A Novel 3D Reinforced Particle Model for Reinforced Concrete Fracture Assessment: Formulation and Validation
Abstract
:1. Introduction
2. Three-Dimensional Reinforced Particle Model (3D-RPM) Formulation
2.1. Particle Model (PM) Based on the Discrete Element Method
2.1.1. Voronoi-Generalized PM (VGCM-3D)
2.1.2. Model Generation
2.1.3. Vectorial Bilinear Weakening Model (BL)
2.2. Proposed Reinforcement Model
2.3. Proposed Reinforcement/Particle Interaction Model
3. Validation Examples
3.1. Methodology
3.2. Three-Point Bending Test
3.3. Four-Point Bending Test
3.4. Shear Transfer Due to Dowel Action Test
4. Discussion
- The elimination of the outer artificial roughness associated with the spherical particle discretization by removing the cylindrical rigid element axial direction from the reinforcement/particle contact unit normal. This outer roughness is more complex to eliminate if a line of spheres is adopted to model concrete [14,38].
- Additional flexibility in the reinforcement bar discretization; finer discretizations lower than the reinforcement bar diameter can be adopted if large deformations are expected or larger discretization than the bar diameter can be adopted if lower deformation gradients are expected, with computational gains, giving an additional flexibility that is not possible if an array of particles is adopted to represent the reinforcement [14,38].
- Bond/slip behavior to be considered by taking into account, at the reinforcement/particle interface, the proper state of stress, including the confinement stress, which cannot be accomplished in a straightforward manner if a 1D line reinforcement bar that interacts with particles through interfaces is adopted to represent the reinforcement and the reinforcement/particle interaction [37].
5. Conclusions and Further Developments
- That with the proposed 3D-RPM, it is possible to calibrate the contact properties in simple tests (uniaxial compression and uniaxial tension) to numerically predict responses close to those observed experimentally in reinforced concrete specimens, for different steel contents, structural geometries and sizes and boundary and loading conditions.
- The relevance of adopting a reinforcement/particle contact model that considers bond/slip behavior. An elastic model contact leads to higher vertical loads in three-point and four-point bending tests for the same set of contact properties. In the shear transfer due to dowel action tests, an elastic reinforcement/particle model leads to an overestimation of the maximum shear strength and to an increase in the model initial stiffness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hattori, G.; Hobbs, M.; Orr, J. A Review on the Developments of Peridynamics for Reinforced Concrete Structures. Arch. Computat. Methods Eng. 2021, 28, 4655–4686. [Google Scholar] [CrossRef]
- Potyondy, D.; Cundall, P. A bonded-particle model for rock. Int. J. Rock Mech. Min. 2004, 41, 1329–1364. [Google Scholar] [CrossRef]
- Scholtès, L.; Donze, F. A DEM model for soft and hard rocks: Role of grain interlocking on strength. J. Mech. Phys. Solids 2013, 61, 352–369. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, D.; Zhao, Q.; Chi, M.; Zhang, W.; Yu, W. DEM Investigation of the Influence of Minerals on Crack Patterns and Mechanical Properties of Red Mudstone. Processes 2019, 7, 162. [Google Scholar] [CrossRef]
- Ye, Y.; Thoeni, K.; Zeng, Y.; Buzzi, O.; Giacomini, A. A novel 3D clumped particle method to simulate the complex behaviour of rock. Int. J. Rock. Mech. Min. 2019, 120, 1–16. [Google Scholar] [CrossRef]
- Sheikhpourkhani, A.; Bahaaddini, M.; Oh, J.; Masoumi, H. Numerical study of the mechanical behaviour of unwelded block in matrix rocks under direct shearing. Bull. Eng. Geol. Environ. 2023, 83, 22. [Google Scholar] [CrossRef]
- Hentz, S.; Daudeville, L.; Donzé, V. Identification and validation of a discrete element model for concrete. J. Eng. Mech. 2004, 130, 709–719. [Google Scholar] [CrossRef]
- Suchorzewski, J.; Tejchman, J.; Nitka, M. Discrete element method simulations of fracture in concrete under uniaxial compression based on its real internal structure. Int. J. Damage Mech. 2018, 27, 578–607. [Google Scholar] [CrossRef]
- Sinaie, S.; Ngo, T.D.; Nguyen, V.P. A discrete element model of concrete for cyclic loading. Comput. Struct. 2018, 196, 173–185. [Google Scholar] [CrossRef]
- Wang, P.; Gao, N.; Ji, K.; Stewart, L.; Arson, C. DEM analysis on the role of aggregates on concrete strength. Comput. Geotech. 2020, 119, 103290. [Google Scholar] [CrossRef]
- Monteiro Azevedo, N.; Farinha, M.L.B.; Oliveira, S. Assessment of Contact Laws Accounting for Softening in 3D Rigid Concrete Particle Models. Buildings 2024, 14, 801. [Google Scholar] [CrossRef]
- Benniou, H.; Accary, A.; Malecot, Y.; Briffaut, M.; Daudeville, L. Discrete element modeling of concrete under high stress level: Influence of saturation ratio. Comput. Part. Mech. 2021, 8, 157–167. [Google Scholar] [CrossRef]
- Antoniou, A.; Daudeville, L.; Marin, P.; Potapov, S. Extending the Discrete Element Method to Account for Dynamic Confinement and Strain-Rate Effects for Simulating Hard Impacts on Concrete Targets. J. Dyn. Behav. Mater. 2024. [Google Scholar] [CrossRef]
- Hentz, S.; Daudeville, L.; Donze, F. Discrete Element Modeling of a Reinforced Concrete Structure. J. Mech. Behav. Mater. 2009, 19, 249–258. [Google Scholar] [CrossRef]
- Monteiro Azevedo, N.; Lemos, J.V.; Almeida, J. A discrete particle model for reinforced concrete fracture analysis. Struct. Eng. Mech. 2010, 36, 343–361. [Google Scholar] [CrossRef]
- Thavalingam, A.; Bicanic, N.; Robinson, J.I.; Ponniah, D.A. Computational framework for discontinuous modelling of masonry arch bridges. Comput. Struct. 2001, 79, 1821–1830. [Google Scholar] [CrossRef]
- Monteiro Azevedo, N.; Pinho, F.F.S.; Cismaşiu, I.; Souza, M. Prediction of Rubble-Stone Masonry Walls Response under Axial Compression Using 2D Particle Modelling. Buildings 2022, 12, 1283. [Google Scholar] [CrossRef]
- Monteiro Azevedo, N.; Lemos, J.V. A Hybrid Particle/Finite Element Model with Surface Roughness for Stone Masonry Analysis. Appl. Mech. 2022, 3, 608–627. [Google Scholar] [CrossRef]
- Cismasiu, I.; Monteiro Azevedo, N.; Pinho, F.F.S. Numerical Evaluation of Transverse Steel Connector Strengthening Effect on the Behavior of Rubble Stone Masonry Walls under Compression Using a Particle Model. Buildings 2023, 13, 987. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, Y.-R.; Zhang, X.-F.; Meng, H.-L.; Lu, X.-Y. Investigation on the effects of asphalt mixes and their combinations on asphalt mix shear strength by 3D discrete element method. Int. J. Pavement Eng. 2023, 24, 2251078. [Google Scholar] [CrossRef]
- Liu, G.; Qian, Z.; Wu, X.; Chen, L.; Liu, Y. Investigation on the compaction process of steel bridge deck pavement based on DEM-FEM coupling model. Int. J. Pavement Eng. 2023, 24, 2169443. [Google Scholar] [CrossRef]
- Câmara, G.; Azevedo, N.M.; Micaelo, R.; Silva, H. Generalised Kelvin Contact Models for DEM Modelling of Asphalt Mixtures. Int. J. Pavement Eng. 2023, 24, 2179625. [Google Scholar] [CrossRef]
- Ghazvinian, E.; Diederichs, M.; Quey, R. 3D Random Voronoi grain-based models for simulation of brittle rock damage and fabric-guided micro-fracturing. J. Rock Mech. Geotech. Eng. 2014, 6, 506–521. [Google Scholar] [CrossRef]
- Schüler, T.; Jänicke, R.; Steeb, H. Nonlinear modeling and computational homogenization of asphalt concrete on the basis of XRCT scans. Constr. Build. Mater. 2016, 109, 96–108. [Google Scholar] [CrossRef]
- Nitka, M.; Tejchman, J. A three-dimensional meso-scale approach to concrete fracture based on combined DEM with μCT images. Cem. Concr. Res. 2018, 107, 11–29. [Google Scholar] [CrossRef]
- Yang, Z.J.; Li, B.B.; Wu, J.Y. X-ray computed tomography images based phase-field modeling of mesoscopic failure in concrete. Eng. Fract. Mech. 2019, 208, 151–170. [Google Scholar] [CrossRef]
- Zhou, W.; Ji, X.; Ma, G. FDEM simulations of rocks with microstructure generated by Voronoi grain based model with particle growth. Rock Mech. Rock Eng. 2020, 53, 1909–1921. [Google Scholar] [CrossRef]
- Mokhatar, S.N.; Sonoda, Y.; Kueh, A.B.H.; Jaini, Z.M. Quantitative impact response analysis of reinforced concrete beam using the Smoothed Particle Hydrodynamics (SPH) method. Struct. Eng. Mech. 2015, 56, 917–938. [Google Scholar] [CrossRef]
- Terranova, B.; Schwer, L.; Whittaker, A. Simulation of projectile impact on steel plate-lined, reinforced concrete panels using the smooth particle hydrodynamics formulation. Int. J. Prot. Struct. 2022, 13, 65–79. [Google Scholar] [CrossRef]
- Lian, Y.P.; Zhang, X.; Zhou, X.; Ma, Z.T. A FEMP method and its application in modeling dynamic response of reinforced concrete subjected to impact loading. Comput. Methods Appl. Mech. Eng. 2011, 200, 1659–1670. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Xie, X.; Zhen, M.; Wang, Y.; Ou, C.; Zheng, H. Material Point Simulation Method for Concrete Medium Fracture and Fragmentation under Blast Loading. Appl. Sci. 2023, 13, 8533. [Google Scholar] [CrossRef]
- Faron, A.; Rombach, G.A. Simulation of crack growth in reinforced concrete beams using extended finite element method. Eng. Fail. Anal. 2020, 116, 104698. [Google Scholar] [CrossRef]
- Sau, N.; Medina-Mendoza, J.; Borbon-Almada, A.C. Peridynamic modelling of reinforced concrete structures. Eng. Fail. Anal. 2019, 103, 266–274. [Google Scholar] [CrossRef]
- Nilson, A.H. State-of-the Art Report on Finite Element Analysis of Reinforced Concrete; Task Committee on Finite Element Analysis of Reinforced Concrete Structures of the Structural Division Committee on Concrete and Masonry Structures American Society of Civil Engineers: New York, NY, USA, 1982; pp. 1–545. [Google Scholar]
- Lorig, L.; Cundall, P. Modeling of reinforced concrete using the distinct element method. In Proceedings of the SEM/RILEM International Conference on Fracture of Concrete and Rock, Houston, TX, USA, 17–19 June 1987; Sha, S., Swartz, S., Eds.; Springer: Berlin/Heidelberg, Germany, 1989; pp. 459–471. [Google Scholar]
- Pulatsu, B.; Erdogmus, E.; Lourenço, P.B.; Lemos, J.V.; Tuncay, K. Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models. Comp. Part. Mech. 2021, 8, 423–436. [Google Scholar] [CrossRef]
- Morikawa, H.; Sawamoto, Y.; Kobayashi, N. Local fracture analysis of a reinforced concrete slab by the discrete element method. In Proceedings of the 2nd International Conference on Discrete Element Methods, Cambridge, MA, USA, 17–18 March 1993; pp. 275–286. [Google Scholar]
- Kaschube, J.; Dinkler, D. A discrete element model for reinforced concrete. PAMM Proc. Appl. Math. Mech. 2021, 20, e202000258. [Google Scholar] [CrossRef]
- Lilliu, G.; Van Mier, M. 3D lattice type fracture model for concrete. Eng. Fract. Mech. 2003, 70, 927–941. [Google Scholar] [CrossRef]
- Saito, S.; Hikosaka, H. Numerical analyses of reinforced concrete structures using spring network models. J. Jpn. Soc. Civ. Eng. 1999, 627, 289–303. [Google Scholar] [CrossRef]
- Cusatis, G.; Bazant, Z.; Cedolin, L. Confinement-shear lattice model for concrete damage in tension and compression: I. Theory. J. Eng. Mech. 2003, 129, 1439–1448. [Google Scholar] [CrossRef]
- Chen, G.; Baker, G. Influence of bond slip on crack spacing in numerical modeling of reinforced concrete. J. Struct. Eng.-ASCE 2003, 129, 1514–1521. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Nakamura, H.; Kuroda, I.; Furuya, N. Simulation of crack propagation in RC shear wall using a 3D Rigid-Body-Spring model with random geometry. In Proceedings of the 8th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Toledo, Spain, 10–14 March 2013. [Google Scholar]
- Marcon, M.; Vorel, J.; Ninčević, K.; Wan-Wendner, R. Modeling adhesive anchors in a discrete element framework. Materials 2017, 10, 917. [Google Scholar] [CrossRef]
- Ogura, H.; Kunieda, M.; Nakamura, H. Tensile fracture analysis of fiber reinforced cement-based composites with rebar focusing on the contribution of bridging forces. J. Adv. Concr. Technol. 2019, 17, 216–231. [Google Scholar] [CrossRef]
- Alnaggar, M.; Pelessone, D.; Cusatis, G. Lattice Discrete Particle Modeling of reinforced concrete flexural behavior. J. Struct. Eng. 2019, 145, 04018231. [Google Scholar] [CrossRef]
- Eddy, L.; Nagai, K. Numerical simulation of beam-column knee joints with mechanical anchorages by 3D rigid body spring model. Eng. Struct. 2016, 126, 547–558. [Google Scholar] [CrossRef]
- Jiradilok, P.; Nagai, K.; Matsumoto, K. Meso-scale modeling of non-uniformly corroded reinforced concrete using 3D discrete analysis. Eng. Struct. 2019, 197, 109378. [Google Scholar] [CrossRef]
- Cundall, P. Distinct element models for rock and soil structure. In Analytical and Computational Methods in Engineering Rock Mechanics; Brown, E.T., Ed.; Allen & Unwin: London, UK, 1987; Chapter 4; pp. 129–163. [Google Scholar]
- Zhang, J.; Ma, R.; Pan, Z.; Zhou, H. Review of Mesoscale Geometric Models of Concrete Materials. Buildings 2023, 13, 2428. [Google Scholar] [CrossRef]
- Kawai, T. New discrete models and their application to seismic response analysis of structures. Nucl. Eng. Des. 1978, 48, 207–229. [Google Scholar] [CrossRef]
- Bosco, C.; Carpinteri, A.; Debenardi, P. Minimum reinforcement in high strength concrete. J. Struct. Eng. 1990, 116, 427–437. [Google Scholar] [CrossRef]
- Bazant, Z.; Kazemi, M.T. Size effect on diagonal shear failure of beams without stirrups. ACI Struct. J. 1991, 88, 268–276. [Google Scholar]
- Millard, S.G.; Johnson, R.P. Shear transfer across cracks in reinforced concrete due to aggregate interlock and to dowel action. Mag. Concr. Res. 1984, 36, 9–21. [Google Scholar] [CrossRef]
- Millard, S.G.; Johnson, R.P. Shear transfer in cracked reinforced concrete. Mag. Concr. Res. 1984, 37, 3–15. [Google Scholar] [CrossRef]
- Kazerani, T.; Yang, Z.Y.; Zhao, J. A discrete element model for predicting shear strength and degradation of rock joint by using compressive and tensile test data. Rock Mech. Rock Eng. 2012, 45, 695–709. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Wang, Y.; Dong, Q. Review of calibration strategies for discrete element model in quasi-static elastic deformation. Sci. Rep. 2023, 13, 13264. [Google Scholar] [CrossRef] [PubMed]
- Kibriya, G.; Orosz, Á.; Botzheim, J.; Bagi, K. Calibration of Micromechanical Parameters for the Discrete Element Simulation of a Masonry Arch using Artificial Intelligence. Infrastructures 2023, 8, 64. [Google Scholar] [CrossRef]
- Carpinteri, A.; Carmona, J.R.; Ventura, G. Propagation of flexural and shear cracks through reinforced concrete beams by the bridged crack model. Mag. Concr. Res. 2007, 59, 743–756. [Google Scholar] [CrossRef]
- Skarżyński, Ł.; Tejchman, J. Investigations on fracture in reinforced concrete beams in 3-point bending using continuous micro-CT scanning. Constr. Build. Mater. 2021, 284, 127796. [Google Scholar] [CrossRef]
- Nguyen, N.T.; Du, D.H.; Bui, Q.T.; Nguyen, D.T. Numerical analysis of load-bearing capacity of shear-strengthened reinforced concrete beams without shear reinforcement using side-bonded CFRP sheets. Eur. J. Environ. Civ. Eng. 2024, 1–22. [Google Scholar] [CrossRef]
- Hatte, S.; Bhalchandra, S.A. Experimental and Numerical Analysis of RCC Beams Undergoing Four-point Bending Tests: A Parametric Study of Acoustic Emission (AE) Techniques. Int. J. Struct. Eng. Anal. 2024, 10, 22–37. [Google Scholar]
- Coubard, G. Are passive anchors an interesting solution to stabilize gravity dams? In Proceedings of the 4th International Dam World Conference, Online, 22–24 September 2020. [Google Scholar]
- Yaqoob, S.; Silfwerbrand, J.; Balieu, R.G.R. A Parametric Study Investigating the Dowel Bar Load Transfer Efficiency in Jointed Plain Concrete Pavement Using a Finite Element Model. Buildings 2024, 14, 1039. [Google Scholar] [CrossRef]
Elastic | Strength | |||||
---|---|---|---|---|---|---|
52.88 | 0.25 | 6.50 | 32.40 | 0.3 | 0.0082 | 6.084 |
Approach | Elastic | Strength | |||||
---|---|---|---|---|---|---|---|
NL | 55.10 | 0.25 | 4.55 | 13.3 | 0.5 | 0.0035 | 0.8835 |
EL | 3.90 | 13.8 | 0.5 | 0.0026 | 0.9511 |
Pexp (kN) | PNum.NL (kN) | PNum.EL (kN) | |
---|---|---|---|
40.64 | 5.92–6.49 | 6.20 | 6.20 |
60.96 | 8.45–8.83 | 8.50 | 8.50 |
Elastic | Strength | |||||
---|---|---|---|---|---|---|
48.15 | 0.20 | 5.40 | 10.95 | 0.2 | 0.0092 | 1.411 |
F Dowel.theory (MPa) | τ Theory (MPa) | τ NL (MPa) | |||
---|---|---|---|---|---|
12.0 | 21.34 | 23.86 | 1.42 | 1.59 | 1.41 |
16-0 | 37.95 | 42.42 | 2.53 | 2.83 | 2.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azevedo, N.M.; Farinha, M.L.B.; Oliveira, S. A Novel 3D Reinforced Particle Model for Reinforced Concrete Fracture Assessment: Formulation and Validation. Appl. Mech. 2025, 6, 2. https://doi.org/10.3390/applmech6010002
Azevedo NM, Farinha MLB, Oliveira S. A Novel 3D Reinforced Particle Model for Reinforced Concrete Fracture Assessment: Formulation and Validation. Applied Mechanics. 2025; 6(1):2. https://doi.org/10.3390/applmech6010002
Chicago/Turabian StyleAzevedo, Nuno Monteiro, Maria Luísa Braga Farinha, and Sérgio Oliveira. 2025. "A Novel 3D Reinforced Particle Model for Reinforced Concrete Fracture Assessment: Formulation and Validation" Applied Mechanics 6, no. 1: 2. https://doi.org/10.3390/applmech6010002
APA StyleAzevedo, N. M., Farinha, M. L. B., & Oliveira, S. (2025). A Novel 3D Reinforced Particle Model for Reinforced Concrete Fracture Assessment: Formulation and Validation. Applied Mechanics, 6(1), 2. https://doi.org/10.3390/applmech6010002