Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications
Abstract
:1. Introduction
2. Synthesis of Platinum Nanoparticles
2.1. Physical Method
2.2. Chemical Method
2.3. Biological Method
3. Toxicity Assessment, Cellular Uptake, and Biodistribution Studies on Platinum Nanoparticles
3.1. In Vitro
3.1.1. Cytotoxicity on Cancer Cell Lines
3.1.2. Cytotoxicity on Normal Cells
3.2. In Vivo
4. Platinum Nanoparticles in Diagnostics
5. Platinum Nanoparticles in Therapeutics
6. Current Challenges and Translational Aspects of Platinum Nanoparticles as Theranostic Agents
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rush, A.J.; Ibrahim, H.M. A clinician’s perspective on biomarkers. Focus 2018, 16, 124–134. [Google Scholar] [CrossRef] [PubMed]
- Liu, D. Cancer biomarkers for targeted therapy. Biomark. Res. 2019, 7, 1–7. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [PubMed]
- Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience 2012, 6, ed16. [Google Scholar] [PubMed]
- Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control Release 2012, 161, 175–187. [Google Scholar]
- Jagtap, P.; Sritharan, V.; Gupta, S. Nanotheranostic approaches for management of bloodstream bacterial infections. Nanomed. Nanotechnol. Biol. Med. 2017, 13, 329–341. [Google Scholar]
- Kher, C.; Kumar, S. The application of nanotechnology and nanomaterials in cancer diagnosis and treatment: A review. Cureus 2022, 14, e29059. [Google Scholar]
- Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019, 12, 908–931. [Google Scholar]
- Yetisgin, A.A.; Cetinel, S.; Zuvin, M.; Kosar, A.; Kutlu, O. Therapeutic nanoparticles and their targeted delivery applications. Molecules 2020, 25, 2193. [Google Scholar] [CrossRef]
- Zhu, W.; Li, H.; Luo, P. Emerging 2D Nanomaterials for Multimodel Theranostics of Cancer. Front. Bioeng. Biotechnol. 2021, 9, 769178. [Google Scholar] [CrossRef]
- Klębowski, B.; Depciuch, J.; Parlińska-Wojtan, M.; Baran, J. Applications of noble metal-based nanoparticles in medicine. Int. J. Mol. Sci. 2018, 19, 4031. [Google Scholar] [CrossRef] [Green Version]
- Abed, A.; Derakhshan, M.; Karimi, M.; Shirazinia, M.; Mahjoubin-Tehran, M.; Homayonfal, M.; Hamblin, M.R.; Mirzaei, S.A.; Soleimanpour, H.; Dehghani, S. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Front. Pharmacol. 2022, 13, 797804. [Google Scholar] [PubMed]
- Bloch, K.; Pardesi, K.; Satriano, C.; Ghosh, S. Bacteriogenic platinum nanoparticles for application in nanomedicine. Front. Chem. 2021, 9, 624344. [Google Scholar] [CrossRef]
- Sau, T.K.; Pal, A.; Jana, N.; Wang, Z.; Pal, T. Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles. J. Nanopart. Res. 2001, 3, 257–261. [Google Scholar] [CrossRef]
- Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett. 2018, 13, 1–21. [Google Scholar]
- Das, N.; Kumar, A.; Kumar Roy, S.; Kumar Satija, N.; Raja Gopal, R. Bare plasmonic metal nanoparticles: Synthesis, characterisation and in vitro toxicity assessment on a liver carcinoma cell line. IET Nanobiotechnol. 2020, 14, 851–857. [Google Scholar]
- Labrador-Rached, C.J.; Browning, R.T.; Braydich-Stolle, L.K.; Comfort, K.K. Toxicological implications of platinum nanoparticle exposure: Stimulation of intracellular stress, inflammatory response, and akt signaling in vitro. J. Toxicol. 2018, 2018, 1367801. [Google Scholar]
- Odayar, K. Active Targeting of Cancer Cells Using Gemcitabine Conjugated Platinum Nanoparticles. Ph.D. Dissertation, Durban University of Technology, Durban, South Africa, 2017. [Google Scholar]
- Nejdl, L.; Kudr, J.; Moulick, A.; Hegerova, D.; Ruttkay-Nedecky, B.; Gumulec, J.; Cihalova, K.; Smerkova, K.; Dostalova, S.; Krizkova, S. Platinum nanoparticles induce damage to DNA and inhibit DNA replication. PLoS ONE 2017, 12, e0180798. [Google Scholar]
- Borowik, A.; Banasiuk, R.; Derewonko, N.; Rychlowski, M.; Krychowiak-Masnicka, M.; Wyrzykowski, D.; Ziabka, M.; Woziwodzka, A.; Krolicka, A.; Piosik, J. Interactions of newly synthesized platinum nanoparticles with ICR-191 and their potential application. Sci. Rep. 2019, 9, 4987. [Google Scholar] [CrossRef] [Green Version]
- Lian, M.; Shao, S.; Liu, M.; Shi, Y.; Zhang, H.; Chen, D. Cell membrane-coated nanoparticles as peroxidase mimetics for cancer cell targeted detection and therapy. Talanta 2022, 238, 123071. [Google Scholar]
- Kang, S.; Kang, K.; Chae, A.; Kim, Y.-K.; Jang, H.; Min, D.-H. Fucoidan-coated coral-like Pt nanoparticles for computed tomography-guided highly enhanced synergistic anticancer effect against drug-resistant breast cancer cells. Nanoscale 2019, 11, 15173–15183. [Google Scholar] [PubMed] [Green Version]
- Ruiz, A.L.; Arribas, E.V.; McEnnis, K. Poly (lactic-co-glycolic acid) encapsulated platinum nanoparticles for cancer treatment. Mater. Adv. 2022, 3, 2858–2870. [Google Scholar] [CrossRef]
- Manikandan, M.; Hasan, N.; Wu, H.-F. Platinum nanoparticles for the photothermal treatment of Neuro 2A cancer cells. Biomaterials 2013, 34, 5833–5842. [Google Scholar] [CrossRef]
- Jameel, M.S.; Aziz, A.A.; Dheyab, M.A.; Mehrdel, B.; Khaniabadi, P.M.; Khaniabadi, B.M. Green sonochemical synthesis platinum nanoparticles as a novel contrast agent for computed tomography. Mater. Today Commun. 2021, 27, 102480. [Google Scholar]
- Mendivil Palma, M.I.; Krishnan, B.; Rodriguez, G.A.C.; Das Roy, T.K.; Avellaneda, D.A.; Shaji, S. Synthesis and properties of platinum nanoparticles by pulsed laser ablation in liquid. J. Nanomater. 2016, 2016, 9651637. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Yang, J.; Liu, E.; Jia, Q.; Veith, G.M.; Nair, G.; DiPietro, S.; Sun, K.; Chen, J.; Pietrasz, P. Physical vapor deposition process for engineering Pt based oxygen reduction reaction catalysts on NbOx templated carbon support. J. Power Sources 2020, 451, 227709. [Google Scholar] [CrossRef]
- Carpenter, M.K.; Moylan, T.E.; Kukreja, R.S.; Atwan, M.H.; Tessema, M.M. Solvothermal synthesis of platinum alloy nanoparticles for oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2012, 134, 8535–8542. [Google Scholar] [CrossRef]
- Yadav, T.P.; Yadav, R.M.; Singh, D.P. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanosci. Nanotechnol. 2012, 2, 22–48. [Google Scholar]
- Yoshii, K.; Tsuda, T.; Arimura, T.; Imanishi, A.; Torimoto, T.; Kuwabata, S. Platinum nanoparticle immobilization onto carbon nanotubes using Pt-sputtered room-temperature ionic liquid. RSC Adv. 2012, 2, 8262–8264. [Google Scholar] [CrossRef]
- Hamdan, A.; Noel, C.; Ghanbaja, J.; Migot-Choux, S.; Belmonte, T. Synthesis of platinum embedded in amorphous carbon by micro-gap discharge in heptane. Mater. Chem. Phys. 2013, 142, 199–206. [Google Scholar] [CrossRef]
- Maicu, M.; Schmittgens, R.; Hecker, D.; Glöß, D.; Frach, P.; Gerlach, G. Synthesis and deposition of metal nanoparticles by gas condensation process. J. Vac. Sci. Technol. A Vac. Surf. Film 2014, 32, 02B113. [Google Scholar]
- Dhand, C.; Dwivedi, N.; Loh, X.J.; Ying, A.N.J.; Verma, N.K.; Beuerman, R.W.; Lakshminarayanan, R.; Ramakrishna, S. Methods and strategies for the synthesis of diverse nanoparticles and their applications: A comprehensive overview. RSC Adv. 2015, 5, 105003–105037. [Google Scholar]
- N Madlum, K.; Jasim Khamees, E.; Abdulridha Ahmed, S.; Akram Naji, R. Antimicrobial and cytotoxic activity of platinum nanoparticles synthesized by laser ablation technique. J. Nanostruct. 2021, 11, 13–19. [Google Scholar]
- Prasetya, O.D.; Khumaeni, A. Synthesis of colloidal platinum nanoparticles using pulse laser ablation method. In Proceedings of the International Conference on Science and Applied Science (ICSAS) 2018, Surakarta, Indonesia, 12 May 2018; p. 020050. [Google Scholar]
- Adil, S.F.; Assal, M.E.; Khan, M.; Al-Warthan, A.; Siddiqui, M.R.H.; Liz-Marzán, L.M. Biogenic synthesis of metallic nanoparticles and prospects toward green chemistry. Dalton Trans. 2015, 44, 9709–9717. [Google Scholar]
- Kshirsagar, P.; Sangaru, S.S.; Malvindi, M.A.; Martiradonna, L.; Cingolani, R.; Pompa, P.P. Synthesis of highly stable silver nanoparticles by photoreduction and their size fractionation by phase transfer method. Colloids Surf. Physicochem. Eng. Asp. 2011, 392, 264–270. [Google Scholar]
- Scaramuzza, S.; Zerbetto, M.; Amendola, V. Synthesis of gold nanoparticles in liquid environment by laser ablation with geometrically confined configurations: Insights to improve size control and productivity. J. Phys. Chem. C 2016, 120, 9453–9463. [Google Scholar]
- Miyazawa, K.i.; Shimomura, S.; Yoshitake, M.; Tanaka, Y. HRTEM structural characterization of platinum nanoparticles loaded on carbon black particles using focused ion beam milling. Mater. Lett. 2019, 237, 96–100. [Google Scholar]
- Das, S.; Dhara, S. Chemical Solution Synthesis for Materials Design and Thin Film Device Applications; Elsevier: Amsterdam, The Netherlands, 2021. [Google Scholar]
- Dobrzański, L.A.; Szindler, M.; Pawlyta, M.; Szindler, M.M.; Boryło, P.; Tomiczek, B. Synthesis of Pt nanowires with the participation of physical vapour deposition. Open Phys. 2016, 14, 159–165. [Google Scholar] [CrossRef]
- Deng, L.; Nguyen, M.T.; Yonezawa, T. Sub-2 nm single-crystal Pt nanoparticles via sputtering onto a liquid polymer. Langmuir 2018, 34, 2876–2881. [Google Scholar]
- Fahmy, S.A.; Preis, E.; Bakowsky, U.; Azzazy, H.M.E.-S. Platinum nanoparticles: Green synthesis and biomedical applications. Molecules 2020, 25, 4981. [Google Scholar]
- Dang-Bao, T.; Favier, I.; Gómez, M. Metal nanoparticles in polyols: Bottom-up and top-down syntheses and catalytic applications. In Nanoparticles in Catalysis: Advances in Synthesis and Application; WILEY-VCH GmbH: Hoboken, NJ, USA, 2021; pp. 99–122. [Google Scholar]
- Sweetman, M.J.; May, S.; Mebberson, N.; Pendleton, P.; Vasilev, K.; Plush, S.E.; Hayball, J.D. Activated carbon, carbon nanotubes and graphene: Materials and composites for advanced water purification. C J. Carbon Res. 2017, 3, 18. [Google Scholar]
- Prabhu, N.; Gajendran, T. Green synthesis of noble metal of platinum nanoparticles from Ocimum sanctum (Tulsi) Plant-extracts. IOSR J. Biotechnol. Biochem. 2017, 3, 107–112. [Google Scholar] [CrossRef]
- Lengke, M.F.; Fleet, M.E.; Southam, G. Synthesis of platinum nanoparticles by reaction of filamentous cyanobacteria with platinum (IV)–chloride complex. Langmuir 2006, 22, 7318–7323. [Google Scholar] [PubMed]
- Brown, R.; Lonn, B.; Pfeiffer, R.; Frederiksen, H.; Wickman, B. Plasma-Induced Heating Effects on Platinum Nanoparticle Size During Sputter Deposition Synthesis in Polymer and Ionic Liquid Substrates. Langmuir 2021, 37, 8821–8828. [Google Scholar] [PubMed]
- Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D.; El-Sayed, H.A.; Macak, J.M. Electrochemical top-down synthesis of C-supported Pt nano-particles with controllable shape and size: Mechanistic insights and application. Nano Res. 2020, 14, 2762–2769. [Google Scholar]
- Daka, M.; Ferrara, M.; Bevilacqua, M.; Pengo, P.; Rajak, P.; Ciancio, R.; Montini, T.; Pasquato, L.; Fornasiero, P. Wet-chemical synthesis of porous multifaceted platinum nanoparticles for oxygen reduction and methanol oxidation reactions. ACS Appl. Nano Mater. 2022, 5, 4710–4720. [Google Scholar]
- Ji, W.; Qi, W.; Tang, S.; Peng, H.; Li, S. Hydrothermal synthesis of ultrasmall Pt nanoparticles as highly active electrocatalysts for methanol oxidation. Nanomaterials 2015, 5, 2203–2211. [Google Scholar]
- Tjoa, V.; Chua, J.; Pramana, S.S.; Wei, J.; Mhaisalkar, S.G.; Mathews, N. Facile photochemical synthesis of graphene-Pt nanoparticle composite for counter electrode in dye sensitized solar cell. ACS Appl. Mater. Interfaces 2012, 4, 3447–3452. [Google Scholar]
- Sharma, R.; Wang, Y.; Li, F.; Chamier, J.; Andersen, S.M. Particle size-controlled growth of carbon-supported platinum nanoparticles (Pt/C) through water-assisted polyol synthesis. ACS Omega 2019, 4, 15711–15720. [Google Scholar]
- Martínez-Rodríguez, R.A.; Vidal-Iglesias, F.J.; Solla-Gullon, J.; Cabrera, C.R.; Feliu, J.M. Synthesis of Pt nanoparticles in water-in-oil microemulsion: Effect of HCl on their surface structure. J. Am. Chem. Soc. 2014, 136, 1280–1283. [Google Scholar]
- Liu, W.; Chen, Q.; Huang, Y.; Wang, D.; Li, L.; Liu, Z. In situ laser synthesis of Pt nanoparticles embedded in graphene films for wearable strain sensors with ultra-high sensitivity and stability. Carbon 2022, 190, 245–254. [Google Scholar] [CrossRef]
- Ingale, S.; Wagh, P.; Bandyopadhyay, D.; Singh, I.; Tewari, R.; Gupta, S. Synthesis of nanosized platinum based catalyst using sol-gel process. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2015; p. 012076. [Google Scholar]
- Okitsu, K.; Yue, A.; Tanabe, S.; Matsumoto, H. Sonochemical preparation and catalytic behavior of highly dispersed palladium nanoparticles on alumina. Chem. Mater. 2000, 12, 3006–3011. [Google Scholar] [CrossRef]
- JH, C.D.R.A.W.; Low-Temperature, K.S.K.H. Chemical Vapor Deposition Synthesis of Pt–Co Alloyed Nanoparticles with Enhanced Oxygen Reduction Reaction Catalysis. Adv. Mater. 2016, 28, 7115–7122. [Google Scholar]
- Ye, Q.; Yin, Z.-Z.; Wu, H.; Wu, D.; Tao, Y.; Kong, Y. Decoration of glutathione with copper-platinum nanoparticles for chirality sensing of tyrosine enantiomers. Electrochem. Commun. 2020, 110, 106638. [Google Scholar]
- Puja, P.; Vinita, N.M.; Devan, U.; Velangani, A.J.; Srinivasan, P.; Yuvakkumar, R.; Arul Prakash, P.; Kumar, P. Fluorescence microscopy-based analysis of apoptosis induced by platinum nanoparticles against breast cancer cells. Appl. Organomet. Chem. 2020, 34, e5740. [Google Scholar] [CrossRef]
- Hansen, H.E.; Seland, F.; Sunde, S.; Burheim, O.S.; Pollet, B.G. Two routes for sonochemical synthesis of platinum nanoparticles with narrow size distribution. Mater. Adv. 2021, 2, 1962–1971. [Google Scholar] [CrossRef]
- Stepanov, A.; Golubev, A.; Nikitin, S.; Osin, Y. A review on the fabrication and properties of platinum nanoparticles. Rev. Adv. Mater. Sci. 2014, 38, 160–175. [Google Scholar]
- Gopal, J.; Hasan, N.; Manikandan, M.; Wu, H.-F. Bacterial toxicity/compatibility of platinum nanospheres, nanocuboids and nanoflowers. Sci. Rep. 2013, 3, 1260. [Google Scholar]
- Luty-Błocho, M.; Wojnicki, M.; Pacławski, K.; Fitzner, K. The synthesis of platinum nanoparticles and their deposition on the active carbon fibers in one microreactor cycle. Chem. Eng. J. 2013, 226, 46–51. [Google Scholar] [CrossRef]
- Luty-Błocho, M.; Wojnicki, M.; Grzonka, J.; Kurzydłowski, K. The synthesis of stable platinum nanoparticles in the microreactor. Arch. Metall. Mater. 2014, 59, 509–512. [Google Scholar]
- Wojnicki, M.; Kwolek, P. Reduction of hexachloroplatinate (IV) ions with methanol under UV radiation. J. Photochem. Photobiol. A Chem. 2016, 314, 133–142. [Google Scholar]
- Bai, L.; Zhu, H.; Thrasher, J.S.; Street, S.C. Synthesis and electrocatalytic activity of photoreduced platinum nanoparticles in a poly (ethylenimine) matrix. ACS Appl. Mater. Interfaces 2009, 1, 2304–2311. [Google Scholar]
- Gharibshahi, E.; Saion, E.; Ashraf, A.; Gharibshahi, L. Size-controlled and optical properties of platinum nanoparticles by gamma radiolytic synthesis. Appl. Radiat. Isot. 2017, 130, 211–217. [Google Scholar] [PubMed]
- Long, N.V.; Chien, N.D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The synthesis and characterization of platinum nanoparticles: A method of controlling the size and morphology. Nanotechnology 2009, 21, 035605. [Google Scholar]
- Wang, J.; Li, B.; Yersak, T.; Yang, D.; Xiao, Q.; Zhang, J.; Zhang, C. Recent advances in Pt-based octahedral nanocrystals as high performance fuel cell catalysts. J. Mater. Chem. A 2016, 4, 11559–11581. [Google Scholar]
- Gaidhani, S.V.; Yeshvekar, R.K.; Shedbalkar, U.U.; Bellare, J.H.; Chopade, B.A. Bio-reduction of hexachloroplatinic acid to platinum nanoparticles employing Acinetobacter calcoaceticus. Process Biochem. 2014, 49, 2313–2319. [Google Scholar]
- Ramkumar, V.S.; Pugazhendhi, A.; Prakash, S.; Ahila, N.; Vinoj, G.; Selvam, S.; Kumar, G.; Kannapiran, E.; Rajendran, R.B. Synthesis of platinum nanoparticles using seaweed Padina gymnospora and their catalytic activity as PVP/PtNPs nanocomposite towards biological applications. Biomed. Pharmacother. 2017, 92, 479–490. [Google Scholar]
- Syed, A.; Ahmad, A. Extracellular biosynthesis of platinum nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. B Biointerfaces 2012, 97, 27–31. [Google Scholar]
- Eltaweil, A.S.; Fawzy, M.; Hosny, M.; Abd El-Monaem, E.M.; Tamer, T.M.; Omer, A.M. Green synthesis of platinum nanoparticles using Atriplex halimus leaves for potential antimicrobial, antioxidant, and catalytic applications. Arab. J. Chem. 2022, 15, 103517. [Google Scholar]
- Baskaran, B.; Muthukumarasamy, A.; Chidambaram, S.; Sugumaran, A.; Ramachandran, K.; Rasu Manimuthu, T. Cytotoxic potentials of biologically fabricated platinum nanoparticles from Streptomyces sp. on MCF-7 breast cancer cells. IET Nanobiotechnol. 2017, 11, 241–246. [Google Scholar]
- Brayner, R.; Barberousse, H.; Hemadi, M.; Djedjat, C.; Yéprémian, C.; Coradin, T.; Livage, J.; Fiévet, F.; Couté, A. Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J. Nanosci. Nanotechnol. 2007, 7, 2696–2708. [Google Scholar] [PubMed]
- Longoria, E.C.; Velasquez, S.M.; Nestor, A.V.; Berumen, E.A.; Borja, M.A. Production of platinum nanoparticles and nanoaggregates using Neurospora crassa. J. Microbiol. Biotechnol. 2012, 22, 1000–1004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarkar, J.; Acharya, K. Alternaria alternata culture filtrate mediated bioreduction of chloroplatinate to platinum nanoparticles. Inorg. Nano-Met. Chem. 2017, 47, 365–369. [Google Scholar] [CrossRef]
- Subramaniyan, S.A.; Sheet, S.; Vinothkannan, M.; Yoo, D.J.; Lee, Y.S.; Belal, S.A.; Shim, K.S. One-pot facile synthesis of Pt nanoparticles using cultural filtrate of microgravity simulated grown P. chrysogenum and their activity on bacteria and cancer cells. J. Nanosci. Nanotechnol. 2018, 18, 3110–3125. [Google Scholar] [PubMed]
- Govender, Y.; Riddin, T.; Gericke, M.; Whiteley, C.G. Bioreduction of platinum salts into nanoparticles: A mechanistic perspective. Biotechnol. Lett. 2009, 31, 95–100. [Google Scholar] [PubMed]
- Kumar, V.; Yadav, S.K. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J. Chem. Technol. Biotechnol. 2009, 84, 151–157. [Google Scholar]
- Thirumurugan, A.; Aswitha, P.; Kiruthika, C.; Nagarajan, S.; Christy, A.N. Green synthesis of platinum nanoparticles using Azadirachta indica–An eco-friendly approach. Mater. Lett. 2016, 170, 175–178. [Google Scholar]
- Rokade, S.S.; Joshi, K.A.; Mahajan, K.; Tomar, G.; Dubal, D.S.; Singh, V.; Kitture, R.; Bellare, J.; Ghosh, S. Novel anticancer platinum and palladium nanoparticles from Barleria prionitis. Glob. J. Nanomed. 2017, 2, 555600. [Google Scholar]
- Dobrucka, R. Biofabrication of platinum nanoparticles using Fumariae herba extract and their catalytic properties. Saudi J. Biol. Sci. 2019, 26, 31–37. [Google Scholar]
- Jeyapaul, U.; Kala, M.J.; BOSCO, A.; Piruthiviraj, P.; Easuraja, M. An Eco-friendly Approach for Synthesis of Platinum Nanoparticles Using Leaf Extracts of Jatropa gossypifolia and Jatropa glandulifera and their Antibacterial Activity. Orient. J. Chem. 2018, 34, 783–790. [Google Scholar]
- Pedone, D.; Moglianetti, M.; De Luca, E.; Bardi, G.; Pompa, P.P. Platinum nanoparticles in nanobiomedicine. Chem. Soc. Rev. 2017, 46, 4951–4975. [Google Scholar] [CrossRef] [PubMed]
- Crist, R.M.; Grossman, J.H.; Patri, A.K.; Stern, S.T.; Dobrovolskaia, M.A.; Adiseshaiah, P.P.; Clogston, J.D.; McNeil, S.E. Common pitfalls in nanotechnology: Lessons learned from NCI’s Nanotechnology Characterization Laboratory. Integr. Biol. 2013, 5, 66–73. [Google Scholar]
- Oostingh, G.J.; Casals, E.; Italiani, P.; Colognato, R.; Stritzinger, R.; Ponti, J.; Pfaller, T.; Kohl, Y.; Ooms, D.; Favilli, F. Problems and challenges in the development and validation of human cell-based assays to determine nanoparticle-induced immunomodulatory effects. Part. Fibre Toxicol. 2011, 8, 1–21. [Google Scholar]
- McNeil, S.E. Characterization of Nanoparticles Intended for Drug Delivery; Springer: Berlin/Heidelberg, Germany, 2011; Volume 697. [Google Scholar]
- Dobrovolskaia, M.A.; Neun, B.W.; Clogston, J.D.; Grossman, J.H.; McNeil, S.E. Choice of method for endotoxin detection depends on nanoformulation. Nanomedicine 2014, 9, 1847–1856. [Google Scholar] [CrossRef]
- Gao, J.; Liang, G.; Zhang, B.; Kuang, Y.; Zhang, X.; Xu, B. FePt@CoS2 yolk–shell nanocrystals as a potent agent to kill HeLa cells. J. Am. Chem. Soc. 2007, 129, 1428–1433. [Google Scholar] [PubMed]
- Asharani, P.; Xinyi, N.; Hande, M.P.; Valiyaveettil, S. DNA damage and p53-mediated growth arrest in human cells treated with platinum nanoparticles. Nanomedicine 2010, 5, 51–64. [Google Scholar]
- Kutwin, M.; Sawosz, E.; Jaworski, S.; Hinzmann, M.; Wierzbicki, M.; Hotowy, A.; Grodzik, M.; Winnicka, A.; Chwalibog, A. Investigation of platinum nanoparticle properties against U87 glioblastoma multiforme. Arch. Med. Sci. 2017, 13, 1322–1334. [Google Scholar]
- Gehrke, H.; Pelka, J.; Hartinger, C.G.; Blank, H.; Bleimund, F.; Schneider, R.; Gerthsen, D.; Bräse, S.; Crone, M.; Türk, M. Platinum nanoparticles and their cellular uptake and DNA platination at non-cytotoxic concentrations. Arch. Toxicol. 2011, 85, 799–812. [Google Scholar]
- Elder, A.; Yang, H.; Gwiazda, R.; Teng, X.; Thurston, S.; He, H.; Oberdörster, G. Testing nanomaterials of unknown toxicity: An example based on platinum nanoparticles of different shapes. Adv. Mater. 2007, 19, 3124–3129. [Google Scholar]
- Kostova, I. Platinum complexes as anticancer agents. Recent Pat. Anticancer Drug Discov. 2006, 1, 1–22. [Google Scholar] [CrossRef]
- Onizawa, S.; Aoshiba, K.; Kajita, M.; Miyamoto, Y.; Nagai, A. Platinum nanoparticle antioxidants inhibit pulmonary inflammation in mice exposed to cigarette smoke. Pulm. Pharmacol. Ther. 2009, 22, 340–349. [Google Scholar] [PubMed]
- Teow, Y.; Valiyaveettil, S. Active targeting of cancer cells using folic acid-conjugated platinum nanoparticles. Nanoscale 2010, 2, 2607–2613. [Google Scholar] [PubMed]
- Hashimoto, M.; Kawai, K.; Kawakami, H.; Imazato, S. Matrix metalloproteases inhibition and biocompatibility of gold and platinum nanoparticles. J. Biomed. Mater. Res. Part A 2016, 104, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Şahin, B.; Aygün, A.; Gündüz, H.; Şahin, K.; Demir, E.; Akocak, S.; Şen, F. Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf. B Biointerfaces 2018, 163, 119–124. [Google Scholar] [PubMed]
- Loan, T.T.; Do, L.T.; Yoo, H. Platinum nanoparticles induce apoptosis on raw 264.7 macrophage cells. J. Nanosci. Nanotechnol. 2018, 18, 861–864. [Google Scholar] [PubMed]
- Almeer, R.S.; Ali, D.; Alarifi, S.; Alkahtani, S.; Almansour, M. Green platinum nanoparticles interaction with HEK293 cells: Cellular toxicity, apoptosis, and genetic damage. Dose-Response 2018, 16, 1559325818807382. [Google Scholar]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. The effects of apigenin-biosynthesized ultra-small platinum nanoparticles on the human monocytic THP-1 cell line. Cells 2019, 8, 444. [Google Scholar]
- Konieczny, P.; Goralczyk, A.G.; Szmyd, R.; Skalniak, L.; Koziel, J.; Filon, F.L.; Crosera, M.; Cierniak, A.; Zuba-Surma, E.K.; Borowczyk, J. Effects triggered by platinum nanoparticles on primary keratinocytes. Int. J. Nanomed. 2013, 8, 3963–3975. [Google Scholar]
- Bendale, Y.; Bendale, V.; Paul, S. Evaluation of cytotoxic activity of platinum nanoparticles against normal and cancer cells and its anticancer potential through induction of apoptosis. Integr. Med. Res. 2017, 6, 141–148. [Google Scholar]
- Mironava, T.; Simon, M.; Rafailovich, M.H.; Rigas, B. Platinum folate nanoparticles toxicity: Cancer vs. normal cells. Toxicol. Vitro 2013, 27, 882–889. [Google Scholar]
- Abbasi, R.; Shineh, G.; Mobaraki, M.; Doughty, S.; Tayebi, L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: A review. J. Nanopart. Res. 2023, 25, 43. [Google Scholar] [PubMed]
- Sohaebuddin, S.K.; Thevenot, P.T.; Baker, D.; Eaton, J.W.; Tang, L. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part. Fibre Toxicol. 2010, 7, 1–17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asharani, P.; Lianwu, Y.; Gong, Z.; Valiyaveettil, S. Comparison of the toxicity of silver, gold and platinum nanoparticles in developing zebrafish embryos. Nanotoxicology 2011, 5, 43–54. [Google Scholar] [PubMed]
- Lin, C.-X.; Gu, J.-L.; Cao, J.-M. The acute toxic effects of platinum nanoparticles on ion channels, transmembrane potentials of cardiomyocytes in vitro and heart rhythm in vivo in mice. Int. J. Nanomed. 2019, 14, 5595–5609. [Google Scholar]
- Yamagishi, Y.; Watari, A.; Hayata, Y.; Li, X.; Kondoh, M.; Tsutsumi, Y.; Yagi, K. Hepatotoxicity of sub-nanosized platinum particles in mice. Pharmazie 2013, 68, 178–182. [Google Scholar]
- Park, E.-J.; Kim, H.; Kim, Y.; Park, K. Intratracheal instillation of platinum nanoparticles may induce inflammatory responses in mice. Arch. Pharm. Res. 2010, 33, 727–735. [Google Scholar] [CrossRef]
- Park, E.-J.; Kim, H.; Kim, Y.; Park, K. Effects of platinum nanoparticles on the postnatal development of mouse pups by maternal exposure. Environ. Anal. Health Toxicol. 2010, 25, 279–286. [Google Scholar]
- Prasek, M.; Sawosz, E.; Jaworski, S.; Grodzik, M.; Ostaszewska, T.; Kamaszewski, M.; Wierzbicki, M.; Chwalibog, A. Influence of nanoparticles of platinum on chicken embryo development and brain morphology. Nanoscale Res. Lett. 2013, 8, 251. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, S.; Bollu, V.S.; Roy, A.; Nethi, S.K.; Madhusudana, K.; Kumar, J.M.; Sistla, R.; Patra, C.R. Acute toxicity, biodistribution, and pharmacokinetics studies of pegylated platinum nanoparticles in mouse model. Adv. NanoBiomed Res. 2021, 1, 2000082. [Google Scholar]
- Brown, A.L.; Kai, M.P.; DuRoss, A.N.; Sahay, G.; Sun, C. Biodistribution and toxicity of micellar platinum nanoparticles in mice via intravenous administration. Nanomaterials 2018, 8, 410. [Google Scholar]
- Wu, Y.; Feng, J.; Hu, G.; Zhang, E.; Yu, H.-H. Colorimetric Sensors for Chemical and Biological Sensing Applications. Sensors 2023, 23, 2749. [Google Scholar] [PubMed]
- Zhang, L.-N.; Deng, H.-H.; Lin, F.-L.; Xu, X.-W.; Weng, S.-H.; Liu, A.-L.; Lin, X.-H.; Xia, X.-H.; Chen, W. In situ growth of porous platinum nanoparticles on graphene oxide for colorimetric detection of cancer cells. Anal. Chem. 2014, 86, 2711–2718. [Google Scholar] [PubMed]
- Holm, J.; Bruun, S.W.; Hansen, S.I. The complex interplay between ligand binding and conformational structure of the folate binding protein (folate receptor): Biological perspectives. Biochim Biophys. Acta 2015, 1854, 1249–1259. [Google Scholar] [PubMed]
- Kim, M.I.; Kim, M.S.; Woo, M.-A.; Ye, Y.; Kang, K.S.; Lee, J.; Park, H.G. Highly efficient colorimetric detection of target cancer cells utilizing superior catalytic activity of graphene oxide–magnetic-platinum nanohybrids. Nanoscale 2014, 6, 1529–1536. [Google Scholar]
- Hong, C.-Y.; Yamauchi, Y.; Wu, K.C.-W. In vitro cytotoxicity and intracellular bioimaging of dendritic platinum nanoparticles by differential interference contrast (DIC). Chem. Lett. 2011, 40, 408–409. [Google Scholar]
- Ye, X.; He, X.; Lei, Y.; Tang, J.; Yu, Y.; Shi, H.; Wang, K. One-pot synthesized Cu/Au/Pt trimetallic nanoparticles with enhanced catalytic and plasmonic properties as a universal platform for biosensing and cancer theranostics. Chem. Commun. 2019, 55, 2321–2324. [Google Scholar]
- Cai, S.; Qi, C.; Li, Y.; Han, Q.; Yang, R.; Wang, C. PtCo bimetallic nanoparticles with high oxidase-like catalytic activity and their applications for magnetic-enhanced colorimetric biosensing. J. Mater. Chem. B 2016, 4, 1869–1877. [Google Scholar]
- Chu, C.-H.; Cheng, S.-H.; Chen, N.-T.; Liao, W.-N.; Lo, L.-W. Microwave-synthesized platinum-embedded mesoporous silica nanoparticles as dual-modality contrast agents: Computed tomography and optical imaging. Int. J. Mol. Sci. 2019, 20, 1560. [Google Scholar]
- Chen, D.; Gao, S.; Ge, W.; Li, Q.; Jiang, H.; Wang, X. One-step rapid synthesis of fluorescent platinum nanoclusters for cellular imaging and photothermal treatment. RSC Adv. 2014, 4, 40141–40145. [Google Scholar]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. Anticancer properties of platinum nanoparticles and retinoic acid: Combination therapy for the treatment of human neuroblastoma cancer. Int. J. Mol. Sci. 2020, 21, 6792. [Google Scholar]
- Ismail, N.A.S.; Lee, J.X.; Yusof, F. Platinum nanoparticles: The potential antioxidant in the human lung cancer cells. Antioxidants 2022, 11, 986. [Google Scholar] [PubMed]
- Pawar, A.A.; Sahoo, J.; Verma, A.; Lodh, A.; Lakkakula, J. Usage of Platinum Nanoparticles for Anticancer Therapy over Last Decade: A Review. Part. Part. Syst. Charact. 2021, 38, 2100115. [Google Scholar]
- Rokade, S.S.; Joshi, K.A.; Mahajan, K.; Patil, S.; Tomar, G.; Dubal, D.S.; Parihar, V.S.; Kitture, R.; Bellare, J.R.; Ghosh, S. Gloriosa superba mediated synthesis of platinum and palladium nanoparticles for induction of apoptosis in breast cancer. Bioinorg. Chem. Appl. 2018, 2018, 4924186. [Google Scholar] [PubMed] [Green Version]
- Fu, B.; Dang, M.; Tao, J.; Li, Y.; Tang, Y. Mesoporous platinum nanoparticle-based nanoplatforms for combined chemo-photothermal breast cancer therapy. J. Colloid. Interface Sci. 2020, 570, 197–204. [Google Scholar] [PubMed]
- Bao, Y.-W.; Hua, X.-W.; Chen, X.; Wu, F.-G. Platinum-doped carbon nanoparticles inhibit cancer cell migration under mild laser irradiation: Multi-organelle-targeted photothermal therapy. Biomaterials 2018, 183, 30–42. [Google Scholar]
- Ali, N.H.; Mohammed, A.M. Biosynthesis and characterization of platinum nanoparticles using Iraqi Zahidi dates and evaluation of their biological applications. Biotechnol. Rep. 2021, 30, e00635. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.; Zeng, M.; Feng, G.; Wu, H. Platinum nanoparticles as a therapeutic agent against dextran sodium sulfate-induced colitis in mice. Int. J. Nanomed. 2019, 14, 8361–8378. [Google Scholar]
- Loan, T.T.; Do, L.T.; Yoo, H. Different cellular effects of platinum nanoparticles on RAW 264.7 cells. J. Nanosci. Nanotechnol. 2019, 19, 709–712. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.-H.; Jeyaraj, M.; Kim, J.-H. Platinum nanoparticles enhance exosome release in human lung epithelial adenocarcinoma cancer cells (A549): Oxidative stress and the ceramide pathway are key players. Int. J. Nanomed. 2021, 16, 515. [Google Scholar]
- Gurunathan, S.; Jeyaraj, M.; Kang, M.-H.; Kim, J.-H. Tangeretin-assisted platinum nanoparticles enhance the apoptotic properties of doxorubicin: Combination therapy for osteosarcoma treatment. Nanomaterials 2019, 9, 1089. [Google Scholar]
- Alyami, N.M.; Almeer, R.; Alyami, H.M. Role of green synthesized platinum nanoparticles in cytotoxicity, oxidative stress, and apoptosis of human colon cancer cells (HCT-116). Heliyon 2022, 8, e11917. [Google Scholar] [PubMed]
- Yang, C.; Wang, M.; Zhou, J.; Chi, Q. Bio-synthesis of peppermint leaf extract polyphenols capped nano-platinum and their in-vitro cytotoxicity towards colon cancer cell lines (HCT 116). Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 1012–1016. [Google Scholar] [PubMed]
- Yin, T.; Wang, Z.; Li, X.; Li, Y.; Bian, K.; Cao, W.; He, Y.; Liu, H.; Niu, K.; Gao, D. Biologically inspired self-assembly of bacitracin-based platinum nanoparticles with anti-tumor effects. New J. Chem. 2017, 41, 2941–2948. [Google Scholar]
- Medhat, A.; Mansour, S.; El-Sonbaty, S.; Kandil, E.; Mahmoud, M. Evaluation of the antitumor activity of platinum nanoparticles in the treatment of hepatocellular carcinoma induced in rats. Tumor Biol. 2017, 39, 1010428317717259. [Google Scholar]
- Wei, Z.; Yin, X.; Cai, Y.; Xu, W.; Song, C.; Wang, Y.; Zhang, J.; Kang, A.; Wang, Z.; Han, W. Antitumor effect of a Pt-loaded nanocomposite based on graphene quantum dots combats hypoxia-induced chemoresistance of oral squamous cell carcinoma. Int. J. Nanomed. 2018, 13, 1505. [Google Scholar]
- Chen, X.; Zhou, J.; Yue, X.; Wang, S.; Yu, B.; Luo, Y.; Huang, X. Selective bio-labeling and induced apoptosis of hematopoietic cancer cells using dual-functional polyethylenimine-caged platinum nanoclusters. Biochem. Biophys. Res. Commun. 2018, 503, 1465–1470. [Google Scholar]
- Liang, S.; Zhou, Q.; Wang, M.; Zhu, Y.; Wu, Q.; Yang, X. Water-soluble L-cysteine-coated FePt nanoparticles as dual MRI/CT imaging contrast agent for glioma. Int. J. Nanomed. 2015, 10, 2325. [Google Scholar]
- Zhu, Y.; Li, W.; Zhao, X.; Zhou, Z.; Wang, Y.; Cheng, Y.; Huang, Q.; Zhang, Q. Hyaluronic acid-encapsulated platinum nanoparticles for targeted photothermal therapy of breast cancer. J. Biomed. Nanotechnol. 2017, 13, 1457–1467. [Google Scholar]
- Depciuch, J.; Stec, M.; Klebowski, B.; Maximenko, A.; Drzymała, E.; Baran, J.; Parlinska-Wojtan, M. Size effect of platinum nanoparticles in simulated anticancer photothermal therapy. Photodiagnosis Photodyn. Ther. 2020, 29, 101594. [Google Scholar]
- Klebowski, B.; Depciuch, J.; Stec, M.; Krzempek, D.; Komenda, W.; Baran, J.; Parlinska-Wojtan, M. Fancy-Shaped Gold–Platinum Nanocauliflowers for Improved Proton Irradiation Effect on Colon Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9610. [Google Scholar]
- Phan, T.T.V.; Bui, N.Q.; Moorthy, M.S.; Lee, K.D.; Oh, J. Synthesis and in vitro performance of polypyrrole-coated iron–platinum nanoparticles for photothermal therapy and photoacoustic imaging. Nanoscale Res. Lett. 2017, 12, 1–12. [Google Scholar]
- Yang, X.; Salado-Leza, D.; Porcel, E.; González-Vargas, C.R.; Savina, F.; Dragoe, D.; Remita, H.; Lacombe, S. A facile one-pot synthesis of versatile PEGylated platinum nanoflowers and their application in radiation therapy. Int. J. Mol. Sci. 2020, 21, 1619. [Google Scholar] [PubMed] [Green Version]
- Hullo, M.; Grall, R.; Perrot, Y.; Mathé, C.; Ménard, V.; Yang, X.; Lacombe, S.; Porcel, E.; Villagrasa, C.; Chevillard, S. Radiation enhancer effect of platinum nanoparticles in breast cancer cell lines: In vitro and in silico analyses. Int. J. Mol. Sci. 2021, 22, 4436. [Google Scholar] [PubMed]
- Li, Y.; Yun, K.-H.; Lee, H.; Goh, S.-H.; Suh, Y.-G.; Choi, Y. Porous platinum nanoparticles as a high-Z and oxygen generating nanozyme for enhanced radiotherapy in vivo. Biomaterials 2019, 197, 12–19. [Google Scholar] [PubMed]
- Shoshan, M.S.; Vonderach, T.; Hattendorf, B.; Wennemers, H. Peptide-coated platinum nanoparticles with selective toxicity against liver cancer cells. Angew. Chem. Int. Ed. 2019, 58, 4901–4905. [Google Scholar]
- Hansen, H.E.; Seland, F.; Sunde, S.; Burheim, O.S.; Pollet, B.G. Frequency controlled agglomeration of Pt-nanoparticles in sonochemical synthesis. Ultrason. Sonochem. 2022, 85, 105991. [Google Scholar]
- Yan, F.; Zhang, H.; Zhang, Y.; Yang, F. Agglomeration of Pt nanoparticles on the g-C3N4 surface dominated by oriented attachment mechanism and way of inhibition. Mater. Res. Express 2021, 8, 055504. [Google Scholar]
- Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M.-H.; Kim, J.-H. A comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 2019, 9, 1719. [Google Scholar]
- Pasut, G. Grand challenges in nano-based drug delivery. Front. Med. Technol. 2019, 1, 1. [Google Scholar]
Types (Shape and Size) | Capping Agent | Model System | Dose (LD50) | Effects on the Model System | Potential Applications | References |
---|---|---|---|---|---|---|
PtNPs (sphere, 1.14–1.65 nm) and gemcitabine-conjugated PtNPs (hybrid, 1.53–2.66 nm) | PVP | MCF-7 and Skin cancer (UACC-62) | 9.20 ± 0.04 µg/mL and 8.03 ± 0.03 µg/mL | Conjugated nanoparticles showed cell inhibition, the activation of Caspases 3, apoptosis, and a loss of MMP | Targeted therapy | [18] |
PtNPs (spherical, 20–50 nm) | Streptomyces sp. | MCF-7 | 31.2 µg/mL | Cancer therapeutics | Chemotherapeutic agent | [75] |
PtNPs (spherical, 15 and 8.5 nm) | Penicillium chrysogenum | Skin cancer (C2C12) | Induced ROS and the upregulation of the apoptosis marker (cas-3 and cas-9) and inflammatory markers (TNF-, TGF-, and NF-kB) | Anticancer | [79] | |
PtNPs (spherical, 2–19 nm) | Brain cancer (U87 cell) | Induced genotoxicity and the pro-apoptotic marker and upregulated P53 and caspase-3 expression | Anticancer agent | [93] | ||
PtNPs (spherical 20–100 nm) | Punica granatum crusts | Breast cancer cell (MCF-7) | 17.48 μg/mL | Anti-tumor agent | Chemotherapeutic agent | [100] |
PtNPs (spherical, 5 and 30 nm) | Blood cancer (Raw 264.7) | 10 ppm | Anticancer agent | Anticancer agent | [101] | |
PtNPs (1–2 nm) | Apigenin | Blood cancer (THP-1) | 150 μg/mL | Increased LDH, ROS, NO, malondialdehyde, and carbonylated protein. Reduced GSH, GSH:GSSG, GPx, SOD, CAT, and TRX. Upregulated the pregulation of (IL-1β), IL-6, IL-8, tumor necrosis factor-α (TNF-α), (GM-CSF), and MCP-1 | Anticancer | [103] |
Cu/Au/Pt MNPs (anisotpoic, >10 nm) | Aptamer (Sgc8c) | Blood cancer (CCRF-CEM cells) | Photothermal therapy and biosensing | [122] | ||
Pt-doped carbon nanoparticles (PtCNPs) (12.4 ± 2.4 nm, spherical) | Polyethylene glycol | A549 | Fragmented cytoskeletal structures and overexpression of lamin A/C were observed, thus inhibiting cancer cell migration | Photothermal therapy and imaging | [131] | |
PtNPS (spherical, 5, 30 and 70 nm) | Citrate | C57BL/6 mice | Anti-colitis agent | [133] | ||
PtNPs (spherical, 5 and 30 nm) | Raw 264.7 | 6 µg/mL | Cytotoxicity; suppressed the expression of iNOS and COX-2 proteins | Anticancer agent | [134] | |
PtNPs (flower-like structure, 40 nm) | Lutein | Lung cancer (A549) | Increased exosomes’ biogenesis | Anticancer agent | [135] | |
PtNPs (cubic and tetrahedral particles, 10–22 nm) | Tangeretin | Bone cancer (U2OS) | 15 μg/mL | Promoted cell death; increased LDH, ROS, NO, malondialdehyde and carbonylated protein; reduced MMP and ATP levels, | Chemotherapeutic agent | [136] |
PtNPs (spherical, >50 nm) | Lycopene | Colon cancer (HCT-116 cells) | 14.62 μM/mL | Reduced cell proliferation and viability; increased ROS and oxidative stress; increased pro-apoptotic Bax and caspase-3; decreased anti-apoptotic Bcl-2 | Anticancer | [137] |
PtNPs (spherical, 54.3 nm) | Mentha piperita (Peppermint) | HCT-116 | 20 μg/mL | Decreased cell viability at lower concentrations | Anticancer | [138] |
PtNPs (spherical chain, 50 ± 5 nm) | Bacitracin | Hepatoma cell, A549, HCT-116 cells, and Kunming female mice | Cytotoxicity | Anti-tumor agent | [139] | |
PtNPs (spherical, 20–40 nm) | Bacillus sp. | Liver cancer (HepG2) and rats | 10.3 × 10−6 m | Reduced GSH, SOD, and malondialdehyde | Cancer therapeutic | [140] |
PtNPs (graphene quantum dots -pt, spherical, 5 nm) | Polyethylene glycol | Oral cancer (HSC3, SCC4, and CAL-27 cells) | 7.15 ± 0.99 × 10−6 m (HSC3 cells), 2.77 ± 0.84 × 10−6 m (SCC4 cells), and 6.19 ± 1.25 × 10−6 m (CAL-27 cells) | Induced apoptosis, less systemic drug toxicity, tumor suppression | Cancer therapy | [141] |
Platinum nanocluster (PtNCs) | Polyethyleneimine | Blood cancer (K562, BV173) | 5 × 10−6 m | Induction of pro-apoptotic protein expression (p53, PUMA, cleaved caspase) | Cellular imaging and anticancer effects | [142] |
Fe-PtNPs (4.8 ± 0.6 nm) | Cysteine | Gliomas cells (C6, SGH44, U251), ECV304, L929, and HEK293 | Imaging | MRI/CT contrast imaging agent | [143] | |
PtNPs (sphere, 36 ± 6 nm) | Hyaluronic acid and ascorbic acid | Breast cancer (MDA-MB231 cells), mouse fibroblast (NIH3T3), and BALB/c nude mice | Targeted therapy | Photothermal therapy | [144] | |
PtNPs (spherical, 2 and 80 nm) | Ethylene glycol | Colon cancer (SW480 and SW620) | Cell death with small-sized particles | Photothermal therapy | [145] | |
Au-PtNP (cauliflowers, 66 nm) | Gallic acid | SW480, SW620, HCT116, and FHC | Selective cancer cell death | Photothermal therapy | [146] | |
Iron -PtNPs (spherical, 42 nm) | Polypyrrole | Breast cancer (MDA-MB-231 cells) and female BALB/c nude mouse | Kill cancer cells selectively | Photothermal therapy and photoacoustic imaging | [147] | |
PtNPs (flower, 14.6 ± 7.4 nm) | Poly(Ethylene Glycol) diamine | Cervical cancer (Hela cells) | Cytotoxic against cancer cells | Radiotherapy | [148] | |
PtNPs (3.2 nm) | PEG | Breast cancer (T47D and MDA-MB-231) | Radiotherapy | [149] | ||
PtNPs (spherical, 65 ± 6.68 nm) | PEG | Lung cancer (NCI-H460 cells) and Male athymic nude mice | Induced DNA damage, cell cycle arrest, and ROS stress | Radiotherapy | [150] | |
PtNPs (spherical, 2.5 nm) | Peptide (H-Lys-Pro-Gly-DLys-NH2) | HepG2 | 2.9 ± 0.3 mgL−1 | Cell death due to the generation of oxidative stress | Selective cancer therapy | [151] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, A.; Das, N.; Rayavarapu, R.G. Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications. J. Nanotheranostics 2023, 4, 384-407. https://doi.org/10.3390/jnt4030017
Kumar A, Das N, Rayavarapu RG. Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications. Journal of Nanotheranostics. 2023; 4(3):384-407. https://doi.org/10.3390/jnt4030017
Chicago/Turabian StyleKumar, Akash, Nabojit Das, and Raja Gopal Rayavarapu. 2023. "Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications" Journal of Nanotheranostics 4, no. 3: 384-407. https://doi.org/10.3390/jnt4030017
APA StyleKumar, A., Das, N., & Rayavarapu, R. G. (2023). Smart Platinum Nanostructures: A Journey from Synthesis to Advanced Theranostic Applications. Journal of Nanotheranostics, 4(3), 384-407. https://doi.org/10.3390/jnt4030017