Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kallitsis, N.; Anyfantis, K. Buckling Strength Assessment of Composite Patch Repair Used for the Rehabilitation of Corroded Marine Plates. Appl. Mech. 2021, 2, 482–500. [Google Scholar] [CrossRef]
- Moumen, A.E.; Saouab, A.; Imad, A.; Kanit, T. Towards a Numerical Modeling of the Coupling between RTM Process and Induced Mechanical Properties for Rigid Particle-Filled Composites. Int. J. Adv. Manuf. Technol. 2023, 125, 1251–1270. [Google Scholar] [CrossRef]
- Yang, S.-K.; Chen, L.-H.; Chu, W.-L. Experiment for Improving the Manufacturing Process of Composite Material Made Serpentine Pipe Parts Using Ceramic Lost Foam Mold. Int. J. Adv. Manuf. Technol. 2023, 125, 115–131. [Google Scholar] [CrossRef]
- Hwang, C.-K.; Lee, K.A.; Lee, J.; Kim, Y.; Ahn, H.; Hwang, W.; Ju, B.-K.; Kim, J.Y.; Yeo, S.Y.; Choi, J.; et al. Perpendicularly Stacked Array of PTFE Nanofibers as a Reinforcement for Highly Durable Composite Membrane in Proton Exchange Membrane Fuel Cells. Nano Energy 2022, 101, 107581. [Google Scholar] [CrossRef]
- Vassilopoulos, A.P. The History of Fiber-Reinforced Polymer Composite Laminate Fatigue. Int. J. Fatigue 2020, 134, 105512. [Google Scholar] [CrossRef]
- Do, N.B.; Imenes, K.; Aasmundtveit, K.E.; Nguyen, H.-V.; Andreassen, E. Thermal Conductivity and Mechanical Properties of Polymer Composites with Hexagonal Boron Nitride—A Comparison of Three Processing Methods: Injection Moulding, Powder Bed Fusion and Casting. Polymers 2023, 15, 1552. [Google Scholar] [CrossRef]
- Choi, H.S.; Jeon, Y.J.; Choi, W.C.; Kim, D.E. Quantitative Evaluation of the Sheared Edge of Woven Glass Epoxy Laminate after Mechanical Punching. Int. J. Adv. Manuf. Technol. 2023, 124, 2313–2321. [Google Scholar] [CrossRef]
- Parveez, B.; Kittur, M.I.; Badruddin, I.A.; Kamangar, S.; Hussien, M.; Umarfarooq, M.A. Scientific Advancements in Composite Materials for Aircraft Applications: A Review. Polymers 2022, 14, 5007. [Google Scholar] [CrossRef]
- Oladapo, B.I.; Zahedi, S.A.; Ismail, S.O.; Olawade, D.B. Recent Advances in Biopolymeric Composite Materials: Future Sustainability of Bone-Implant. Renew. Sustain. Energy Rev. 2021, 150, 111505. [Google Scholar] [CrossRef]
- Dimitrova, M.; Aminzadeh, A.; Meiabadi, M.S.; Sattarpanah Karganroudi, S.; Taheri, H.; Ibrahim, H. A Survey on Non-Destructive Smart Inspection of Wind Turbine Blades Based on Industry 4.0 Strategy. Appl. Mech. 2022, 3, 1299–1326. [Google Scholar] [CrossRef]
- Burande, S.W.; Bhope, D.V. Review on Material Selection, Tailoring of Material Properties and Ageing of Composites with Special Reference to Applicability in Automotive Suspension. Mater. Today Proc. 2021, 46, 520–527. [Google Scholar] [CrossRef]
- De Kergariou, C.; Demoly, F.; Perriman, A.; Le Duigou, A.; Scarpa, F. The Design of 4D-Printed Hygromorphs: State-of-the-Art and Future Challenges. Adv. Funct. Mater. 2023, 33, 2210353. [Google Scholar] [CrossRef]
- Oun, A.; Manalo, A.; Alajarmeh, O.; Abousnina, R.; Gerdes, A. Long-Term Water Absorption of Hybrid Flax Fibre-Reinforced Epoxy Composites with Graphene and Its Influence on Mechanical Properties. Polymers 2022, 14, 3679. [Google Scholar] [CrossRef] [PubMed]
- Antony, S.; Cherouat, A.; Montay, G. Experimental Investigation of the Temperature Effect on the Mechanical Properties of Hemp Woven Fabrics Reinforced Polymer. Appl. Mech. 2021, 2, 239–256. [Google Scholar] [CrossRef]
- Salim, S.; Rihayat, T.; Riskina, S.; Safitri, A. Physical and Mechanical Properties of Bamboo/Flax Fibre Reinforced Epoxy Composite Water Absorption Behaviour and High-Temperature Conditions. Plast. Rubber Compos. 2021, 50, 415–424. [Google Scholar] [CrossRef]
- De Kergariou, C.; Le Duigou, A.; Perriman, A.; Scarpa, F. Design Space and Manufacturing of Programmable 4D Printed Continuous Flax Fibre Polylactic Acid Composite Hygromorphs. Mater. Des. 2023, 225, 111472. [Google Scholar] [CrossRef]
- Papanicolaou, G.C.; Kontaxis, L.C.; Kouris, N.; Portan, D.V. Application of an Eco-Friendly Adhesive and Electrochemical Nanostructuring for Joining of Aluminum A1050 Plates. Materials 2023, 16, 2428. [Google Scholar] [CrossRef] [PubMed]
- More, A.P. Flax Fiber–Based Polymer Composites: A Review. Adv. Compos. Hybrid Mater. 2022, 5, 1–20. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Leng, J. Multi-Performance Shape Memory Epoxy Resins and Their Composites with Narrow Transition Temperature Range. Compos. Sci. Technol. 2021, 213, 108899. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, F.; Leng, J. Shape Memory Epoxy Resin and Its Composites: From Materials to Applications. Research 2022, 2022, 9767830. [Google Scholar] [CrossRef]
- Protsenko, A.E.; Protsenko, A.N.; Shakirova, O.G.; Petrov, V.V. Recycling of Epoxy/Fiberglass Composite Using Supercritical Ethanol with (2,3,5-Triphenyltetrazolium)2[CuCl4] Complex. Polymers 2023, 15, 1559. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Z.; Liu, Y. Experimental and Numerical Study of the Ultimate Flexural Capacity of a Full-Size Damaged Prestressed Concrete Box Girder Strengthened with Bonded Steel Plates. Materials 2023, 16, 2476. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.-C.; Qiu, S.-X.; Lee, G.-Y.; Zhou, J.; He, H.-Q. Characterizations of Polymer Injection Molding Tools with Conformal Cooling Channels Fabricated by Direct and Indirect Rapid Tooling Technologies. Int. J. Adv. Manuf. Technol. 2021, 117, 343–360. [Google Scholar] [CrossRef]
- Kuo, C.-C.; Wu, J.-Q. Development of a Low-Cost Epoxy Resin Mold with High Cooling Efficiency. Int. J. Adv. Manuf. Technol. 2021, 113, 2065–2086. [Google Scholar] [CrossRef]
- Li, Q.; Sun, R.; Duigou, A.L.; Guo, J.; Rossiter, J.; Li, L.; Leng, J.; Scarpa, F. Large Datasets of Water Vapor Sorption, Mass Diffusion Immersed in Water, Hygroscopic Expansion and Mechanical Properties of Flax Fibre/Shape Memory Epoxy Hygromorph Composites. Data Brief 2022, 43, 108367. [Google Scholar] [CrossRef] [PubMed]
- Zhou, P.; Li, X.; Yuan, H.; Zhou, J.; Qu, L.; Yang, Y.; He, G.; Luo, C. A Long-Acting Hygroscopic and Antibacterial Composite Filler: A New Approach to Phytoextraction Solid Residues from Citrus aurantium L. Ind. Crops Prod. 2022, 187, 115505. [Google Scholar] [CrossRef]
- Dyachkova, T.P.; Khan, Y.A.; Burakova, E.A.; Galunin, E.V.; Shigabaeva, G.N.; Stolbov, D.N.; Titov, G.A.; Chapaksov, N.A.; Tkachev, A.G. Characteristics of Epoxy Composites Containing Carbon Nanotubes/Graphene Mixtures. Polymers 2023, 15, 1476. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Kéki, S. Review of Progress in Shape Memory Epoxies and Their Composites. Polymers 2017, 10, 34. [Google Scholar] [CrossRef] [Green Version]
- Nurazzi, N.M.; Asyraf, M.R.M.; Fatimah Athiyah, S.; Shazleen, S.S.; Rafiqah, S.A.; Harussani, M.M.; Kamarudin, S.H.; Razman, M.R.; Rahmah, M.; Zainudin, E.S.; et al. A Review on Mechanical Performance of Hybrid Natural Fiber Polymer Composites for Structural Applications. Polymers 2021, 13, 2170. [Google Scholar] [CrossRef]
- Alsubari, S.; Zuhri, M.Y.M.; Sapuan, S.M.; Ishak, M.R.; Ilyas, R.A.; Asyraf, M.R.M. Potential of Natural Fiber Reinforced Polymer Composites in Sandwich Structures: A Review on Its Mechanical Properties. Polymers 2021, 13, 423. [Google Scholar] [CrossRef]
- Sepahvand, K.K. Deep Learning Based Uncertainty Analysis in Computational Micromechanics of Composite Materials. Appl. Mech. 2021, 2, 559–570. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What Are Decision Trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef] [PubMed]
- El-Mottaleb, S.A.A.; Métwalli, A.; Chehri, A.; Ahmed, H.Y.; Zeghid, M.; Khan, A.N. A QoS Classifier Based on Machine Learning for Next-Generation Optical Communication. Electronics 2022, 11, 2619. [Google Scholar] [CrossRef]
- Muir, C.; Swaminathan, B.; Almansour, A.S.; Sevener, K.; Smith, C.; Presby, M.; Kiser, J.D.; Pollock, T.M.; Daly, S. Damage Mechanism Identification in Composites via Machine Learning and Acoustic Emission. NPJ Comput. Mater. 2021, 7, 95. [Google Scholar] [CrossRef]
- Pathan, M.V.; Ponnusami, S.A.; Pathan, J.; Pitisongsawat, R.; Erice, B.; Petrinic, N.; Tagarielli, V.L. Predictions of the Mechanical Properties of Unidirectional Fibre Composites by Supervised Machine Learning. Sci. Rep. 2019, 9, 13964. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kosicka, E.; Krzyzak, A.; Dorobek, M.; Borowiec, M. Prediction of Selected Mechanical Properties of Polymer Composites with Alumina Modifiers. Materials 2022, 15, 882. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, J.; Lei, X.; Wei, T. Compressive Strength Prediction of Basalt Fiber Reinforced Concrete via Random Forest Algorithm. Mater. Today Commun. 2022, 30, 103117. [Google Scholar] [CrossRef]
- Lim, D.K.; Mustapha, K.B.; Pagwiwoko, C.P. Delamination Detection in Composite Plates Using Random Forests. Compos. Struct. 2021, 278, 114676. [Google Scholar] [CrossRef]
- Liu, X.; Liu, T.; Feng, P. Long-Term Performance Prediction Framework Based on XGBoost Decision Tree for Pultruded FRP Composites Exposed to Water, Humidity and Alkaline Solution. Compos. Struct. 2022, 284, 115184. [Google Scholar] [CrossRef]
- Gupta, P.; Dwivedi, U.K.; Yadav, V.; Kumar Yadav, A. Supervised Classification Model for Estimation of Wear in Sisal Fibre-Epoxy Composites. Mater. Today Proc. 2022, 66, 3634–3639. [Google Scholar] [CrossRef]
- Li, Q.; Sun, R.; Le Duigou, A.; Guo, J.; Rossiter, J.; Liu, L.; Leng, J.; Scarpa, F. Programmable and Reconfigurable Hygro-Thermo Morphing Materials with Multifunctional Shape Transformation. Appl. Mater. Today 2022, 27, 101414. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, Z.; Luo, Y.; Qiu, Z. Real-Time Pattern-Recognition of GPR Images with YOLO v3 Implemented by Tensorflow. Sensors 2020, 20, 6476. [Google Scholar] [CrossRef]
- Khan, M.; Liu, T.; Ullah, F. A New Hybrid Approach to Forecast Wind Power for Large Scale Wind Turbine Data Using Deep Learning with TensorFlow Framework and Principal Component Analysis. Energies 2019, 12, 2229. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Ho, T.K. Machine Learning Made Easy: A Review of Scikit-Learn Package in Python Programming Language. J. Educ. Behav. Stat. 2019, 44, 348–361. [Google Scholar] [CrossRef]
- Mu, Y.; Liu, X.; Wang, L. A Pearson’s Correlation Coefficient Based Decision Tree and Its Parallel Implementation. Inf. Sci. 2018, 435, 40–58. [Google Scholar] [CrossRef]
- Wu, L.; Wei, G.; Wang, G.; Wang, H.; Ren, J. Creating Win-Wins from Strength–Ductility Trade-off in Multi-Principal Element Alloys by Machine Learning. Mater. Today Commun. 2022, 32, 104010. [Google Scholar] [CrossRef]
- Sadat, T. Predicting the Average Composition of an AlFeNiTiVZr-Cr Alloy with Machine Learning and X-ray Spectroscopy. Compounds 2023, 3, 224–232. [Google Scholar] [CrossRef]
- Berger, A.; Witz, J.F.; El Bartali, A.; Sadat, T.; Limodin, N.; Dubar, M.; Najjar, D. Experimental Investigation of Early Strain Heterogeneities and Localizations in Polycrystalline α-Fe during Monotonic Loading. Int. J. Plast. 2022, 153, 103253. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Sadat, T.; Dirras, G.; Tingaud, D.; Ota, M.; Chauveau, T.; Faurie, D.; Vajpai, S.; Ameyama, K. Bulk Ni-W Alloys with a Composite-like Microstructure Processed by Spark Plasma Sintering: Microstructure and Mechanical Properties. Mater. Des. 2016, 89, 1181–1190. [Google Scholar] [CrossRef]
- Sadat, T.; Faurie, D.; Tingaud, D.; Mocuta, C.; Thiaudière, D.; Dirras, G. Fracture Behavior of Ni-W Alloy Probed by in Situ Synchrotron X-ray Diffraction. Mater. Lett. 2019, 239, 116–119. [Google Scholar] [CrossRef]
- Sadat, T.; Hocini, A.; Lilensten, L.; Faurie, D.; Tingaud, D.; Dirras, G. Data on the Impact of Increasing the W Amount on the Mass Density and Compressive Properties of Ni-W Alloys Processed by Spark Plasma Sintering. Data Brief 2016, 7, 1405–1408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zielinski, B.; Sadat, T.; Lukić, B.; Haugou, G.; Morvan, H.; Rack, A.; Markiewicz, E.; Dubar, L. Characterization of Local Mechanical Properties of Al/Cu Magnetic Pulse Welded Joints under High Strain Rates Using Synchrotron X-ray Imaging. Mater. Lett. 2023, 337, 133943. [Google Scholar] [CrossRef]
- Sadat, T.; Hayashi, K.; Haugou, G.; Morvan, H.; Markiewicz, E.; Dubar, L.; Bigerelle, M.; Ameyama, K.; Dirras, G. Mechanical Properties of Spark Plasma Sintering-Processed Pure Ti and Ti-6Al-4V Alloys: A Comparative Study between Harmonic and Non-Harmonic Microstructures. Compounds 2021, 1, 41–57. [Google Scholar] [CrossRef]
Attribute | Range |
---|---|
Direction | 0 (Longitude)/90 (Transverse) |
Temperature (°C) | 20–100 |
Humidity | 50 (Dry)/100 (Immersed) |
Tensile Modulus (GPa) | 0.016–16.302 |
Feature | Decision Tree | Random Forest |
---|---|---|
Direction | 0.598 | 0.605 |
Humidity | 0.224 | 0.215 |
Temperature (°C) | 0.178 | 0.180 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadat, T. Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites. Appl. Mech. 2023, 4, 752-762. https://doi.org/10.3390/applmech4020038
Sadat T. Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites. Applied Mechanics. 2023; 4(2):752-762. https://doi.org/10.3390/applmech4020038
Chicago/Turabian StyleSadat, Tarik. 2023. "Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites" Applied Mechanics 4, no. 2: 752-762. https://doi.org/10.3390/applmech4020038
APA StyleSadat, T. (2023). Machine Learning-Assisted Tensile Modulus Prediction for Flax Fiber/Shape Memory Epoxy Hygromorph Composites. Applied Mechanics, 4(2), 752-762. https://doi.org/10.3390/applmech4020038