, arXiv:2210.16929. [Google Scholar] [CrossRef]
- Eides, M.I.; Grotch, H.; Shelyuto, V.A. Theory of Light Hydrogenic Bound States; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Antognini, A.; Lin, Y.H.; Meißner, U.G. Precision calculation of the recoil–finite-size correction for the hyperfine splitting in muonic and electronic hydrogen. Phys. Lett. B 2022, 835, 137575. [Google Scholar] [CrossRef]
- Karshenboim, S.G. Precision physics of simple atoms and constraints on a light boson with ultraweak coupling. Phys. Rev. Lett. 2010, 104, 220406. [Google Scholar] [CrossRef]
- Barger, V.; Chiang, C.W.; Keung, W.Y.; Marfatia, D. Proton size anomaly. Phys. Rev. Lett. 2011, 106, 153001. [Google Scholar] [CrossRef] [PubMed]
- Villalba-Chávez, S.; Golub, A.; Müller, C. Axion-modified photon propagator, Coulomb potential, and Lamb shift. Phys. Rev. D 2018, 98, 115008. [Google Scholar] [CrossRef]
- Delaunay, C.; Frugiuele, C.; Fuchs, E.; Soreq, Y. Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons. Phys. Rev. D 2017, 96, 115002. [Google Scholar] [CrossRef]
- Jentschura, U.D.; Nándori, I. Atomic physics constraints on the X boson. Phys. Rev. A 2018, 97, 042502. [Google Scholar] [CrossRef]
- Karshenboim, S.G.; McKeen, D.; Pospelov, M. Constraints on muon-specific dark forces. Phys. Rev. D 2014, 90, 073004. [Google Scholar] [CrossRef]
- Claudia, F.; Clara, P. Muonic vs electronic dark forces: A complete EFT treatment for atomic spectroscopy. J. High Energy Phys. 2022, 2022, 002. [Google Scholar] [CrossRef]
- Engfer, R.; Schneuwly, H.; Vuilleumier, J.; Walter, H.; Zehnder, A. Charge-distribution parameters, isotope shifts, isomer shifts, and magnetic hyperfine constants from muonic atoms. At. Data Nucl. Data Tables 1974, 14, 509–597. [Google Scholar] [CrossRef]
- Fricke, G.; Bernhardt, C.; Heilig, K.; Schaller, L.; Schellenberg, L.; Shera, E.; Dejager, C. Nuclear ground state charge radii from electromagnetic interactions. At. Data Nucl. Data Tables 1995, 60, 177–285. [Google Scholar] [CrossRef]
- Lorenz, I.; Hammer, H.W.; Meißner, U.G. The size of the proton: Closing in on the radius puzzle. Eur. Phys. J. A 2012, 48, 151. [Google Scholar] [CrossRef]
- Pohl, R.; Gilman, R.; Miller, G.A.; Pachucki, K. Muonic hydrogen and the proton radius puzzle. Annu. Rev. Nucl. Part. Sci. 2013, 63, 175–204. [Google Scholar] [CrossRef]
- Carlson, C.E. The proton radius puzzle. Prog. Part. Nucl. Phys. 2015, 82, 59–77. [Google Scholar] [CrossRef]
- Hammer, H.W.; Meißner, U.G. The proton radius: From a puzzle to precision. Sci. Bull. 2020, 65, 257–258. [Google Scholar] [CrossRef] [PubMed]
- Peset, C.; Pineda, A.; Tomalak, O. The proton radius (puzzle?) and its relatives. Prog. Part. Nucl. Phys. 2021, 121, 103901. [Google Scholar] [CrossRef]
- Jentschura, U.D. Proton radius: A puzzle or a solution!? J. Phys. Conf. Ser. 2022, 2391, 012017. [Google Scholar] [CrossRef]
- Meißner, U.G. The proton radius and its relatives—much ado about nothing? J. Phys. Conf. Ser. 2023, 2586, 012006. [Google Scholar] [CrossRef]
- Tiesinga, E.; Mohr, P.J.; Newell, D.B.; Taylor, B.N. CODATA recommended values of the fundamental physical constants: 2018. Rev. Mod. Phys. 2021, 93, 025010. [Google Scholar] [CrossRef] [PubMed]
- Antognini, A.; Nez, F.; Schuhmann, K.; Amaro, F.D.; Biraben, F.; Cardoso, J.M.R.; Covita, D.S.; Dax, A.; Dhawan, S.; Diepold, M.; et al. Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science 2013, 339, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Pachucki, K.; Lensky, V.; Hagelstein, F.; Li Muli, S.S.; Bacca, S.; Pohl, R. Comprehensive theory of the Lamb shift in light muonic atoms. arXiv 2022, arXiv:2212.13782. [Google Scholar] [CrossRef]
- Pachucki, K.; Patkós, V.; Yerokhin, V.A. Three-photon-exchange nuclear structure correction in hydrogenic systems. Phys. Rev. A 2018, 97, 062511. [Google Scholar] [CrossRef]
- Parthey, C.G.; Matveev, A.; Alnis, J.; Pohl, R.; Udem, T.; Jentschura, U.D.; Kolachevsky, N.; Hänsch, T.W. Precision measurement of the hydrogen-deuterium 1S − 2S isotope shift. Phys. Rev. Lett. 2010, 104, 233001. [Google Scholar] [CrossRef] [PubMed]
- Schuhmann, K.; et al. [The CREMA Collaboration] The helion charge radius from laser spectroscopy of muonic helium-3 ions. arXiv 2023, arXiv:2305.11679. [Google Scholar] [CrossRef]
- Krauth, J.J.; Schuhmann, K.; Ahmed, M.A.; Amaro, F.D.; Amaro, P.; Biraben, F.; Chen, T.L.; Covita, D.S.; Dax, A.J.; Diepold, M.; et al. Measuring the α-particle charge radius with muonic helium-4 ions. Nature 2021, 589, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Suelzle, L.R.; Yearian, M.R.; Crannell, H. Elastic electron scattering from Li6 and Li7. Phys. Rev. 1967, 162, 992–1005. [Google Scholar] [CrossRef]
- Bumiller, F.A.; Buskirk, F.R.; Dyer, J.N.; Monson, W.A. Elastic electron scattering from 6Li and 7Li at low momentum transfer. Phys. Rev. C 1972, 5, 391–395. [Google Scholar] [CrossRef]
- Li, G.; Sick, I.; Whitney, R.; Yearian, M. High-energy electron scattering from 6Li. Nucl. Phys. A 1971, 162, 583–592. [Google Scholar] [CrossRef]
- Nörtershäuser, W.; Neff, T.; Sánchez, R.; Sick, I. Charge radii and ground state structure of lithium isotopes: Experiment and theory reexamined. Phys. Rev. C 2011, 84, 024307. [Google Scholar] [CrossRef]
- Nörtershäuser, W.; Sánchez, R.; Ewald, G.; Dax, A.; Behr, J.; Bricault, P.; Bushaw, B.A.; Dilling, J.; Dombsky, M.; Drake, G.W.F.; et al. Isotope-shift measurements of stable and short-lived lithium isotopes for nuclear-charge-radii determination. Phys. Rev. A 2011, 83, 012516. [Google Scholar] [CrossRef]
- Jansen, J.A.; Peerdeman, R.T.; De Vries, C. Nuclear charge radii of 12C and 9Be. Nucl. Phys. A 1972, 188, 337–352. [Google Scholar] [CrossRef]
- Maaß, B.; Hüther, T.; König, K.; Krämer, J.; Krause, J.; Lovato, A.; Müller, P.; Pachucki, K.; Puchalski, M.; Roth, R.; et al. Nuclear charge radii of 10,11B. Phys. Rev. Lett. 2019, 122, 182501. [Google Scholar] [CrossRef] [PubMed]
- Barnett, B.; Gyles, W.; Johnson, R.; Erdman, K.; Johnstone, J.; Kraushaar, J.; Lepp, S.; Masterson, T.; Rost, E.; Gill, D.; et al. Proton radii determinations from the ratio of π+ elastic scattering from 11B and 12C. Phys. Lett. B 1980, 97, 45–49. [Google Scholar] [CrossRef]
- Ruckstuhl, W.; Aas, B.; Beer, W.; Beltrami, I.; Bos, K.; Goudsmit, P.F.A.; Leisi, H.J.; Strassner, G.; Vacchi, A.; De Boer, F.W.N.; et al. Precision measurement of the 2p-1s transition in muonic 12C: Search for new muon-nucleon interactions or accurate determination of the rms nuclear charge radius. Nucl. Phys. A 1984, 430, 685–712. [Google Scholar] [CrossRef]
- de Boer, F.W.N.; Aas, B.; Baertschi, P.; Beer, W.; Beltrami, I.; Bos, K.; Goudsmit, P.F.A.; Kiebele, U.; Jeckelmann, B.; Leisi, H.J.; et al. Precision measurement of the 2p-1s transition wavelength in muonic 13C. Nucl. Phys. A 1985, 444, 589–596. [Google Scholar] [CrossRef]
- Epelbaum, E.; Hammer, H.-W.; Meißner, U.-G. Modern theory of nuclear forces. Rev. Mod. Phys. 2009, 81, 1773–1825. [Google Scholar] [CrossRef]
- Hergert, H. A Guided tour of ab initio nuclear many-body theory. Front. Phys. 2020, 8, 379. [Google Scholar] [CrossRef]
- Dohet-Eraly, J.; Navrátil, P.; Quaglioni, S.; Horiuchi, W.; Hupin, G.; Raimondi, F. 3He(α,γ)7Be and 3H(α,γ)7Li astrophysical S factors from the no-core shell model with continuum. Phys. Lett. B 2016, 757, 430–436. [Google Scholar] [CrossRef]
- Navrátil, P.; Quaglioni, S.; Hupin, G.; Romero-Redondo, C.; Calci, A. Unified ab initio approaches to nuclear structure and reactions. Phys. Scr. 2016, 91, 053002. [Google Scholar] [CrossRef]
- Vorabbi, M.; Navrátil, P.; Quaglioni, S.; Hupin, G. 7Be and 7Li nuclei within the no-core shell model with continuum. Phys. Rev. C 2019, 100, 024304. [Google Scholar] [CrossRef]
- Caprio, M.A.; Fasano, P.J.; Maris, P. Robust ab initio prediction of nuclear electric quadrupole observables by scaling to the charge radius. Phys. Rev. C 2022, 105, L061302. [Google Scholar] [CrossRef]
- Ewald, G.; Nörtershäuser, W.; Dax, A.; Götte, S.; Kirchner, R.; Kluge, H.-J.; Kühl, T.; Sanchez, R.; Wojtaszek, A.; Bushaw, B.A.; et al. Nuclear charge radii of 8,9Li determined by laser spectroscopy. Phys. Rev. Lett. 2004, 93, 113002. [Google Scholar] [CrossRef]
- Sánchez, R.; Nörtershäuser, W.; Ewald, G.; Albers, D.; Behr, J.; Bricault, P.; Bushaw, B.A.; Dax, A.; Dilling, J.; Dombsky, M.; et al. Nuclear charge radii of 9,11Li: The influence of halo neutrons. Phys. Rev. Lett. 2006, 96, 033002. [Google Scholar] [CrossRef]
- Nörtershäuser, W.; Tiedemann, D.; Žáková, M.; Andjelkovic, Z.; Blaum, K.; Bissell, M.L.; Cazan, R.; Drake, G.W.F.; Geppert, C.; Kowalska, M.; et al. Nuclear charge radii of 7,9,10Be and the one-neutron halo nucleus 11Be. Phys. Rev. Lett. 2009, 102, 062503. [Google Scholar] [CrossRef]
- Brown, B.A. Mirror charge radii and the neutron equation of state. Phys. Rev. Lett. 2017, 119, 122502. [Google Scholar] [CrossRef]
- Brown, B.A.; Minamisono, K.; Piekarewicz, J.; Hergert, H.; Garand, D.; Klose, A.; König, K.; Lantis, J.D.; Liu, Y.; Maaß, B.; et al. Implications of the 36Ca–36S and 38Ca–38Ar difference in mirror charge radii on the neutron matter equation of state. Phys. Rev. Res. 2020, 2, 022035. [Google Scholar] [CrossRef]
- Pineda, S.V.; König, K.; Rossi, D.M.; Brown, B.A.; Incorvati, A.; Lantis, J.; Minamisono, K.; Nörtershäuser, W.; Piekarewicz, J.; Powel, R.; et al. Charge radius of neutron-deficient 54Ni and symmetry energy constraints using the difference in mirror pair charge radii. Phys. Rev. Lett. 2021, 127, 182503. [Google Scholar] [CrossRef] [PubMed]
- Naito, T.; Roca-Maza, X.; Colò, G.; Liang, H.; Sagawa, H. Isospin symmetry breaking in the charge radius difference of mirror nuclei. Phys. Rev. C 2022, 106, L061306. [Google Scholar] [CrossRef]
- Reinhard, P.G.; Nazarewicz, W. Information content of the differences in the charge radii of mirror nuclei. Phys. Rev. C 2022, 105, L021301. [Google Scholar] [CrossRef]
- Bano, P.; Pattnaik, S.P.; Centelles, M.; Viñas, X.; Routray, T.R. Correlations between charge radii differences of mirror nuclei and stellar observables. Phys. Rev. C 2023, 108, 015802. [Google Scholar] [CrossRef]
- Yang, J.; Piekarewicz, J. Difference in proton radii of mirror nuclei as a possible surrogate for the neutron skin. Phys. Rev. C 2018, 97, 014314. [Google Scholar] [CrossRef]
- Gaidarov, M.; Moumene, I.; Antonov, A.; Kadrev, D.; Sarriguren, P.; Moya de Guerra, E. Proton and neutron skins and symmetry energy of mirror nuclei. Nucl. Phys. A 2020, 1004, 122061. [Google Scholar] [CrossRef]
- Novario, S.J.; Lonardoni, D.; Gandolfi, S.; Hagen, G. Trends of neutron skins and radii of mirror nuclei from first principles. Phys. Rev. Lett. 2023, 130, 032501. [Google Scholar] [CrossRef]
- Maaß, B.; Müller, P.; Nörtershäuser, W.; Clark, J.; Gorges, C.; Kaufmann, S.; König, K.; Krämer, J.; Levand, A.; Orford, R.; et al. Towards laser spectroscopy of the proton-halo candidate boron-8. Hyperfine Interact. 2017, 238, 25. [Google Scholar] [CrossRef]
- Yerokhin, V.A.; Pachucki, K. Theoretical energies of low-lying states of light helium-like ions. Phys. Rev. A 2010, 81, 022507. [Google Scholar] [CrossRef]
- Yerokhin, V.A.; Patkóš, V.; Pachucki, K. QED calculations of energy levels of heliumlike ions with 5 ≤ Z ≤ 30. Phys. Rev. A 2022, 106, 022815. [Google Scholar] [CrossRef]
- Yerokhin, V.A.; Patkóš, V.; Pachucki, K. QED mα7 effects for triplet states of heliumlike ions. Phys. Rev. A 2023, 107, 012810. [Google Scholar] [CrossRef]
- Riis, E.; Sinclair, A.G.; Poulsen, O.; Drake, G.W.F.; Rowley, W.R.C.; Levick, A.P. Lamb shifts and hyperfine structure in 6Li+ and 7Li+: Theory and experiment. Phys. Rev. A 1994, 49, 207–220. [Google Scholar] [CrossRef]
- Guan, H.; Chen, S.; Qi, X.-Q.; Liang, S.; Sun, W.; Zhou, P.; Huang, Y.; Zhang, P.-P.; Zhong, Z.-X.; Yan, Z.-C.; et al. Probing atomic and nuclear properties with precision spectroscopy of fine and hyperfine structures in the 7Li+ ion. Phys. Rev. A 2020, 102, 030801. [Google Scholar] [CrossRef]
- Clausen, G.; Jansen, P.; Scheidegger, S.; Agner, J.A.; Schmutz, H.; Merkt, F. Ionization energy of the metastable 2 1S0 state of 4He from Rydberg-series extrapolation. Phys. Rev. Lett. 2021, 127, 093001. [Google Scholar] [CrossRef] [PubMed]
- Clausen, G.; Scheidegger, S.; Agner, J.A.; Schmutz, H.; Merkt, F. Imaging-assisted single-photon Doppler-free laser spectroscopy and the ionization energy of metastable triplet helium. Phys. Rev. Lett. 2023, 131, 103001. [Google Scholar] [CrossRef] [PubMed]
- Maaß, B. Laser Spectroscopy of the Boron Isotopic Chain. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2020. [Google Scholar] [CrossRef]
- König, K.; Krämer, K.; Geppert, C.; Imgram, P.; Maaß, B.; Ratajczyk, T.; Nörtershäuser, W. A new Collinear Apparatus for Laser Spectroscopy and Applied Science (COALA). Rev. Sci. Instrum. 2020, 91, 081301. [Google Scholar] [CrossRef] [PubMed]
- Mohr, K.; Buß, A.; Andelkovic, Z.; Hannen, V.; Horst, M.; Imgram, P.; König, K.; Maaß, B.; Nörtershäuser, W.; Rausch, S.; et al. Collinear laser spectroscopy of helium-like 11B3+. Atoms 2023, 11, 11. [Google Scholar] [CrossRef]
- Imgram, P. High-Precision Laser Spectroscopy of Helium-like Carbon 12C4+. Ph.D. Thesis, TU Darmstadt, Darmstadt, Germany, 2023. [Google Scholar] [CrossRef]
- Imgram, P.; König, K.; Maaß, B.; Müller, P.; Nörtershäuser, W. Collinear laser spectroscopy of highly charged ions produced with an electron-beam ion source. Phys. Rev. A 2023, 108, 062809. [Google Scholar] [CrossRef]
- Imgram, P.; König, K.; Maaß, B.; Müller, P.; Nörtershäuser, W. Collinear laser spectroscopy of 2 3S1 → 2 3PJ transitions in helium-like 12C4+. Phys. Rev. Lett. 2023, 131, 243001. [Google Scholar] [CrossRef] [PubMed]
- Sailer, T.; Debierre, V.; Harman, Z.; Heiße, F.; König, C.; Morgner, J.; Tu, B.; Volotka, A.V.; Keitel, C.H.; Blaum, K.; et al. Measurement of the bound-electron g-factor difference in coupled ions. Nature 2022, 606, 479–483. [Google Scholar] [CrossRef]
- Schmidt, S.; Willig, M.; Haack, J.; Horn, R.; Adamczak, A.; Abdou Ahmed, M.; Amaro, F.D.; Amaro, P.; Biraben, F.; Carvalho, P.; et al. The next generation of laser spectroscopy experiments using light muonic atoms. J. Phys. Conf. Ser. 2018, 1138, 012010. [Google Scholar] [CrossRef]
- Yerokhin, V.A. Hyperfine structure of Li and Be+. Phys. Rev. A 2008, 78, 012513. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, P.-P.; Zhou, P.-P.; Chen, S.-L.; Zhou, Z.-Q.; Huang, Y.; Qi, X.-Q.; Yan, Z.-C.; Shi, T.-Y.; Drake, G.W.F.; et al. Measurement of hyperfine structure and the Zemach radius in 6Li+ using optical Ramsey technique. Phys. Rev. Lett. 2023, 131, 103002. [Google Scholar] [CrossRef]
- Pachucki, K.; Patkóš, V.; Yerokhin, V.A. Hyperfine splitting in 6,7Li+. Phys. Rev. A 2023, 108, 052802. [Google Scholar] [CrossRef]
- Pachucki, K.; Patkóš, V.; Yerokhin, V.A. Accurate determination of 6,7Li nuclear magnetic moments. Phys. Lett. B 2023, 846, 138189. [Google Scholar] [CrossRef]
- Krutov, A.A.; Martynenko, A.P.; Martynenko, F.A.; Sukhorukova, O.S. Lamb shift in muonic ions of lithium, beryllium, and boron. Phys. Rev. A 2016, 94, 062505. [Google Scholar] [CrossRef]
- Dorokhov, A.E.; Faustov, R.N.; Martynenko, A.P.; Martynenko, F.A. Precision physics of muonic ions of lithium, beryllium and boron. Int. J. Mod. Phys. A 2021, 36, 2150022. [Google Scholar] [CrossRef]
- Li Muli, S.S.; Poggialini, A.; Bacca, S. Muonic lithium atoms: Nuclear structure corrections to the Lamb shift. SciPost Phys. Proc. 2020, 3, 028. [Google Scholar] [CrossRef]
- Valuev, I.A.; Colò, G.; Roca-Maza, X.; Keitel, C.H.; Oreshkina, N.S. Evidence against nuclear polarization as source of fine-structure anomalies in muonic atoms. Phys. Rev. Lett. 2022, 128, 203001. [Google Scholar] [CrossRef]
- Barrett, B.R.; Navrátil, P.; Vary, J.P. Ab initio no core shell model. Prog. Part. Nucl. Phys. 2013, 69, 131–181. [Google Scholar] [CrossRef]
- Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 1950, 45, 255–282. [Google Scholar] [CrossRef]
- Haydock, R. The inverse of a linear operator. J. Phys. Math. Nucl. Gen. 1974, 7, 2120–2124. [Google Scholar] [CrossRef]
- Reuter, W.; Fricke, G.; Merle, K.; Miska, H. Nuclear charge distribution and rms radius of 12C from absolute elastic electron scattering measurements. Phys. Rev. C 1982, 26, 806–818. [Google Scholar] [CrossRef]
- Schneuwly, H.; Vogel, P. Electronic K X-ray energies in heavy muonic atoms. Phys. Rev. A 1980, 22, 2081–2087. [Google Scholar] [CrossRef]
- Simons, L.M.; Abbot, D.; Bach, B.; Bacher, R.; Badertscher, A.; Blüm, P.; DeCecco, P.; Eades, J.; Egger, J.; Elsener, K.; et al. Exotic atoms and their electron shell. Nucl. Instrum. Meth. Phys. Res. B Beam Interact. Mater. Atoms 1994, 87, 293–300. [Google Scholar] [CrossRef]
- Desclaux, J.P. A multiconfiguration relativistic DIRAC-FOCK program. Comput. Phys. Commun. 1975, 9, 31–45. [Google Scholar] [CrossRef]
- Mallow, J.V.; Desclaux, J.P.; Freeman, A.J. Dirac-Fock method for muonic atoms: Transitions energies, wave functions, and charge densities. Phys. Rev. A 1978, 17, 1804–1809. [Google Scholar] [CrossRef]
- Santos, J.P.; Parente, F.; Boucard, S.; Indelicato, P.; Desclaux, J.P. X-ray energies of circular transitions and electron screening in kaonic atoms. Phys. Rev. A 2005, 71, 032501. [Google Scholar] [CrossRef]
- Trassinelli, M.; Indelicato, P. Relativistic calculations of pionic and kaonic atoms’ hyperfine structure. Phys. Rev. A 2007, 76, 012510. [Google Scholar] [CrossRef]
- Indelicato, P. Nonperturbative evaluation of some QED contributions to the muonic hydrogen n = 2 Lamb shift and hyperfine structure. Phys. Rev. A 2013, 87, 022501. [Google Scholar] [CrossRef]
- De Wit, S.A.; Backenstoss, G.; Daum, C.; Sens, J.C.; Acker, H.L. Measurement and analysis of muonic X-ray spectra in deformed nuclei. Nucl. Phys. 1966, 87, 657–702. [Google Scholar] [CrossRef]
- Pieper, W.; Greiner, W. The influence of nuclear dynamics on the X-ray spectrum of muonic atoms. Phys. Lett. B 1967, 24, 377–380. [Google Scholar] [CrossRef]
- Foot, C.J.; Stacey, D.N.; Stacey, V.; Kloch, R.; Leś, Z. Isotope effects in the nuclear charge distribution in zinc. Proc. R. Soc. A Math. Phys. Engin. Sci. 1982, 384, 205–216. [Google Scholar] [CrossRef]
- Sahoo, B.K.; Ohayon, B. All-optical differential radii in zinc. Phys. Rev. Res. 2023, 5, 043142. [Google Scholar] [CrossRef]
- Çavuşoǧlu, A.; Sikora, B. Impact of the nuclear charge distribution on the g-factors and ground state energies of bound muons. arXiv 2023, arXiv:2311.16855. [Google Scholar] [CrossRef]
- Paul, N.; Bian, G.; Azuma, T.; Okada, S.; Indelicato, P. Testing quantum electrodynamics with exotic atoms. Phys. Rev. Lett. 2021, 126, 173001. [Google Scholar] [CrossRef] [PubMed]
- Indelicato, P. QED tests with highly charged ions. J. Phys. B At. Mol. Opt. Phys. 2019, 52, 232001. [Google Scholar] [CrossRef]
- Fricke, G.; Heilig, K. Nuclear Charge Radii; Springer Nature Switzerland AG: Cham, Switzerland, 2004. [Google Scholar] [CrossRef]
- Simons, L.M. X-ray spectroscopy at PSI. Hyperfine Interact. 1999, 119, 281–290. [Google Scholar] [CrossRef]
- Ruckstuhl, W.; Aas, B.; Beer, W.; Beltrami, I.; de Boer, F.W.N.; Bos, K.; Goudsmit, P.F.A.; Kiebele, U.; Leisi, H.J.; Strassner, G.; et al. High-precision muonic X-ray measurement of the rms charge radius of 12C with a crystal spectrometer. Phys. Rev. Lett. 1982, 49, 859–862. [Google Scholar] [CrossRef]
- Fleischmann, A.; Enss, C.; Seidel, G. Metallic magnetic calorimeters. In Cryogenic Particle Detection; Enss, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 151–216. [Google Scholar] [CrossRef]
- Unger, D.; Abeln, A.; Cocolios, T.E.; Eizenberg, O.; Enss, C.; Fleischmann, A.; Gastaldo, L.; Godinho, C.; Heines, M.; Hengstler, D.; et al. MMC array to study X-ray transitions in muonic atoms. arXiv 2023, arXiv:2311.12014. [Google Scholar] [CrossRef]
- Hengstler, D.; Keller, M.; Schöltz, C.; Geist, J.; Krantz, M.; Kempf, S.; Gastaldo, L.; Fleischmann, A.; Gassner, T.; Weber, G.; et al. Towards FAIR: First measurements of metallic magnetic calorimeters for high-resolution X-ray spectroscopy at GSI. Phys. Scr. 2015, T166, 014054. [Google Scholar] [CrossRef]
- Unger, D.; Abeln, A.; Enss, C.; Fleischmann, A.; Hengstler, D.; Kempf, S.; Gastaldo, L. High-resolution for IAXO: MMC-based X-ray detectors. J. Instrum. 2021, 16, P06006. [Google Scholar] [CrossRef]
- Wauters, F.; Knecht, A. The muX project. SciPost Phys. Proc. 2021, 5, 022. [Google Scholar] [CrossRef]
- Boyd, S.; Kim, G.B.; Hall, J.; Cantor, R.; Friedrich, S. Metallic magnetic calorimeters for high-accuracy nuclear decay data. J. Low Temp. Phys. 2020, 199, 681–687. [Google Scholar] [CrossRef]
- Deslattes, R.D.; Kessler, E.G.; Indelicato, P.; de Billy, L.; Lindroth, E.; Anton, J. X-ray transition energies: New approach to a comprehensive evaluation. Rev. Mod. Phys. 2003, 75, 35–99. [Google Scholar] [CrossRef]
- Mendenhall, M.H.; Hudson, L.T.; Szabo, C.I.; Henins, A.; Cline, J.P. The molybdenum K-shell X-ray emission spectrum. J. Phys. At. Mol. Opt. Phys. 2019, 52, 215004. [Google Scholar] [CrossRef] [PubMed]
- Hudson, L.T.; Cline, J.P.; Henins, A.; Mendenhall, M.H.; Szabo, C. Contemporary X-ray wavelength metrology and traceability. Radiat. Phys. Chem. 2020, 167, 108392. [Google Scholar] [CrossRef] [PubMed]
- Trassinelli, M.; Anagnostopoulos, D.F.; Borchert, G.; Dax, A.; Egger, J.-P.; Gotta, D.; Hennebach, M.; Indelicato, P.; Liu, Y.-W.; Manil, B.; et al. Measurement of the charged pion mass using X-ray spectroscopy of exotic atoms. Phys. Lett. B 2016, 759, 583–588. [Google Scholar] [CrossRef]
- Okumura, T.; Azuma, T.; Bennett, D.A.; Chiu, I.; Doriese, W.B.; Durkin, M.S.; Fowler, J.W.; Gard, J.D.; Hashimoto, T.; Hayakawa, R.; et al. Proof-of-principle experiment for testing strong-field quantum electrodynamics with exotic atoms: High precision X-ray spectroscopy of muonic neon. Phys. Rev. Lett. 2023, 130, 173001. [Google Scholar] [CrossRef] [PubMed]
- Curceanu, C.; Abbene, L.; Amsler, C.; Bazzi, M.; Bettelli, M.; Borghi, G.; Bosnar, D.; Bragadireanu, M.; Buttacavoli, A.; Cargnelli, M.; et al. Kaonic atoms at the DAΦNE collider: A strangeness adventure. Front. Phys. 2023, 11, 1240250. [Google Scholar] [CrossRef]
, fm | Method | References | ||
---|---|---|---|---|
1H | 0.84060(39) | 0.5 | -Laser | [27,28] |
2H | 0.1 | OIS + (61H) | [29,30] | |
3He | 0.5 | -Laser | [28,31] | |
4He | 0.7 | -Laser | [28,32] | |
6Li | 15 | el. scat. | [33,34,35,36] | |
7Li | 17 | OIS + (6Li) | [36,37] | |
9Be | 13 | el. scat. 1 | [38] | |
10B | 12 | OIS+ (11B) | [39] | |
11B | 8.7 | scat.(12C) | [40] | |
12C | 0.8 | -X | [41] | |
13C | 1.6 | -X | [42] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohayon, B.; Abeln, A.; Bara, S.; Cocolios, T.E.; Eizenberg, O.; Fleischmann, A.; Gastaldo, L.; Godinho, C.; Heines, M.; Hengstler, D.; et al. Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei. Physics 2024, 6, 206-215. https://doi.org/10.3390/physics6010015
Ohayon B, Abeln A, Bara S, Cocolios TE, Eizenberg O, Fleischmann A, Gastaldo L, Godinho C, Heines M, Hengstler D, et al. Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei. Physics. 2024; 6(1):206-215. https://doi.org/10.3390/physics6010015
Chicago/Turabian StyleOhayon, Ben, Andreas Abeln, Silvia Bara, Thomas Elias Cocolios, Ofir Eizenberg, Andreas Fleischmann, Loredana Gastaldo, César Godinho, Michael Heines, Daniel Hengstler, and et al. 2024. "Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei" Physics 6, no. 1: 206-215. https://doi.org/10.3390/physics6010015
APA StyleOhayon, B., Abeln, A., Bara, S., Cocolios, T. E., Eizenberg, O., Fleischmann, A., Gastaldo, L., Godinho, C., Heines, M., Hengstler, D., Hupin, G., Indelicato, P., Kirch, K., Knecht, A., Kreuzberger, D., Machado, J., Navratil, P., Paul, N., Pohl, R., ... Wauters, F. (2024). Towards Precision Muonic X-ray Measurements of Charge Radii of Light Nuclei. Physics, 6(1), 206-215. https://doi.org/10.3390/physics6010015