Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy
Abstract
:1. Introduction
2. Gleeble Thermomechanical Simulator
2.1. Experimental Setup
2.2. Experiments and Results
3. Electro-Thermal Simulation of Compression Configuration
3.1. Definition and Implementation of the UAMP Subroutine
3.2. Numerical Models
4. Results and Discussion
4.1. Numerical Simulation with Constant Cooling Condition
4.2. Numerical Simulation with Variable Cooling Condition
5. Conclusions
- The experimental temperature measurements, which were conducted using multiple thermocouples that were welded to the specimen and anvils, revealed that there were minimal temperature differences between the center and from the end of the specimen during the heating process, with the temperature rising to . These temperature differences were found to be less than .
- A coupled thermal–electrical finite element model developed in Abaqus with a user subroutine (UAMP) to control the heating exhibited a high degree of correlation with the experimental temperature measurements. The simulations indicate that minimal temperature gradients (<1.9 ) will be observed within the specimen at the conclusion of the heating process, reaching . This is attributed to the specific configuration of graphite foils within the anvil assemblies and on the anvil faces.
- The graphite foils, which are positioned between the specimen and the anvils, as well as between the anvil components, serve to mitigate the temperature gradients within the specimen by functioning as thermal and electrical insulators.
- The use of the measured anvil temperature as a boundary condition in lieu of a constant temperature of resulted in a notable enhancement in the alignment between the simulated and experimental cooling curves following the heating phase.
- The UAMP subroutine has been developed to effectively mimic the Gleeble’s PID temperature control system, calculating the requisite current density to follow the specified temperature profile. The numerically predicted heating power exhibits a high degree of correlation with the experimental measurements.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
UAMP | User amplitude subroutine |
PID | Proportional–integral–derivative |
FE | Finite element |
FEM | Finite element method |
DIC | Digital image correlation |
DRX | Dynamic recrystallization |
PFA | Perfluoroalkoxy |
WC-Co | Tungsten carbide–cobalt |
ISO-T | Designation for specific tungsten carbide anvils used in Gleeble tests |
References
- Zhang, R.; Shao, Z.; Lin, J.; Dean, T.A. Measurement and Analysis of Heterogeneous Strain Fields in Uniaxial Tensile Tests for Boron Steel Under Hot Stamping Conditions. Exp. Mech. 2020, 60, 1289–1300. [Google Scholar] [CrossRef]
- Bennett, C.; Leen, S.; Williams, E.; Shipway, P.; Hyde, T. A critical analysis of plastic flow behaviour in axisymmetric isothermal and Gleeble compression testing. Comput. Mater. Sci. 2010, 50, 125–137. [Google Scholar] [CrossRef]
- Gao, T.; Ma, L.; Peng, X.G. Study on Temperature Distribution of Specimens Tested on the Gleeble 3800 at Hot Forming Conditions. J. Electron. Sci. Technol. 2014, 12, 5. [Google Scholar] [CrossRef]
- Quan, G.Z.; Pan, J.; Zhang, Z.H. Phase transformation and recrystallization kinetics in space–time domain during isothermal compressions for Ti–6Al–4V analyzed by multi-field and multi-scale coupling FEM. Mater. Des. 2016, 94, 523–535. [Google Scholar] [CrossRef]
- Jedrasiak, P.; Shercliff, H.; Mishra, S.; Daniel, C.S.; Da Fonseca, J.Q. Finite Element Modeling of Hot Compression Testing of Titanium Alloys. J. Mater. Eng. Perform. 2022, 31, 7160–7175. [Google Scholar] [CrossRef]
- Xiao, H.; Fan, X.; Zhan, M.; Liu, B.; Zhang, Z. Flow stress correction for hot compression of titanium alloys considering temperature gradient induced heterogeneous deformation. J. Mater. Process. Technol. 2021, 288, 116868. [Google Scholar] [CrossRef]
- Huang, K.; Logé, R. Microstructure and flow stress evolution during hot deformation of 304L austenitic stainless steel in variable thermomechanical conditions. Mater. Sci. Eng. 2018, 711, 600–610. [Google Scholar] [CrossRef]
- Zhang, J.; Yi, Y.; Huang, S.; Mao, X.; He, H.; Tang, J.; Guo, W.; Dong, F. Dynamic recrystallization mechanisms of 2195 aluminum alloy during medium/high temperature compression deformation. Mater. Sci. Eng. 2021, 804, 140650. [Google Scholar] [CrossRef]
- Yu, D.; Xu, D.; Wang, H.; Zhao, Z.; Wei, G.; Yang, R. Refining constitutive relation by integration of finite element simulations and Gleeble experiments. J. Mater. Sci. Technol. 2019, 35, 1039–1043. [Google Scholar] [CrossRef]
- Coelho, B.; Thuillier, S. On the use of the Gleeble® test as a heterogeneous test: Sensitivity analysis on temperature, strain and strain rate. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1238, 012058. [Google Scholar] [CrossRef]
- Cheng, M.; Wu, X.; Zhang, Z. Study of the Dynamic Recrystallization Behavior of Mg-Gd-Y-Zn-Zr Alloy Based on Experiments and Cellular Automaton Simulation. Metals 2024, 14, 570. [Google Scholar] [CrossRef]
- Tize Mha, P.; Dhondapure, P.; Jahazi, M.; Tongne, A.; Pantalé, O. Artificial Neural Network-Based Critical Conditions for the Dynamic Recrystallization of Medium Carbon Steel and Application. Metals 2023, 13, 1746. [Google Scholar] [CrossRef]
- Dassault Systèmes. Abaqus Reference Manual; Vélizy-Villacoublay: Paris, France, 2024. [Google Scholar]
- Bennett, C.J.; Leen, S.B.; Shipway, P.H. A Finite Element Analysis of Errors in Axisymmetricisothermal and Gleeble Compression Testing of Ti-6Al-4V. Int. J. Mater. Form. 2010, 3, 1155–1158. [Google Scholar] [CrossRef]
- Bennett, C.J.; Sun, W. Optimisation of material properties for the modelling of large deformation manufacturing processes using a finite element model of the Gleeble compression test. J. Strain Anal. Eng. Des. 2014, 49, 429–436. [Google Scholar] [CrossRef]
- Åkerström, P.; Wikman, B.; Oldenburg, M. Material parameter estimation for boron steel from simultaneous cooling and compression experiments. Model. Simul. Mater. Sci. Eng. 2005, 13, 1291–1308. [Google Scholar] [CrossRef]
- Wei, X.H.; Liu, L.; Zhang, J.X.; Shi, J.L.; Guo, Q.G. Mechanical, electrical, thermal performances and structure characteristics of flexible graphite sheets. J. Mater. Sci. 2010, 45, 2449–2455. [Google Scholar] [CrossRef]
- Pollock, M. Grafoil-Engineering Design Manual; Technical Report; Graftech Inc.: Brooklyn Heights, OH, USA, 2002. [Google Scholar]
- Fu, Y.; Hou, M.; Liang, D.; Yan, X.; Fu, Y.; Shao, Z.; Hou, Z.; Ming, P.; Yi, B. The electrical resistance of flexible graphite as flowfield plate in proton exchange membrane fuel cells. Carbon 2008, 46, 19–23. [Google Scholar] [CrossRef]
- Cermak, M.; Perez, N.; Collins, M.; Bahrami, M. Material properties and structure of natural graphite sheet. Sci. Rep. 2020, 10, 18672. [Google Scholar] [CrossRef]
- Chen, P.H.; Chung, D. Thermal and electrical conduction in the compaction direction of exfoliated graphite and their relation to the structure. Carbon 2014, 77, 538–550. [Google Scholar] [CrossRef]
- Solfiti, E.; Berto, F. A review on thermophysical properties of flexible graphite. Procedia Struct. Integr. 2020, 26, 187–198. [Google Scholar] [CrossRef]
- Inagaki, M.; Kaburagi, Y.; Hishiyama, Y. Thermal Management Material: Graphite. Adv. Eng. Mater. 2014, 16, 494–506. [Google Scholar] [CrossRef]
- Janerka, K.; Jezierski, J.; Stawarz, M.; Szajnar, J. Method for Resistivity Measurement of Grainy Carbon and Graphite Materials. Materials 2019, 12, 648. [Google Scholar] [CrossRef] [PubMed]
- Sariyev, B.; Abdikadyr, A.; Baitikenov, T.; Anuarbekov, Y.; Golman, B.; Spitas, C. Thermal properties and mechanical behavior of hot pressed PEEK/graphite thin film laminate composites. Sci. Rep. 2023, 13, 12785. [Google Scholar] [CrossRef] [PubMed]
- Gong, F.; Li, H.; Wang, W.; Xia, D.; Liu, Q.; Papavassiliou, D.; Xu, Z. Recent Advances in Graphene-Based Free-Standing Films for Thermal Management: Synthesis, Properties, and Applications. Coatings 2018, 8, 63. [Google Scholar] [CrossRef]
- Chugh, R.; Chung, D. Flexible graphite as a heating element. Carbon 2002, 40, 2285–2289. [Google Scholar] [CrossRef]
- Ganapathy, M.; Li, N.; Lin, J.; Abspoel, M.; Bhattacharjee, D. A Novel Grip Design for High-Accuracy Thermo-Mechanical Tensile Testing of Boron Steel under Hot Stamping Conditions. Exp. Mech. 2018, 58, 243–258. [Google Scholar] [CrossRef]
- Kumar, V. Thermo-mechanical simulation using gleeble system-advantages and limitations. J. Metall. Mater. Sci. 2016, 58, 81–88. [Google Scholar]
- Yang, R.; Yu, D.; Xu, D. Influence of thermocouple welding on the Gleeble temperature measurement error and a scheme for its correction. Sci. Sin. Technol. 2021, 51, 185–194. [Google Scholar] [CrossRef]
- Zhao, X.; Ma, Y.; Gao, S.; Li, X.; Yu, D.; Wang, H. Nonnegligible Temperature Drop Induced by Thermocouple on Samples in Gleeble Tests. Metals 2023, 13, 1573. [Google Scholar] [CrossRef]
- Zhang, C.; Bellet, M.; Bobadilla, M.; Shen, H.; Liu, B. A Coupled Electrical–Thermal–Mechanical Modeling of Gleeble Tensile Tests for Ultra-High-Strength (UHS) Steel at a High Temperature. Metall. Mater. Trans. A 2010, 41, 2304–2317. [Google Scholar] [CrossRef]
- Zhang, C.; Bellet, M.; Bobadilla, M.; Shen, H.; Liu, B. Inverse finite element modelling and identification of constitutive parameters of UHS steel based on Gleeble tensile tests at high temperature. Inverse Probl. Sci. Eng. 2011, 19, 485–508. [Google Scholar] [CrossRef]
- Kardoulaki, E.; Lin, J.; Balint, D.; Farrugia, D. Investigation of the effects of thermal gradients present in Gleeble high-temperature tensile tests on the strain state for free cutting steel. J. Strain Anal. Eng. Des. 2014, 49, 521–532. [Google Scholar] [CrossRef]
- Ganapathy, M.; Li, N.; Lin, J.; Abspoel, M.; Guido, H.; Bhattacharjee, D. Analysis of new Gleeble tensile specimen design for hot stamping application. MATEC Web Conf. 2015, 21, 05013. [Google Scholar] [CrossRef]
- Davis, J.R. Aluminum and Aluminum Alloys, 6th ed.; ASM specialty handbook; ASM International: Materials Park, OH, USA, 2007. [Google Scholar]
- ASM International. ASM Handbook: Nonferrous Alloys and Special-Purpose Materials, 10th ed.; Metals handbook; ASM International: Materials Park, OH, USA, 1992. [Google Scholar]
Element | Cu | Mg | Mn | Si | Fe | Zn | Cr |
---|---|---|---|---|---|---|---|
Wt % |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pantalé, O.; Muller, Y.; Balcaen, Y. Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy. Appl. Mech. 2024, 5, 839-855. https://doi.org/10.3390/applmech5040047
Pantalé O, Muller Y, Balcaen Y. Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy. Applied Mechanics. 2024; 5(4):839-855. https://doi.org/10.3390/applmech5040047
Chicago/Turabian StylePantalé, Olivier, Yannis Muller, and Yannick Balcaen. 2024. "Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy" Applied Mechanics 5, no. 4: 839-855. https://doi.org/10.3390/applmech5040047
APA StylePantalé, O., Muller, Y., & Balcaen, Y. (2024). Advanced Numerical Modeling and Experimental Analysis of Thermal Gradients in Gleeble Compression Configuration for 2017-T4 Aluminum Alloy. Applied Mechanics, 5(4), 839-855. https://doi.org/10.3390/applmech5040047