From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence
Abstract
:1. Introduction: A Main Sequence and the Eigenvector 1 for Quasars
2. Observations
- For Mrk (Markarian) 335, Mrk 478, and Fairall 9, we utilized optical spectra sourced from Ref. [26]. Additionally, the UV spectra of Mrk 335 were obtained during observations conducted on the 4 and 7 January 2013, utilizing the Cosmic Origins Spectrograph (COS) aboard the Hubble Space Telescope (HST) with the G140L grism. The UV spectra of Mrk 478 were acquired on the 5 December 1996, utilizing the HST’s Faint Object Spectrograph (FOS) and employing the G130H and G190H grisms. For Fairall 9, UV spectra were collected on the 22 January 1993, utilizing the HST’s FOS with the G190H and G270H grisms, and subsequently on the 18 July 2012, employing the HST’s COS with the G130M and G160M grisms.
- For NGC (New General Catalog) 1275, the data were sourced from Ref. [27]. Optical spectra encompassed various observations spanning the period from 1983 to 2017. Additionally, UV spectra were acquired from the HST MAST (Mikulski Archive of Space Telescope), with FOS observations in 1993 and COS observations in 2011.
- For PHL (Palomar Haro Luyten) 1092, data were drawn from [28]. Optical spectra were collected using the Goodman spectrograph at the 4.1-meter telescope of the Southern Observatory for Astrophysical Research (SOAR) on the night of 12 December 2014. The UV spectra were obtained using the HST’s Space Telescope Imaging Spectrograph (STIS) on the night of 20 August 2003.
- composite spectra for radio-loud (RL) and radio-quiet (RQ) Pop. B sources. The data on which the composites were based were described in previous papers ([21] and references therein);
3. Methodology and Data Analysis
3.1. Multicomponent Analysis
3.1.1. Population A
- Blueshifted Component (BLUE): defined as the excess of emission on the blue side of the BC. The shape can be irregular, but the profiles resemble “triangular” or “trapezoidal shapes” [38,39] that are usually well-modeled by asymmetric Gaussian [38,40]. The blueshifted component can be prominent at high Eddington ratios and high luminosity, dominating the HIL emission [41,42,43]. The BLUE is increasing in prominence in the HILs along the quasar main sequence and reaches its maximum at STs A3–A4, where = Feii4570/H is also at a maximum.
3.1.2. Population B
- BC: represented by a Gaussian function, symmetric and unshifted or slightly redshifted [4].
- Very Broad Component (VBC): represented by a Gaussian function, redshifted by about 2000 km/s [4,47]. Given the virial velocity field of the emitting regions, this component represents the innermost emission of the BLR. Several studies have described the Pop. B Balmer profiles in terms of a BLR and a ’very broad’ line region (VBLR) [48,49]. It is unclear whether the emitting gas might be so highly ionized to be optically thin to the Lyman continuum [50]. The origin of the redshift is the subject of current debate, and two main alternatives have been proposed: gravitational redshift [51,52,53,54,55,56], and infall [57]. The data support the gravitational redshift hypothesis for log [], while lower black hole masses, , require noticeably low ratio of the object bolometric luminosity to the Eddington luminosity, , for the profiles to show a significant gravitational effect [58].
- BLUE: defined as the excess of emission on the blue side of the sum of BC and VBC profile. The blueshifted component is usually not prominent at low Eddington ratios but can however affect the centroid and asymmetry index of both HILs and LILs. Due to its weakness, BLUE is always modeled by a shifted (symmetric) Gaussian.
3.2. Emission Line Ratios
- Z indicator Civ/Siiv+Oiv]1402 has been extensively applied as metallicity indicator (e.g., [13,16]). In photoionization equilibrium, the classical argument derived for Hii regions that the electron temperature decreases with increasing metallicity [59] works for the BLR as well. The intensity of the Civ line actually decreases as the metal abundance increases. However, the reason why the ratio Civ/Siiv is a metallicity indicator resides in the “competition” of ions that have roughly the same creation potential of . As a result, the Strömgren sphere of decreases much more strongly with increasing Z than for : the ionization potential of is 2.46 Ryd, so the relatively unabsorbed continuum between 2.5 Ryd and 3.5 Ryd is available to maintain a proportionality with its abundance [60]. This effect dominates over the lower electron temperature that affects the collisional excitation rates of both Siiv and Civ, expected to be higher for Siiv.
- Z indicators Civ/Heii1640 and Siiv/Heii1640: when considering indicators like Civ/Heii1640 and Siiv/Heii1640, those indicators should show sensitivity to the abundance of carbon and silicon, assuming that the ratio of helium relative to hydrogen remains constant. However, the dependence of Civ/Heii1640 on Z is not monotonic: it increases for sub-solar metallicities and then declines steadily up to 200, for specific conditions with the ionization parameter, , and the hydrogen density, log [22]. For lower U values, the behavior is monotonic [29]. This stresses a need for multiple intensity ratios that depend on Z and U.
- Z indicators involving Nv, Nv/Civ and Nv/Heii1640 have also been extensively employed in previous studies [12,13,16,61,62]. The strength of the Nv line was found to be unexpectedly high in a photoionization scenario, possibly due to a selective enhancement of nitrogen (e.g., [63,64]), resulting from secondary production of nitrogen by massive and intermediate-mass stars, and yielding a nitrogen-to-hydrogen abundance ratio [N/H] [15,65,66]. This process can be particularly significant in cases of abnormal star formation and evolution processes that are expected to occur within active nuclei. Contamination by narrow and semi-broad absorption features is often significant, and even with precise modeling of high-ionization lines, it may be challenging to reconstruct the unabsorbed profile of the red wing of Ly. In this analysis, we refrain from using ratios involving Nv because they are not consistently measurable.
- Density indicators. The ratios Aliii/Siiii] and Siiii]/Ciii] are responsive to density since they involve intercombination lines with well-defined critical densities ( for Ciii] [62] and for Siiii]).
- Ionization parameter Siiii]/Siiv, Siii1814/Siiii], and Siii1814/Siiv are influenced by the ionization parameter and remain insensitive to changes in Z since the lines are from different ionic states of the same element. Also, the ratio Ciii]/Civ is sensitive to the ionization parameter but entails a strong dependence on the as well. The ratio Civ/H is also a indicative diagnostic, although it is also dependent on Z but often made unreliable by the intrinsic variations of the quasar and by poor photometric accuracy if observations are not synoptic and dedicated.
- Mixed diagnostics: Feii/H. The ratio deserves particular attention. As with any other metal to hydrogen ratio, it entails an expected dependence on iron abundance and hence on metallicity. Nonetheless, is dependent on density, ionization parameter and column density, , of the line emitting gas, in the sense that large () seem possible only for relatively high ( ), low ionization and large ( ) [7,67,68].
3.3. Photoionization Simulations
4. Case Studies
- Composite RL ST B1. A RL composite spectrum was obtained from 20 RL sources, with redshift range of about 0.25–0.65, absolute magnitudes between −23.5 and −26.5 and the signal-to-noise ratio, S/N ≈ 130 and ≈55 for the visual and UV ranges. The Z estimates are used as given in Ref. [21] since the method of analysis and measurement is basically the same.
- NGC 1275. NGC 1275 (Perseus A) is an elliptical galaxy, and the brightest cluster galaxy of the Perseus Cluster, one of the most massive galaxy clusters in the nearby Universe. NGC 1275 is associated with a cooling flow phenomenon, where gas in the cluster’s intracluster medium is thought to cool and sink towards the central regions of the galaxy [81,82], potentially fueling its modest AGN activity. The photoionizing continuum, which is crucial for understanding the ionization state of the gas in NGC 1275, was defined ad hoc by observational constraints on the SED (see [27] for details). The estimated photoionizing continuum had a spectral index = 0.5 in the far-UV range 500 Å to 800 Å and a spectral break at 800 Å. Beyond this spectral break, the spectral index = 2 down to the soft X-ray band at 0.5 keV, with = 1.0 in the harder X-ray band. In summary, the SED of the far-UV shown in Ref. [27] indicates a broad line Seyfert-like AGN with a soft ionizing continuum, a weak hard ionizing continuum, and no Compton reflection hump. The big blue bump associated with thermal emission from optically thick, geometrically thin accretion [83] is weaker than the ones of the SED templates appropriate for Pop. B quasars; see Figure 5 in Ref. [27]. The is too low and, interestingly, the BLR is correspondingly weak, to the point that a careful, dedicated analysis was needed to disentangle the broad line profiles from the considerably stronger narrow line emission.
- Composite RQ ST B1. A composite spectrum was constructed for a group of 16 RQ sources, all falling within the spectral bin B1, within the redshift range of redshift range approximately 0.002–0.5. These sources span an absolute magnitude range −21 to −27, which corresponds to a bolometric luminosity range 45–47 erg/s. To achieve comprehensive UV coverage from 1000 Å to around 6000 Å (including the spectral region from Ly to H), which is typically demanding and necessitates space-based observations, the UV data were obtained from HST/FOS observations as discussed in Ref. [84]. Additionally, the optical spectra were sourced from Ref. [26]. The composite spectrum has quite a high S/N, of approximately 90. The metallicities for this composite and their corresponding uncertainties were adopted from Ref. [21].
- Fairall 9 ST B1. Empirical parameters derived from the MS analysis indicate Fairall 9’s spectral type as B1, a category well-populated among quasars along the MS. This classification consistently aligns with a low ratio. Notably, Fairall 9 exhibits radio quietness, as it eluded detection in the Sydney University Molonglo Sky Survey [85] with a detection limit of 6 mJy, implying a radio-to-optical specific flux ratio of not exceeding 1.5. We use the Kellerman ratio, [86].The most recent assessment of the black hole mass includes estimates using the reverberation mapping technique that have converged on the values spanning (1.5 to 2.5) [87,88], contingent on the adopted virial factor, as well as a spectropolarimetric-derived that allowed for a virial factor estimate, yields . A conventional estimate of Fairall 9’s bolometric luminosity stands at 45.3 erg/s, with an Eddington ratio of log ≈ −2.0, placing it toward the lower end within the distribution of Pop. B sources. The SED also conforms to the characteristics of Pop. B objects, devoid of a prominent big-blue bump. More details are given in a recent paper [89].
- Mrk 335 ST A1. Mrk 335 is a Pop. A Seyfert 1. It is located in the nearby Universe with a redshift of 0.0256. This AGN exhibits characteristics typical of an RQ A1 AGN, with lower-than-average Feii emissions, positioning it in the lower-left corner of the MS. Emission lines in the UV and optical ranges exhibit little to no blueshifts in their profiles. The only exception to this typical behavior is the slope of its optical continuum, which is likely due to galactic extinction.
- Mrk 478 ST A2. Mrk 478 is a Pop. A Seyfert 1, borderline ST A3 from the measurements of the present analysis. It is located at a redshift of 0.077. Although classified as A2, it exhibits characteristics that suggest it may be an extreme accretor. Table 2 shows that it has the Eddington ratio about 1. Additionally, it displays a strong Feii emission and a pronounced outflowing component in its emission line profiles. Hence, it could be argued that Mrk 478 could be classified as an A3-type object.
- PHL 1092 ST A4. PHL 1092 is a Pop. A Seyfert 1, spectral type A4, located at a redshift of 0.3965. Its spectrum is characterized by strong UV emissions, with a notably sloped X-ray SED. PHL 1092 is considered an extremely accreting quasar, as it exhibits prime characteristics of one, including a strong outflowing component in its emission line profiles, particularly noticeable in Civ and Siiv+Oiv]1402, which casts a shadow on the virialized component. In the optical range, the H emission is overshadowed by the Feii emission, mirroring the Feii profile of I Zw 1, itself considered an extreme accretor.
- Extreme Population A STs (A3, A4). The intermediate-redshift xA sample of Refs. [22,29] allowed for Z estimates from the UV spectral lines. The sample lacks the optical data providing the essential information from the H spectral range, and the line width reported in Table 2 is the one of Aliii. The sources were selected based on UV criteria that were found equivalent to the criterion ≳ 1 for the identification of xA sources, at least at a high degree of confidence [90]. Their luminosity is significantly higher than the luminosity of the other sources considered in this paper, although the Eddington ratio is consistent with the ones of Mrk 478 and PHL 1092 of about .
Object | ST (a) | FWHM(H) (c) | Comment | ||||||
---|---|---|---|---|---|---|---|---|---|
[km ] | [erg ] | [] | |||||||
Composite RL | B1 | ≈0.25–0.65 | 7690 | 0.17 | – | – | 0.01–0.1 | [21] | |
NGC 1275 | B1 | 0.017 | 4770 | n.d. (i), | 1744 | , , Ls: [27] | |||
Composite RQ | B1 | ≈0.002–0.5 | 5530 | 0.34 | – | 4 – | 0.01–0.04 | [21] | |
Fairall 9 | B1 | 0.04609 | 4550 | 0.43 | 1.5 | 0.01 | 0.92 | : [86], : [89] | |
Mrk 335 | A1 | 0.0256 | 2175 | 0.34 | 0.13 | 0.36 | |||
Mrk 478 | A2/A3 | 0.077 | 1322 | 1.04 | 1.02 | 0.85 | [91,92,93] | ||
PHL 1092 | A4 | 0.3965 | 2494 | 1.76 | 0.42 | 0.78 | Radio-detected but RQ [28,94] | ||
Composite | xA | 2.1–2.5 | 3200 (j) | … (j) | 0.7–3 | ≲80 | <> [22,29] |
5. Results
5.1. Line Profile Analysis
5.2. Estimation of Metallicity for the Virialized Emitting Region
5.3. Outflows Traced by the Blueshifted Components
6. Discussion
A Gradient in Metal Content and Chemical Feedback along the Sequence
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AGN | active galactic nuclei |
A1,…, A4 | Population A spectral types |
BC | broad component |
BLR | broad line region |
BLUE | blueshifted component |
B1, B2, B3 | Population B spectral types |
COS | Cosmic Origin Spectrograph |
FIR | far-infrared |
FOS | Faint Object Spectrograph |
FWHM | full width at half maximum |
HIL | high-ionization line |
HST | Hubble Space Telescope |
ISM | interstellar medium |
LIL | low-ionization line |
MAST | Mikulski Archive of Space Telescopes |
Mrk | Markarian |
MS | main sequence |
NED | NASA/IPAC Extragalactic Database |
NGC | New General Catalog |
PHL | Palomar Haro Luyten |
Pop. | Population |
RL | radio-loud |
RQ | radio-quiet |
SED | spectral energy distribution |
SOAR | Southern Observatory for Astrophysical Research |
ST | spectral type |
STIS | Space Telescope Imaging Spectrograph |
UV | ultraviolet |
VBC | very broad component |
VBLR | very broad line region |
xA | extreme Population A |
Zw | Zwicky |
4DE1 | four-dimensional eigenvector 1 |
References
- Boroson, T.A.; Green, R.F. The Emission-Line Properties of Low-Redshift Quasi-stellar Objects. Astrophys. J. Suppl. 1992, 80, 109–135. [Google Scholar] [CrossRef]
- Gaskell, C.M. Galactic Mergers, Starburst Galaxies, Quasar Activity and Massive Binary Black Holes. Nature 1985, 315, 386. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Zwitter, T.; Marziani, P.; Dultzin-Hacyan, D. Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. Astrophys. J. 2000, 536, L5–L9. [Google Scholar] [CrossRef]
- Zamfir, S.; Sulentic, J.W.; Marziani, P.; Dultzin, D. Detailed Characterization of Hβ Emission Line Profile in Low-z SDSS Quasars. Mon. Not. R. Astron. Soc. 2010, 403, 1759–1786. [Google Scholar] [CrossRef]
- Shen, Y.; Ho, L.C. The Diversity of Quasars Unified by Accretion and Orientation. Nature 2014, 513, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Shen, Y. Dissecting the Quasar Main Sequence: Insight from Host Galaxy Properties. Astrophys. J. Lett. 2015, 804, L15. [Google Scholar] [CrossRef]
- Panda, S.; Marziani, P.; Czerny, B. The Quasar Main Sequence Explained by the Combination of Eddington Ratio, Metallicity, and Orientation. Astrophys. J. 2019, 882, 79. [Google Scholar] [CrossRef]
- Giustini, M.; Proga, D. A Global View of the Inner Accretion and Ejection Flow Around Super Massive Black Holes. Radiation-driven Accretion Disk Winds in a Physical Context. Astron. Astrophys. 2019, 630, A94. [Google Scholar] [CrossRef]
- Du, P.; et al. [SEAMBH Collaboration] Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VI. Velocity-resolved Reverberation Mapping of the Hβ Line. Astrophys. J. 2016, 820, 27. [Google Scholar] [CrossRef]
- Fraix-Burnet, D.; Marziani, P.; D’Onofrio, M.; Dultzin, D. The Phylogeny of Quasars and the Ontogeny of Their Central Black Holes. Front. Astron. Space Sci. 2017, 4, 1. [Google Scholar] [CrossRef]
- Panda, S. The CaFe Project: Optical Fe II and Near-Infrared Ca II Triplet Emission in Active Galaxies: Simulated EWs and the Co-dependence of Cloud Size and Metal Content. Astron. Astrophys. 2021, 650, A154. [Google Scholar] [CrossRef]
- Hamann, F.; Ferland, G. The Chemical Evolution of QSOs and the Implications for Cosmology and Galaxy Formation. Astrophys. J. 1993, 418, 11–27. [Google Scholar] [CrossRef]
- Nagao, T.; Marconi, A.; Maiolino, R. The Evolution of the Broad-Line Region among SDSS Quasars. Astron. Astrophys. 2006, 447, 157–172. [Google Scholar] [CrossRef]
- Juarez, Y.; Maiolino, R.; Mujica, R.; Pedani, M.; Marinoni, S.; Nagao, T.; Marconi, A.; Oliva, E. The Metallicity of the Most Distant Quasars. Astron. Astrophys. 2009, 494, L25–L28. [Google Scholar] [CrossRef]
- Matsuoka, K.; Nagao, T.; Marconi, A.; Maiolino, R.; Taniguchi, Y. The mass-metallicity relation of SDSS quasars. Astron. Astrophys. 2011, 527, A100. [Google Scholar] [CrossRef]
- Shin, J.; Woo, J.H.; Nagao, T.; Kim, S.C. The Chemical Properties of Low-redshift QSOs. Astrophys. J. 2013, 763, 58. [Google Scholar] [CrossRef]
- Sameshima, H.; Yoshii, Y.; Kawara, K. Chemical Evolution of the Universe at 0.7 < z < 1.6 Derived from Abundance Diagnostics of the Broad-Line Region of Quasars. Astrophys. J. 2017, 834, 203. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, L.; Shen, Y.; Ho, L.C.; Vestergaard, M.; Bañados, E.; Willott, C.J.; Wu, J.; Zou, S.; Yang, J.; et al. Metallicity in Quasar Broad-Line Regions at Redshift 6. Astrophys. J. 2022, 925, 121. [Google Scholar] [CrossRef]
- Matteucci, F. Chemical Evolution of Galaxies; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar] [CrossRef]
- Xu, F.; Bian, F.; Shen, Y.; Zuo, W.; Fan, X.; Zhu, Z. The Evolution of Chemical Abundance in Quasar Broad Line Region. Mon. Not. R. Astron. Soc. 2018, 480, 345–357. [Google Scholar] [CrossRef]
- Marziani, P.; Panda, S.; Deconto Machado, A.; Del Olmo, A. Metal Content in Relativistically Jetted and Radio-Quiet Quasars in the Main Sequence Context. Galaxies 2023, 11, 52. [Google Scholar] [CrossRef]
- Śniegowska, M.; Marziani, P.; Czerny, B.; Panda, S.; Martínez-Aldama, M.L.; del Olmo, A.; D’Onofrio, M. High Metal Content of Highly Accreting Quasars. Astrophys. J. 2021, 910, 115. [Google Scholar] [CrossRef]
- Di Matteo, T.; Springel, V.; Hernquist, L. Energy Input from Quasars Regulates the Growth and Activity of Black Holes and Their Host Galaxies. Nature 2005, 433, 604–607. [Google Scholar] [CrossRef]
- Hopkins, P.F.; Hernquist, L.; Cox, T.J.; Di Matteo, T.; Robertson, B.; Springel, V. A Unified, Merger-driven Model of the Origin of Starbursts, Quasars, the Cosmic X-Ray Background, Supermassive Black Holes, and Galaxy Spheroids. Astrophys. J. Suppl. 2006, 163, 1–49. [Google Scholar] [CrossRef]
- Somerville, R.S.; Davé, R. Physical Models of Galaxy Formation in a Cosmological Framework. Annu. Rev. Astron. Astrophys. 2015, 53, 51–113. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Zamanov, R.; Calvani, M.; Dultzin-Hacyan, D.; Bachev, R.; Zwitter, T. An Optical Spectroscopic Atlas of Low-Redshift Active Galactic Nuclei. Astrophys. J. Suppl. 2003, 145, 199–211. [Google Scholar] [CrossRef]
- Punsly, B.; Marziani, P.; Bennert, V.N.; Nagai, H.; Gurwell, M.A. Revealing the Broad Line Region of NGC 1275: The Relationship to Jet Power. Astrophys. J. 2018, 869, 143. [Google Scholar] [CrossRef]
- Marinello, M.; Rodríguez-Ardila, A.; Marziani, P.; Sigut, A.; Pradhan, A. Panchromatic Properties of the Extreme Fe ii Emitter PHL 1092. Mon. Not. R. Astron. Soc. 2020, 494, 4187–4202. [Google Scholar] [CrossRef]
- Garnica, K.; Negrete, C.A.; Marziani, P.; Dultzin, D.; Śniegowska, M.; Panda, S. High Metal Content of Highly Accreting Quasars: Analysis of an Extended Sample. Astron. Astrophys. 2022, 667, A105. [Google Scholar] [CrossRef]
- Collin-Souffrin, S.; Dyson, J.E.; McDowell, J.C.; Perry, J.J. The Environment of Active Galactic Nuclei. I—A Two-component Broad Emission Line Model. Mon. Not. R. Astron. Soc. 1988, 232, 539–550. [Google Scholar] [CrossRef]
- Elvis, M. A Structure for Quasars. Astrophys. J. 2000, 545, 63–76. [Google Scholar] [CrossRef]
- Peterson, B.M.; Wandel, A. Keplerian Motion of Broad-Line Region Gas as Evidence for Supermassive Black Holes in Active Galactic Nuclei. Astrophys. J. Lett. 1999, 521, L95–L98. [Google Scholar] [CrossRef]
- Peterson, B.M.; Wandel, A. Evidence for Supermassive Black Holes in Active Galactic Nuclei from Emission-Line Reverberation. Astrophys. J. Lett. 2000, 540, L13–L16. [Google Scholar] [CrossRef]
- Richards, G.T.; Kruczek, N.E.; Gallagher, S.C.; Hall, P.B.; Hewett, P.C.; Leighly, K.M.; Deo, R.P.; Kratzer, R.M.; Shen, Y. Unification of Luminous Type 1 Quasars through C IV Emission. Astron. J. 2011, 141, 167. [Google Scholar] [CrossRef]
- Coatman, L.; Hewett, P.C.; Banerji, M.; Richards, G.T. C iv Emission-Line Properties and Systematic Trends in Quasar Black Hole Mass Estimates. Mon. Not. R. Astron. Soc. 2016, 461, 647–665. [Google Scholar] [CrossRef]
- Ferland, G.J.; Hu, C.; Wang, J.; Baldwin, J.A.; Porter, R.L.; van Hoof, P.A.M.; Williams, R.J.R. Implications of Infalling Fe II-Emitting Clouds in Active Galactic Nuclei: Anisotropic Properties. Astrophys. J. Lett. 2009, 707, L82–L86. [Google Scholar] [CrossRef]
- Véron-Cetty, M.P.; Véron, P.; Gonçalves, A.C. A Spectrophotometric Atlas of Narrow-Line Seyfert 1 galaxies. Astron. Astrophys. 2001, 372, 730–754. [Google Scholar] [CrossRef]
- Marziani, P.; Negrete, C.A.; Dultzin, D.; Martínez-Aldama, M.L.; Del Olmo, A.; D’Onofrio, M.; Stirpe, G.M. Quasar Massive Ionized Outflows Traced by CIV λ1549 and [OIII]λλ4959,5007. Front. Astron. Space Sci. 2017, 4, 16. [Google Scholar] [CrossRef]
- Vietri, G.; Piconcelli, E.; Bischetti, M.; Duras, F.; Martocchia, S.; Bongiorno, A.; Marconi, A.; Zappacosta, L.; Bisogni, S.; Bruni, G.; et al. The WISSH Quasars Project. IV. Broad Line Region versus Kiloparsec-scale Winds. Astron. Astrophys. 2018, 617, A81. [Google Scholar] [CrossRef]
- Deconto-Machado, A.; del Olmo Orozco, A.; Marziani, P.; Perea, J.; Stirpe, G.M. High-Redshift Quasars along the Main Sequence. Astron. Astrophys. 2023, 669, A83. [Google Scholar] [CrossRef]
- Leighly, K.M.; Moore, J.R. Hubble Space Telescope STIS Ultraviolet Spectral Evidence of Outflow in Extreme Narrow-Line Seyfert 1 Galaxies. I. Data and Analysis. Astrophys. J. 2004, 611, 107–124. [Google Scholar] [CrossRef]
- Mejía-Restrepo, J.E.; Trakhtenbrot, B.; Lira, P.; Netzer, H.; Capellupo, D.M. Active Galactic Nuclei at z ∼ 1.5—II. Black Hole Mass Estimation by Means of Broad Emission Lines. Mon. Not. R. Astron. Soc. 2016, 460, 187–211. [Google Scholar] [CrossRef]
- Vietri, G.; Mainieri, V.; Kakkad, D.; Netzer, H.; Perna, M.; Circosta, C.; Harrison, C.M.; Zappacosta, L.; Husemann, B.; Padovani, P.; et al. SUPER. III. Broad Line Region Properties of AGNs at z ∼ 2. Astron. Astrophys. 2020, 644, A175. [Google Scholar] [CrossRef]
- Wang, H.; Wang, T.; Zhou, H.; Liu, B.; Wang, J.; Yuan, W.; Dong, X. Coexistence of Gravitationally-bound and Radiation-driven C IV Emission Line Regions in Active Galactic Nuclei. Astrophys. J. 2011, 738, 85. [Google Scholar] [CrossRef]
- Marconi, A.; Axon, D.J.; Maiolino, R.; Nagao, T.; Pietrini, P.; Risaliti, G.; Robinson, A.; Torricelli, G. On the Observed Distributions of Black Hole Masses and Eddington Ratios from Radiation Pressure Corrected Virial Indicators. Astrophys. J. Lett. 2009, 698, L103–L107. [Google Scholar] [CrossRef]
- Wang, J.; Wei, J.Y.; He, X.T. A Sample of IRAS Infrared-selected Seyfert 1.5 Galaxies: Infrared Color α(60, 25)-dominated Eigenvector 1. Astrophys. J. 2006, 638, 106–119. [Google Scholar] [CrossRef]
- Wolf, J.; Salvato, M.; Coffey, D.; Merloni, A.; Buchner, J.; Arcodia, R.; Baron, D.; Carrera, F.J.; Comparat, J.; Schneider, D.P.; et al. Exploring the Diversity of Type 1 Active Galactic Nuclei Identified in SDSS-IV/SPIDERS. Mon. Not. R. Astron. Soc. 2020, 492, 3580–3601. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferland, G.J. An Accretion Event in the Seyfert Galaxy NGC 5548. Nature 1986, 324, 345–347. [Google Scholar] [CrossRef]
- Snedden, S.; Gaskell, C. Different Velocity Dependences of Physical Conditions of High- and Low-Ionization Lines in Broad-Line Regions. In AGN Physics with the Sloan Digital Sky Survey; Richards, G.T., Hall, P.B., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; pp. 197–200. Available online: http://aspbooks.org/custom/publications/paper/311-0197.html (accessed on 7 January 2024).
- Morris, S.L.; Ward, M.J. Optically Thin Gas in the Broad-line Region of Seyfert Galaxies. Astrophys. J. 1989, 340, 713–728. [Google Scholar] [CrossRef]
- Netzer, H. On the Profiles of the Broad Lines in the Spectra of QSOs and Seyfert Galaxies. Mon. Not. R. Astron. Soc. 1977, 181, 89P–92P. [Google Scholar] [CrossRef]
- Corbin, M.R. QSO Broad Emission Line Asymmetries: Evidence of Gravitational Redshift? Astrophys. J. 1995, 447, 496–504. [Google Scholar] [CrossRef]
- Popovič, L.Č.; Vince, I.; Atanacković-Vukmanović, O.; Kubičela, A. Contribution of Gravitational Redshift to Spectral Line Profiles of Seyfert Galaxies and Quasars. Astron. Astrophys. 1995, 293, 309–314. Available online: https://ui.adsabs.harvard.edu/abs/1995A%2526A...293..309P/ (accessed on 7 January 2024).
- Muñoz, J.A.; Falco, E.E.; Kochanek, C.S.; Lehár, J.; Mediavilla, E. The Redshift Distribution of Flat-Spectrum Radio Sources. Astrophys. J. 2003, 594, 684–694. [Google Scholar] [CrossRef]
- Mediavilla, E.; Jiménez-Vicente, J.; Fian, C.; Muñoz, J.A.; Falco, E.; Motta, V.; Guerras, E. Systematic Redshift of the Fe III UV Lines in Quasars: Measuring Supermassive Black Hole Masses under the Gravitational Redshift Hypothesis. Astrophys. J. 2018, 862, 104. [Google Scholar] [CrossRef]
- Fian, C.; Mediavilla, E.; Jiménez-Vicente, J.; Motta, V.; Muñoz, J.A.; Chelouche, D.; Hanslmeier, A. Revealing the Structure of the Lensed Quasar Q 0957+561. II. Supermassive Black Hole Mass via Gravitational Redshift. Astron. Astrophys. 2022, 667, A67. [Google Scholar] [CrossRef]
- Wang, J.-M.; et al. [SEAMBH Collaboration] Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. II. The Most Luminous Standard Candles in the Universe. Astrophys. J. 2014, 793, 108. [Google Scholar] [CrossRef]
- Marziani, P. Accretion/Ejection Phenomena and Emission-Line Profile (A)symmetries in Type-1 Active Galactic Nuclei. Symmetry 2023, 15, 1859. [Google Scholar] [CrossRef]
- Pagel, B.E.J.; Edmunds, M.G.; Blackwell, D.E.; Chun, M.S.; Smith, G. On the Composition of H ii Regions in Southern Galaxies—I. NGC 300 and 1365. Mon. Not. R. Astron. Soc. 1979, 189, 95–113. [Google Scholar] [CrossRef]
- Huang, J.; Lin, D.N.C.; Shields, G. Metal Enrichment Due to Embedded Stars in AGN Discs. Mon. Not. R. Astron. Soc. 2023, 525, 5702–5718. [Google Scholar] [CrossRef]
- Ferland, G.J.; Baldwin, J.A.; Korista, K.T.; Hamann, F.; Carswell, R.F.; Phillips, M.; Wilkes, B.; Williams, R.E. High Metal Enrichments in Luminous Quasars. Astrophys. J. 1996, 461, 683–697. [Google Scholar] [CrossRef]
- Hamann, F.; Korista, K.T.; Ferland, G.J.; Warner, C.; Baldwin, J. Metallicities and Abundance Ratios from Quasar Broad Emission Lines. Astrophys. J. 2002, 564, 592–603. [Google Scholar] [CrossRef]
- Osmer, P.S.; Smith, M.G. The Emission-Line Spectra of Nine Newly Discovered, Optically Selected Quasars with Redshift 2.5 to 3.1. Astrophys. J. 1976, 210, 267–276. [Google Scholar] [CrossRef]
- Shields, G.A. The abundance of nitrogen in QSOs. Astrophys. J. 1976, 204, 330–336. [Google Scholar] [CrossRef]
- Vila-Costas, M.B.; Edmunds, M.G. The Nitrogen-to-Oxygen Ratio in Galaxies and Its Implications for the Origin of nitrogen. Mon. Not. R. Astron. Soc. 1993, 265, 199–212. [Google Scholar] [CrossRef]
- Izotov, Y.I.; Thuan, T.X. Heavy-Element Abundances in Blue Compact Galaxies. Astrophys. J. 1999, 511, 639–659. [Google Scholar] [CrossRef]
- Collin, S.; Joly, M. The Fe ii Problem in NLS1s. New Astron. Rev. 2000, 44, 531–537. [Google Scholar] [CrossRef]
- Matsuoka, Y.; Kawara, K.; Oyabu, S. Low-Ionization Emission Regions in Quasars: Gas Properties Probed with Broad O i and Ca ii Lines. ApJ 2008, 673, 62–68. [Google Scholar] [CrossRef]
- Ferland, G.J.; Chatzikos, M.; Guzmán, F.; Lykins, M.L.; van Hoof, P.A.M.; Williams, R.J.R.; Abel, N.P.; Badnell, N.R.; Keenan, F.P.; Porter, R.L.; et al. The 2017 Release Cloudy. Rev. Mex. Astronom. Astrofís. 2017, 53, 385–438. Available online: https://www.astroscu.unam.mx/RMxAA/vol53.html (accessed on 7 January 2024).
- Baldwin, J.; Ferland, G.; Korista, K.; Verner, D. Locally Optimally Emitting Clouds and the Origin of Quasar Emission Lines. Astrophys. J. 1995, 455, L119–L122. [Google Scholar] [CrossRef]
- Korista, K.; Baldwin, J.; Ferland, G.; Verner, D. An Atlas of Computed Equivalent Widths of Quasar Broad Emission Lines. Astrophys. J. Suppl. 1997, 108, 401–415. [Google Scholar] [CrossRef]
- Mathews, W.G.; Ferland, G.J. What Heats the Hot Phase in Active Nuclei? Astrophys. J. 1987, 323, 456–467. [Google Scholar] [CrossRef]
- Ferland, G.J.; Done, C.; Jin, C.; Landt, H.; Ward, M.J. State-of-the-Art AGN SEDs for Photoionization Models: BLR Predictions Confront the Observations. Mon. Not. R. Astron. Soc. 2020, 494, 5917–5922. [Google Scholar] [CrossRef]
- Sigut, T.A.A.; Pradhan, A.K. Ly alpha Flourescent Excitation of Fe ii in Active Galactic Nuclei. Astrophys. J. 1998, 499, L139–L142. [Google Scholar] [CrossRef]
- Sigut, T.A.A.; Pradhan, A.K. Predicted Fe ii Emission-Line Strengths from Active Galactic Nuclei. Astrophys. J. Suppl. 2003, 145, 15–37. [Google Scholar] [CrossRef]
- D’Agostini, G. Bayesian Reasoning in Data Analysis: A Critical Introduction; World Scientific: Singapore, 2003. [Google Scholar] [CrossRef]
- Nagao, T.; Maiolino, R.; Marconi, A. Gas Metallicity in the Narrow-Line Regions of High-Redshift Active Galactic Nuclei. Astron. Astrophys. 2006, 447, 863–876. [Google Scholar] [CrossRef]
- Maiolino, R.; Mannucci, F. De re Metallica: The Cosmic Chemical Evolution of Galaxies. Astron. Astrophys. Rev. 2019, 27, 3. [Google Scholar] [CrossRef]
- Wang, J.M.; Songsheng, Y.Y.; Li, Y.R.; Du, P. Final Stage of Merging Binaries of Supermassive Black Holes: Observational Signatures. Mon. Not. R. Astron. Soc. 2023, 518, 3397–3406. [Google Scholar] [CrossRef]
- Cantiello, M.; Jermyn, A.S.; Lin, D.N.C. Stellar Evolution in AGN Disks. Astrophys. J. 2021, 910, 94. [Google Scholar] [CrossRef]
- Heckman, T.M.; Baum, S.A.; van Breugel, W.J.M.; McCarthy, P. Dynamical, Physical, and Chemical Properties of Emission-Line Nebulae in Cooling Flows. Astrophys. J. 1989, 338, 48–77. [Google Scholar] [CrossRef]
- Lim, J.; Ao, Y.; Dinh-V-Trung. Radially Inflowing Molecular Gas in NGC 1275 Deposited by an X-Ray Cooling Flow in the Perseus Cluster. Astrophys. J. 2008, 672, 252–265. [Google Scholar] [CrossRef]
- Sun, W.H.; Malkan, M.A. Fitting Improved Accretion Disk Models to the Multiwavelength Continua of Quasars and Active Galactic Nuclei. Astrophys. J. 1989, 346, 68–100. [Google Scholar] [CrossRef]
- Sulentic, J.W.; Bachev, R.; Marziani, P.; Negrete, C.A.; Dultzin, D. C IV λ1549 as an Eigenvector 1 Parameter for Active Galactic Nuclei. Astrophys. J. 2007, 666, 757–777. [Google Scholar] [CrossRef]
- Mauch, T.; Murphy, T.; Buttery, H.J.; Curran, J.; Hunstead, R.W.; Piestrzynski, B.; Robertson, J.G.; Sadler, E.M. SUMSS: A Wide-Field Radio Imaging Survey of the Southern Sky—II. The Source Catalogue. Mon. Not. R. Astron. Soc. 2003, 342, 1117–1130. [Google Scholar] [CrossRef]
- Sikora, M.; Stawarz, Ł.; Lasota, J.P. Radio Loudness of Active Galactic Nuclei: Observational Facts and Theoretical Implications. Astrophys. J. 2007, 658, 815–828. [Google Scholar] [CrossRef]
- Peterson, B.M.; Ferrarese, L.; Gilbert, K.M.; Kaspi, S.; Malkan, M.A.; Maoz, D.; Merritt, D.; Netzer, H.; Onken, C.A.; Pogge, R.W.; et al. Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database. Astrophys. J. 2004, 613, 682–699. [Google Scholar] [CrossRef]
- Bentz, M.C.; Katz, S. The AGN Black Hole Mass Database. Publ. Astron. Soc. Pacif. 2015, 127, 67–73. [Google Scholar] [CrossRef]
- Jiang, B.W.; Marziani, P.; Savić, Đ.; Shablovinskaya, E.; Popović, L.Č.; Afanasiev, V.L.; Czerny, B.; Wang, J.M.; del Olmo, A.; D’Onofrio, M.; et al. Linear Spectropolarimetric Analysis of Fairall 9 with VLT/FORS2. Mon. Not. R. Astron. Soc. 2021, 508, 79–99. [Google Scholar] [CrossRef]
- Buendia-Rios, T.M.; Negrete, C.A.; Marziani, P.; Dultzin, D. Statistical Analysis of Al iii and C iii] Emission Lines as Virial Black Hole Mass Estimators in Quasars. Astron. Astrophys. 2023, 669, A135. [Google Scholar] [CrossRef]
- Marshall, H.L.; Carone, T.E.; Shull, J.M.; Malkan, M.A.; Elvis, M. The Steep Soft X-Ray Spectrum of the Highly Variable Active Nucleus in Markarian 478. Astrophys. J. 1996, 457, 169–176. [Google Scholar] [CrossRef]
- Hwang, C.Y.; Bowyer, S. The Extreme-Ultraviolet Emission of the Seyfert Galaxies Markarian 279, Markarian 478, and Ton S180. Astrophys. J. 1997, 475, 552–556. [Google Scholar] [CrossRef]
- Yuan, Q.; Brotherton, M.; Green, R.F.; Kriss, G.A. Outflowing Components in the Prototype Narrow-Line Seyfert 1 Galaxy Markarian 478. In Recycling Intergalactic and Interstellar Matter; Duc, P.-A., Braine, J., Brinks, E., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2004; pp. 364–365. Available online: https://ui.adsabs.harvard.edu/abs/2004IAUS..217..364Y/ (accessed on 7 January 2024).
- Zacharias, N.; Monet, D.G.; Levine, S.E.; Urban, S.E.; Gaume, R.; Wycoff, G.L. VizieR Online Data Catalog: NOMAD Catalog (Zacharias+ 2005). VizieR Online Data Catalog 2005, I/297. Available online: https://cdsarc.cds.unistra.fr/viz-bin/cat/I/297 (accessed on 7 January 2024).
- Vestergaard, M. A First Step Toward Constraining Supermassive Black-Hole Growth. New Astron. Rev. 2006, 50, 817–820. [Google Scholar] [CrossRef]
- Kellermann, K.I.; Sramek, R.; Schmidt, M.; Shaffer, D.B.; Green, R. VLA observations of objects in the Palomar Bright Quasar Survey. Astron. J. 1989, 98, 1195–1207. [Google Scholar] [CrossRef]
- Popović, L.Č.; Mediavilla, E.; Bon, E.; Ilić, D. Contribution of the Disk Emission to the Broad Emission Lines in AGNs: Two-component Model. Astron. Astrophys. 2004, 423, 909–918. [Google Scholar] [CrossRef]
- Snedden, S.A.; Gaskell, C.M. The Case for Optically Thick High-Velocity Broad-Line Region Gas in Active Galactic Nuclei. Astrophys. J. 2007, 669, 126–134. [Google Scholar] [CrossRef]
- Bon, E.; Gavrilović, N.; La Mura, G.; Popovič, L.Č. Complex Broad Emission Line Profiles of AGN—Geometry of the Broad Line Region. New Astron. Rev. 2009, 53, 121–127. [Google Scholar] [CrossRef]
- Vietri, G. The LBT/WISSH Quasar Survey: Revealing Ultra-Massive Black Holes and Powerful Winds in the Most Luminous Quasars. Talk at the Durham-Dartmouth Extragalactic Workshop Are AGN Special? Durham, UK, 30 July–3 August 2018. Available online: http://astro.dur.ac.uk/Are_AGN_Special/presentations.php (accessed on 7 January 2024).
- Yang, J.; Wang, F.; Fan, X.; Hennawi, J.F.; Barth, A.J.; Bañados, E.; Sun, F.; Liu, W.; Cai, Z.; Jiang, L.; et al. A Spectroscopic Survey of Biased Halos in the Reionization Era (ASPIRE): A First Look at the Rest-frame Optical Spectra of z > 6.5 Quasars Using JWST. Astrophys. J. Lett. 2023, 951, L5. [Google Scholar] [CrossRef]
- Shang, Z.; Wills, B.J.; Wills, D.; Brotherton, M.S. Spectral Properties from Lyα to Hα for an Essentially Complete Sample of Quasars. I. Data. Astron. J 2007, 134, 294–393. [Google Scholar] [CrossRef]
- Azzalini, A.; Regoli, G. Some Properties of Skew-Symmetric Distributions. Ann. Inst. Statist. Math. 2012, 64, 857–879. [Google Scholar] [CrossRef]
- Marziani, P.; Sulentic, J.W.; Plauchu-Frayn, I.; del Olmo, A. Is Mgiiλ2800 a Reliable Virial Broadening Estimator for Quasars? Astron. Astrophys. 2013, 555, A89. [Google Scholar] [CrossRef]
- Feruglio, C.; Maiolino, R.; Piconcelli, E.; Menci, N.; Aussel, H.; Lamastra, A.; Fiore, F. Quasar Feedback Revealed by Giant Molecular Outflows. Astron. Astrophys. 2010, 518, L155. [Google Scholar] [CrossRef]
- Harrison, C.M.; Alexander, D.M.; Mullaney, J.R.; Swinbank, A.M. Kiloparsec-scale Outflows are Prevalent Among Luminous AGN: Outflows and Feedback in the Context of the Overall AGN Population. Mon. Not. R. Astron. Soc. 2014, 441, 3306–3347. [Google Scholar] [CrossRef]
- Feruglio, C.; Fiore, F.; Carniani, S.; Piconcelli, E.; Zappacosta, L.; Bongiorno, A.; Cicone, C.; Maiolino, R.; Marconi, A.; Menci, N.; et al. The Multi-phase Winds of Markarian 231: From the Hot, Nuclear, Ultra-fast Wind to the Galaxy-scale, Molecular Outflow. Astron. Astrophys. 2015, 583, A99. [Google Scholar] [CrossRef]
- Woo, J.-H.; Bae, H.-J.; Son, D.; Karouzos, M. The Prevalence of Gas Outflows in Type 2 AGNs. Astrophys. J. 2016, 817, 108. [Google Scholar] [CrossRef]
- Kovačević-Dojčinović, J.; Dojčinović, I.; Lakićević, M.; Popović, L.Č. Tracing the Outflow Kinematics in Type 2 Active Galactic Nuclei. Astron. Astrophys. 2022, 659, A130. [Google Scholar] [CrossRef]
- Collin, S.; Boisson, C.; Mouchet, M.; Dumont, A.M.; Coupé, S.; Porquet, D.; Rokaki, E. Are Quasars Accreting at Super-Eddington Rates? Astron. Astrophys. 2002, 388, 771–786. [Google Scholar] [CrossRef]
- Li, L.-X. Accretion, Growth of Supermassive Black Holes, and Feedback in Galaxy Mergers. Mon. Not. R. Astron. Soc. 2012, 424, 1461–1470. [Google Scholar] [CrossRef]
- Bischetti, M.; Piconcelli, E.; Vietri, G.; Bongiorno, A.; Fiore, F.; Sani, E.; Marconi, A.; Duras, F.; Zappacosta, L.; Brusa, M.; et al. The WISSH Quasars Project. I. Powerful Ionised Outflows in Hyper-Luminous Quasars. Astron. Astrophys. 2017, 598, A122. [Google Scholar] [CrossRef]
- Sanders, D.B.; Soifer, B.T.; Elias, J.H.; Madore, B.F.; Matthews, K.; Neugebauer, G.; Scoville, N.Z. Ultraluminous Infrared Galaxies and the Origin of Quasars. Astrophys. J. 1988, 325, 74–91. [Google Scholar] [CrossRef]
- Sanders, D.B.; Kartaltepe, J.S.; Kewley, L.J.; U, V.; Yuan, T.; Evans, A.S.; Armus, L.; Mazzarella, J.M. Luminous Infrared Galaxies and the “Starburst-AGN Connection”. In The Starburst-AGN Connection; Wang, W., Yang, Z., Luo, Z., Chen, Z., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 2009; pp. 3–13. Available online: http://aspbooks.org/a/volumes/article_details/?paper_id=30188 (accessed on 7 January 2024).
- Collin, S.; Zahn, J.-P. Star Formation and Evolution in Accretion Disks around Massive Black Holes. Astron. Astrophys. 1999, 344, 433–449. Available online: https://ui.adsabs.harvard.edu/abs/1999A%26A...344..433C/ (accessed on 7 January 2024).
- Cheng, K.S.; Wang, J.-M. The Formation and Merger of Compact Objects in the Central Engine of Active Galactic Nuclei and Quasars: Gamma-Ray Burst and Gravitational Radiation. Astrophys. J. 1999, 521, 502–508. [Google Scholar] [CrossRef]
- Lin, D.N.C. Star/Disk Interaction in the Nuclei of Active Galaxies. In Emission Lines in Active Galaxies: New Methods and Techniques; Peterson, B.M., Cheng, F.Z., Wilson, A.S., Eds.; Astronomical Society of the Pacific: San Francisco, CA, USA, 1997; pp. 64–65. Available online: http://aspbooks.org/a/volumes/article_details/?paper_id=13558 (accessed on 7 January 2024).
- Padovani, P.; Matteucci, F. Stellar Mass Loss in Elliptical Galaxies and the Fueling of Active Galactic Nuclei. Astrophys. J. 1993, 416, 26–35. [Google Scholar] [CrossRef]
- Zoccali, M.; Renzini, A.; Ortolani, S.; Greggio, L.; Saviane, I.; Cassisi, S.; Rejkuba, M.; Barbuy, B.; Rich, R.M.; Bica, E. Age and Metallicity Distribution of the Galactic Bulge from Extensive Optical and Near-IR Stellar Photometry. Astron. Astrophys. 2003, 399, 931–956. [Google Scholar] [CrossRef]
- Gonzalez, O.A.; Gadotti, D. The Milky Way Bulge: Observed Properties and a Comparison to External Galaxies. In Galactic Bulges; Laurikainen, E., Peletier, R., Gadotti, D., Eds.; Springer International Publishing Switzerland: Cham, Switzerland, 2016; pp. 199–232. [Google Scholar] [CrossRef]
Component | Siiv+Oiv]/ | Siiv+Oiv]/ | Civ/ | Civ/ | Civ/ | Aliii/ | Aliii/ | Aliii/ | Siiii]/ | Heiiopt | |
---|---|---|---|---|---|---|---|---|---|---|---|
Civ | He iiUV | He iiUV | Ciii] | H | Civ | He iiUV | Siiii] | Ciii] | H | ||
BLUE [A] | ◯ | ◯ | ◯ | — | > | < | < | — | — | < | — |
BC | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | < |
VBC [B] | ◯ | ◯ | ◯ | ◯ | ◯ | ◯ | — | < | < | ◯ | ◯ |
Identification | Component | Range | Comment | |
---|---|---|---|---|
Composite RL B1 | BC | −1.70 | −2.00–−1.00 | [21] |
NGC 1275 | BC | −0.30 | −0.30–0.00 | [27] |
Composite RQ B1 | BC | 0.30 | −0.70–1.00 | [21] |
Composite RQ B1 | VBC | 0.70 | 0.70–0.70 | [21] |
Fairall 9 | BC | 0.30 | −1.30–1.00 | This study; Civ/H excluded |
Fairall 9 | VBC | 0.00 | 0.00–0.30 | This study; Civ/H excluded |
Fairall 9 | BC | 0.00 | −1.00–0.70 | This study |
Fairall 9 | VBC | 0.30 | 0.30–0.30 | This study |
Mrk 335 | BC | 0.00 | −1.00–0.00 | This study |
Mrk 478 | BC | 1.30 | 1.00–1.30 | This study |
PHL 1092 | BC | 1.70 | 1.30–2.30 | This study |
Composite xA | BC | 1.70 | 1.30–2.00 | [22,29] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marziani, P.; Floris, A.; Deconto-Machado, A.; Panda, S.; Sniegowska, M.; Garnica, K.; Dultzin, D.; D’Onofrio, M.; Del Olmo, A.; Bon, E.; et al. From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence. Physics 2024, 6, 216-236. https://doi.org/10.3390/physics6010016
Marziani P, Floris A, Deconto-Machado A, Panda S, Sniegowska M, Garnica K, Dultzin D, D’Onofrio M, Del Olmo A, Bon E, et al. From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence. Physics. 2024; 6(1):216-236. https://doi.org/10.3390/physics6010016
Chicago/Turabian StyleMarziani, Paola, Alberto Floris, Alice Deconto-Machado, Swayamtrupta Panda, Marzena Sniegowska, Karla Garnica, Deborah Dultzin, Mauro D’Onofrio, Ascensión Del Olmo, Edi Bon, and et al. 2024. "From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence" Physics 6, no. 1: 216-236. https://doi.org/10.3390/physics6010016
APA StyleMarziani, P., Floris, A., Deconto-Machado, A., Panda, S., Sniegowska, M., Garnica, K., Dultzin, D., D’Onofrio, M., Del Olmo, A., Bon, E., & Bon, N. (2024). From Sub-Solar to Super-Solar Chemical Abundances along the Quasar Main Sequence. Physics, 6(1), 216-236. https://doi.org/10.3390/physics6010016