Molecular Dynamics Analysis of Hydrogen Diffusion Behavior in Alpha-Fe Bi-Crystal Under Bending Deformation
Abstract
:1. Introduction
2. Theory and Methods
2.1. MD Theory and Calculation
2.2. MD Modeling
2.3. Stress Gradient (SG) Obtained by Bending
3. Results and Discussion
3.1. Diffusion Behavior of H Atoms
3.2. Influence of SG on Diffusion Directions
3.3. Influence of SG on the Amount of Diffusion
3.4. Relationship Between SG and the Diffusion Coefficient
4. Conclusions
- Directionality for diffusion of H atoms occurs as the value of SG increases.
- The amount of diffusion of H atoms increases as the SG increases. The diffusion occurs in the direction from compressive to tensile stress field. This is caused by the slight distortion of the crystal lattice by bending deformation, where the moving route of H atoms toward the tensile side is generally expanded.
- The approximated cohesive energy around H atoms becomes smaller as the SG increases. This means that the energy barrier for an H atom to escape from the trap site (T-site) will be reduced by the SG, and the diffusion becomes energetically easier.
- The MD simulations show that there is a certain relationship between the diffusion coefficient of the H atom, DH, and the stress gradient, , as expressed by the following equation (A and B are parameters):
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beachem, C.D. A new model for hydrogen-assisted cracking (hydrogen “embrittlement”). Metal. Mater. Trans. B 1972, 3, 441–455. [Google Scholar] [CrossRef]
- Matsuyama, S. Effects of tempering, prior-austenite grain size and shape of test specimen on the delayed fracture of low-alloyed steels. Tetsu-to-Hagane 1972, 58, 395–410. [Google Scholar] [CrossRef] [PubMed]
- Tabata, T.; Birnbaum, H.K. Direct observations of hydrogen enhanced crack propagation in iron. Scripta Metal. 1984, 18, 231–236. [Google Scholar] [CrossRef]
- Oriani, R.A.; Josephic, P.H. Equilibrium aspects of hydrogen-induced cracking of steels. Acta Mater. 1974, 22, 1065–1074. [Google Scholar] [CrossRef]
- Nagumo, M.; Matsuda, H. Function of hydrogen in intergranular fracture of martensitic steels. Philos. Mag. A 2002, 82, 3415–3425. [Google Scholar] [CrossRef]
- Takai, K.; Yamauchi, G.; Nakamura, M.; Nagumo, M. Hydrogen trapping characteristics of cold-drawn pure iron and eutectoid steel evaluated by thermal description spectrometry. J. Jpn. Inst. Metal. 1998, 62, 267–275. [Google Scholar] [CrossRef]
- Nagao, A.; Kuramoto, S.; Kanno, M.; Shiraga, T. Visualization of hydrogen diffusion promoted by stress gradient and plastic deformation in steel. Tetsu-to-Hagane 2000, 86, 24–31. [Google Scholar] [CrossRef]
- Riku, M.; Matsumoto, R.; Taketomi, S.; Miyazaki, N. Atomistic simulation study of cohesive energy of grain boundaries in alpha iron under gaseous hydrogen environment. J. Soc. Mater. Sci. 2010, 59, 589–595. [Google Scholar] [CrossRef]
- Liu, X.; Xie, W.; Chen, W.; Zhang, H. Effects of grain boundary and boundary inclination on hydrogen diffusion in a-iron. J Mater. Res. 2011, 26, 2735–2743. [Google Scholar] [CrossRef]
- Kodama, S.; Miyakawa, S. Rolling residual stress in high carbon steel plates. J. Soc. Mater. Sci. 1979, 28, 172–176. [Google Scholar] [CrossRef]
- Asakawa, M. Trends in wire drawing technology. J. Jpn. Soc. Technol. Plast. 2014, 55, 306–310. (In Japanese) [Google Scholar] [CrossRef]
- Mendelev, M.I.; Han, S.; Srolovitz, D.J.; Ackland, G.J.; Sun, D.Y.; Asta, M. Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 2003, 83, 3977–3994. [Google Scholar] [CrossRef]
- Ramasubramaniam, A.; Itakura, M.; Carter, E.A. Interatomic potentials for hydrogen in α–iron based on density functional theory. Phys. Rev. B 2009, 79, 174101, Erratum in Phys. Rev. B 2010, 81, 099902. [Google Scholar] [CrossRef]
- Hume-Rothery, W. The Structure of Metals and Alloys; Monograph and Report Series No. 1; Institute of Metals: London, UK, 1936; p. 61. [Google Scholar]
- Jiang, D.E.; Carter, E.A. Diffusion of interstitial hydrogen into and through bcc Fe from first principles. Phys. Rev. B 2004, 70, 064102. [Google Scholar] [CrossRef]
- Shibuya, Y.; Takamoto, A.; Suzuki, T. A molecular dynamics study of the energy and structure of the symmetric tilt boundary of iron. ISIJ Int. 2008, 48, 1582–1591. [Google Scholar] [CrossRef]
- Nagumo, M. Fundamentals of Hydrogen Embrittlement; Uchida Rokakuho Publishing: Tokyo, Japan, 2008; p. 3. (In Japanese) [Google Scholar]
- Hagi, H. Diffusion coefficient of hydrogen in iron without trapping by dislocations and impurities. Mater. Trans. 1994, 35, 112–117. [Google Scholar] [CrossRef]
- Iijima, Y.; Kimura, K.; Hirano, K. Self-diffusion and isotope effect in α-iron. Acta Metal. 1988, 36, 2811–2820. [Google Scholar] [CrossRef]
- Iino, M. Evaluation of hydrogen-trap binding enthalpy l. Metal. Trans. A 1987, 18, 1559–1564. [Google Scholar] [CrossRef]
- Itakura, M.; Kaburaki, H.; Yamaguchi, M.; Okita, T. The effect of hydrogen atoms on the screw dislocation mobility in bcc iron: A first-principles study. Acta Mater. 2013, 61, 6857–6867. [Google Scholar] [CrossRef]
- Mehrer, H. Diffusion in Solids (Fundamentals, Methods, Materials, Diffusion-Controlled Processes); Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Shewmon, P.G. Diffusion in Solids; McGraw-Hill: New York, NY, USA, 1963. [Google Scholar]
- Peterson, N.L. Self-diffusion in pure metals. J. Nucl. Mater. 1978, 69/70, 3–37. [Google Scholar] [CrossRef]
- Luo, F.; Liu, Q.; Huang, J.; Xiao, H.; Gao, Z.; Ge, W.; Gao, F.; Wang, Y.; Wang, C. Effects of lattice strain on hydrogen diffusion, trapping and escape in bcc iron from ab-initio calculations. Int. J. Hydrogen Energy 2023, 48, 8198–8215. [Google Scholar] [CrossRef]
- Nagase, S.; Matsumoto, R. Evaluation and modeling of anisotropic stress effect on hydrogen diffusion in bcc iron. Mater. Trans. 2020, 61, 1265–1271. [Google Scholar] [CrossRef]
Method | The Nearest Neighbor Interatomic Distance [nm] (Error [%]) | |
---|---|---|
Distance Between Fe and Fe Atoms | Distance Between Fe and H Atoms | |
Molecular dynamics calculation (a) | 0.246 (−0.806) | 0.170 (6.25) |
Ab initio calculation (b),(c) | 0.236 (−4.84) | 0.158 (−1.25) |
Theoretical value (d) | 0.248 | 0.160 |
Property | Value | |
---|---|---|
Lattice Constant of α-Fe [nm] | 0.287 | |
The number of atoms [−] | Iron (Fe): | 51,095 |
Hydrogen (H): | 10 | |
Hydrogen content [at.%] | 0.196 × 10−3 | |
Cell size in x, y, z [nm] | 45.00, 12.00, 1.433 | |
Misorientation angle of GB [deg.] | 36.9 | |
Temperature T [K] | 300.0 | |
Stress gradient (SG) [GPa/nm] | 0.000, 0.222, 0.552, 0.935 |
Calc. Case | Maximum Displacement of Indenter [nm] | Stress Gradient [GPa/nm] |
---|---|---|
1 | 0.000 | 0.000 |
2 | 0.450 | 0.222 |
3 | 0.900 | 0.552 |
4 | 1.80 | 0.935 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saitoh, K.-i.; Koga, H.; Sato, T.; Takuma, M.; Takahashi, Y. Molecular Dynamics Analysis of Hydrogen Diffusion Behavior in Alpha-Fe Bi-Crystal Under Bending Deformation. Appl. Mech. 2024, 5, 731-744. https://doi.org/10.3390/applmech5040040
Saitoh K-i, Koga H, Sato T, Takuma M, Takahashi Y. Molecular Dynamics Analysis of Hydrogen Diffusion Behavior in Alpha-Fe Bi-Crystal Under Bending Deformation. Applied Mechanics. 2024; 5(4):731-744. https://doi.org/10.3390/applmech5040040
Chicago/Turabian StyleSaitoh, Ken-ichi, Haruka Koga, Tomohiro Sato, Masanori Takuma, and Yoshimasa Takahashi. 2024. "Molecular Dynamics Analysis of Hydrogen Diffusion Behavior in Alpha-Fe Bi-Crystal Under Bending Deformation" Applied Mechanics 5, no. 4: 731-744. https://doi.org/10.3390/applmech5040040
APA StyleSaitoh, K. -i., Koga, H., Sato, T., Takuma, M., & Takahashi, Y. (2024). Molecular Dynamics Analysis of Hydrogen Diffusion Behavior in Alpha-Fe Bi-Crystal Under Bending Deformation. Applied Mechanics, 5(4), 731-744. https://doi.org/10.3390/applmech5040040