Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Synthesis of Graphene Oxide Sheets
2.3. Synthesis of Mn2O3 Nanoparticles
2.4. Synthesis of Fe2O3 Nanoparticles
2.5. Synthesis of Mn2O3-rGO and Fe2O3-rGO Nanocomposites
2.6. Preparation of Mn2O3-rGO and Fe2O3-rGO PVA Nanofibers
2.7. AntiMicrobial Activity Study
2.8. Characterization Techniques
3. Results and Discussion
3.1. XRD Characterization
3.2. FT-IR
3.3. Antimicrobial Activity
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biener, J.; Wittstock, A.; Baumann, T.F.; Weissmüller, J.; Bäumer, M.; Hamza, A.V. Surface chemistry in nanoscale materials. Materials 2009, 2, 2404–2428. [Google Scholar] [CrossRef]
- Reddy, V.S.; Tian, Y.; Zhang, C.; Ye, Z.; Roy, K.; Chinnappan, A.; Ramakrishna, S.; Liu, W.; Ghosh, R. A review on electrospun nanofibers based advanced applications: From health care to energy devices. Polymers 2021, 13, 3746. [Google Scholar] [CrossRef] [PubMed]
- Nadaf, A.; Gupta, A.; Hasan, N.; Ahmad, S.; Kesharwani, P.; Ahmad, F.J. Recent update on electrospinning and electrospun nanofibers: Current trends and their applications. RSC Adv. 2022, 12, 23808–23828. [Google Scholar] [CrossRef] [PubMed]
- Medeiros, G.B.; Lima, F.d.A.; de Almeida, D.S.; Guerra, V.G.; Aguiar, M.L. Modification and functionalization of fibers formed by electrospinning: A review. Membranes 2022, 12, 861. [Google Scholar] [CrossRef]
- He, S.; Wang, J.; Yu, M.; Xue, Y.; Hu, J.; Lin, J. Structure and mechanical performance of poly (vinyl alcohol) nanocomposite by incorporating graphitic carbon nitride nanosheets. Polymers 2019, 11, 610. [Google Scholar] [CrossRef]
- Nasrallah, D.A.; Ibrahim, M.A. Enhancement of physico-chemical, optical, dielectric and antimicrobial properties of polyvinyl alcohol/carboxymethyl cellulose blend films by addition of silver doped hydroxyapatite nanoparticles. J. Polym. Res. 2022, 29, 86. [Google Scholar] [CrossRef]
- Anstey, A.; Chang, E.; Kim, E.S.; Rizvi, A.; Kakroodi, A.R.; Park, C.B.; Lee, P.C. Nanofibrillated polymer systems: Design, application, and current state of the art. Prog. Polym. Sci. 2021, 113, 101346. [Google Scholar] [CrossRef]
- Nayl, A.A.; Abd-Elhamid, A.I.; Awwad, N.S.; Abdelgawad, M.A.; Wu, J.; Mo, X.; Gomha, S.M.; Aly, A.A.; Bräse, S. Recent progress and potential biomedical applications of electrospun nanofibers in regeneration of tissues and organs. Polymers 2022, 14, 1508. [Google Scholar] [CrossRef]
- Attia, N.F.; Eid, A.M.; Soliman, M.A.; Nagy, M. Exfoliation and decoration of graphene sheets with silver nanoparticles and their antibacterial properties. J. Polym. Environ. 2018, 26, 1072–1077. [Google Scholar] [CrossRef]
- Ahmad, R.; Bhat, K.S.; Ahn, M.-S.; Hahn, Y.-B. Fabrication of a robust and highly sensitive nitrate biosensor based on directly grown zinc oxide nanorods on a silver electrode. New J. Chem. 2017, 41, 10992–10997. [Google Scholar] [CrossRef]
- Attia, N.F.; Abd El-Monaem, E.M.; El-Aqapa, H.G.; Elashery, S.E.; Eltaweil, A.S.; El Kady, M.; Khalifa, S.A.; Hawash, H.B.; El-Seedi, H.R. Iron oxide nanoparticles and their pharmaceutical applications. Appl. Surf. Sci. Adv. 2022, 11, 100284. [Google Scholar] [CrossRef]
- Salavagione, H.J.; Martínez, G.; Gómez, M.A. Synthesis of poly(vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties. J. Mater. Chem. 2009, 19, 5027–5032. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, Q.; Chen, D.; Lu, P. Erratum: Enhanced mechanical properties of graphene-based poly(vinyl alcohol) composites (Macromolecules (2010) 43 (2357–2363)). Macromolecules 2011, 44, 2392. [Google Scholar] [CrossRef]
- Iravani, S.; Zarepour, A.; Zare, E.N.; Makvandi, P.; Khosravi, A.; Zarrabi, A. Synergistic advancements: Exploring MXene/graphene oxide and MXene/reduced graphene oxide composites for next-generation applications. FlatChem 2024, 48, 100759. [Google Scholar] [CrossRef]
- Zare, I.; Mirshafiei, M.; Kheilnezhad, B.; Far, B.F.; Hassanpour, M.; Pishbin, E.; Vaghefi, S.S.E.; Yazdian, F.; Rashedi, H.; Hasan, A. Hydrogel-integrated graphene superstructures for tissue engineering: From periodontal to neural regeneration. Carbon 2024, 223, 118970. [Google Scholar] [CrossRef]
- Rana, K.; Kaur, H.; Singh, N.; Sithole, T.; Siwal, S.S. Graphene-based materials: Unravelling its impact in wastewater treatment for sustainable environments. Next Mater. 2024, 3, 100107. [Google Scholar] [CrossRef]
- Zhu, W.; Cheng, Y.; Wang, C.; Pinna, N.; Lu, X. Transition metal sulfides meet electrospinning: Versatile synthesis, distinct properties and prospective applications. Nanoscale 2021, 13, 9112–9146. [Google Scholar] [CrossRef]
- Ansari, S.A.M.K.; Ficiarà, E.; Ruffinatti, F.A.; Stura, I.; Argenziano, M.; Abollino, O.; Cavalli, R.; Guiot, C.; D’Agata, F. Magnetic iron oxide nanoparticles: Synthesis, characterization and functionalization for biomedical applications in the central nervous system. Materials 2019, 12, 465. [Google Scholar] [CrossRef]
- Lei, M.; Tang, L.; Du, H.; Peng, L.; Tie, B.; Williams, P.N.; Sun, G. Safety assessment and application of iron and manganese ore tailings for the remediation of As-contaminated soil. Process Saf. Environ. Prot. 2019, 125, 334–341. [Google Scholar] [CrossRef]
- Li, M.; Kuang, S.; Kang, Y.; Ma, H.; Dong, J.; Guo, Z. Recent advances in application of iron-manganese oxide nanomaterials for removal of heavy metals in the aquatic environment. Sci. Total Environ. 2022, 819, 153157. [Google Scholar] [CrossRef]
- Barhoum, A.; Pal, K.; Rahier, H.; Uludag, H.; Kim, I.S.; Bechelany, M. Nanofibers as new-generation materials: From spinning and nano-spinning fabrication techniques to emerging applications. Appl. Mater. Today 2019, 17, 1–35. [Google Scholar] [CrossRef]
- Ghajarieh, A.; Habibi, S.; Talebian, A. Biomedical applications of nanofibers. Russ. J. Appl. Chem. 2021, 94, 847–872. [Google Scholar] [CrossRef]
- Prabhu, P. Nanofibers for medical diagnosis and therapy. Handb. Nanofibers 2019, 831–867. [Google Scholar]
- Zaaba, N.; Foo, K.; Hashim, U.; Tan, S.; Liu, W.-W.; Voon, C. Synthesis of graphene oxide using modified hummers method: Solvent influence. Procedia Eng. 2017, 184, 469–477. [Google Scholar] [CrossRef]
- Kalil, H.; Maher, S.; Bose, T.; Bayachou, M. Manganese oxide/hemin-functionalized graphene as a platform for peroxynitrite sensing. J. Electrochem. Soc. 2018, 165, G3133. [Google Scholar] [CrossRef]
- Gomaa, I.; Emam, M.H.; Wassel, A.R.; Ashraf, K.; Hussan, S.; Kalil, H.; Bayachou, M.; Ibrahim, M.A. Microspheres with 2D rGO/alginate matrix for unusual prolonged release of cefotaxime. Nanomaterials 2023, 13, 1527. [Google Scholar] [CrossRef]
- Vivekanandan, J.; Vijaya Prasath, G.; Selvamurugan, M.; Usha, K.; Ravi, G. Hydrothermal synthesis of Fe2O3 nanoparticles and their electrochemical application. J. Mater. Sci. Mater. Electron. 2024, 35, 230. [Google Scholar] [CrossRef]
- Choudhury, B.J.; Moholkar, V.S. Ultrasound-assisted facile one-pot synthesis of ternary MWCNT/MnO2/rGO nanocomposite for high performance supercapacitors with commercial-level mass loadings. Ultrason. Sonochem. 2022, 82, 105896. [Google Scholar] [CrossRef]
- Drew, W.L.; Barry, A.; O’Toole, R.; Sherris, J.C. Reliability of the Kirby-Bauer disc diffusion method for detecting methicillin-resistant strains of Staphylococcus aureus. Appl. Microbiol. 1972, 24, 240–247. [Google Scholar] [CrossRef]
- Vignesh, R.; Sivakumar, R.; Sanjeeviraja, C. Phase tuning of nebulized spray deposited manganese oxide thin films by the effect of annealing temperature and their linear and non-linear optical parameters. Optik 2022, 254, 168687. [Google Scholar] [CrossRef]
- Alagar, S.; Madhuvilakku, R.; Mariappan, R.; Piraman, S. Nano-architectured porous Mn2O3 spheres/cubes vs. rGO for asymmetric supercapacitors applications in novel solid-state electrolyte. J. Power Sources 2019, 441, 227181. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mumtaz, A.; Nasim, F.; Sajid, M. Capacity Augmentation Strategy in α-Fe2O3 Nanoparticles Through Multifaceted Structural and Electrochemical Analyses. Mater. Chem. Phys. 2024, 329, 130035. [Google Scholar] [CrossRef]
- Naik, Y.V.; Kariduraganavar, M.Y.; Srinivasa, H.T.; Siddagangaiah, P.B.; Naik, R. Super capacitive electrode performance analysis of facile synthesized α-Fe2O3 aerogel and its nanocomposite with in-situ formed polyaniline (α-Fe2O3/PANI). J. Alloys Compd. 2024, 1004, 175820. [Google Scholar] [CrossRef]
- Nalbandian, M.J.; Zhang, M.; Sanchez, J.; Choa, Y.-H.; Nam, J.; Cwiertny, D.M.; Myung, N.V. Synthesis and optimization of Fe2O3 nanofibers for chromate adsorption from contaminated water sources. Chemosphere 2016, 144, 975–981. [Google Scholar] [CrossRef] [PubMed]
- Berenjian, A.; Maleknia, L.; Fard, G.C.; Almasian, A. Mesoporous carboxylated Mn2O3 nanofibers: Synthesis, characterization and dye removal property. J. Taiwan Inst. Chem. Eng. 2018, 86, 57–72. [Google Scholar] [CrossRef]
- Ahmad, J.; Majid, K. Improved thermal stability metal oxide/GO-based hybrid materials for enhanced Anti-inflammatory and Antioxidant activity. Polym. Bull. 2021, 78, 3889–3911. [Google Scholar] [CrossRef]
- Amiri, A.; Mirzaei, M.; Derakhshanrad, S. A nanohybrid composed of polyoxotungstate and graphene oxide for dispersive micro solid-phase extraction of non-steroidal anti-inflammatory drugs prior to their quantitation by HPLC. Microchim. Acta 2019, 186, 534. [Google Scholar] [CrossRef]
- Shoshin, D.E.; Sizova, E.A.; Kamirova, A.M. Morphological changes and luminescence of Escherichia coli in contact with Mn2O3 and Co3O4 ultrafine particles as components of a mineral feed additive. Vet. World 2024, 17, 1880. [Google Scholar] [CrossRef]
- Alangari, A.; Alqahtani, M.S.; Shahid, M.; Syed, R.; Goel, M.; Lakshmipathy, R.; Kaur, K. Green synthesis of FeO nanoparticles from coffee and its application for antibacterial, antifungal, and anti-oxidation activity. Green Process. Synth. 2024, 13, 20230268. [Google Scholar] [CrossRef]
- Ansari, N.; Tripathi, A.; Ameen, S.; Shaheer Akhtar, M.; Jabeen, F.; Rahman Khan, A.; Luqman, M.; Rahman, Q.I. Green Synthesis of Nanomaterials: Properties and Their Potential Applications. Sci. Adv. Mater. 2024, 16, 837–854. [Google Scholar] [CrossRef]
- Sahoo, H.; Sahoo, J.K. Iron Oxide-Based Nanocomposites and Nanoenzymes: Fundamentals and Applications; Springer Nature: Berlin/Heidelberg, Germany, 2024. [Google Scholar]
Sample | Inhibition Zone (mm) | ||
---|---|---|---|
PVA | 0 | ||
rGO | 0 | ||
PVA/rGO | 0 | ||
Composite ratio | 2:1 | 3:1 | 4:1 |
Fe2O3-rGO/PVA | 2 (s1) | 6 (s2) | 6 (s3) |
Mn2O3-rGO/PVA | 7 (s4) | 6 (s5) | 7 (s6) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gomaa, I.; Kalil, H.; Abdel-Salam, A.I.; Ibrahim, M.A.; Bayachou, M. Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Appl. Nano 2024, 5, 245-257. https://doi.org/10.3390/applnano5040016
Gomaa I, Kalil H, Abdel-Salam AI, Ibrahim MA, Bayachou M. Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Applied Nano. 2024; 5(4):245-257. https://doi.org/10.3390/applnano5040016
Chicago/Turabian StyleGomaa, Islam, Haitham Kalil, Ahmed I. Abdel-Salam, Medhat A. Ibrahim, and Mekki Bayachou. 2024. "Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity" Applied Nano 5, no. 4: 245-257. https://doi.org/10.3390/applnano5040016
APA StyleGomaa, I., Kalil, H., Abdel-Salam, A. I., Ibrahim, M. A., & Bayachou, M. (2024). Polyvinyl Alcohol Nanofibers with Embedded Two-Dimensional Nanomaterials and Metal Oxide Nanoparticles: Preparation, Structural Characterization, and Biological Activity. Applied Nano, 5(4), 245-257. https://doi.org/10.3390/applnano5040016