Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries
Abstract
:1. Introduction
2. Theoretical Background
2.1. Cellular Structure for Additive Manufacturing Subsection
2.2. Piezoresistivity
3. Experimental Section
3.1. Material Selection
3.2. Design of Sensors
3.3. Fabrication of Sensors
3.4. Electromechanical Testing Setup
4. Finite Element Analysis
4.1. Material Model
4.2. Boundary Condition
4.3. Mesh
5. Results and Discussion
5.1. Mechanical Behavior
5.1.1. Experimental Results
5.1.2. Finite Element Analysis Results
5.2. Electrical Behavior
5.2.1. Experimental Results
5.2.2. Finite Element Analysis Results
6. Parametric Study
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gacitua, W.; Ballerini, A.; Zhang, J. Polymer nanocomposites: Synthetic and natural fillers a review. Maderas Cienc. Tecnol. 2005, 7, 159–178. [Google Scholar] [CrossRef]
- Mai, Y.-W.; Yu, Z.-Z. Polymer Nanocomposites; Woodhead Publishing: Sawston, UK, 2006. [Google Scholar]
- Pozdnyakov, A.; Brzhezinskaya, M.; Vinogradov, A.; Friedrich, K. NEXAFS Spectra of Polymer-nanocarbon Composites. Fuller. Nanotub. Carbon Nanostruct. 2008, 16, 471–474. [Google Scholar] [CrossRef]
- Ahuja, T.; Kumar, D. Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications. Sens. Actuators B Chem. 2009, 136, 275–286. [Google Scholar]
- Yoon, H.; Jang, J. Conducting-polymer nanomaterials for high-performance sensor applications: Issues and challenges. Adv. Funct. Mater. 2009, 19, 1567–1576. [Google Scholar] [CrossRef]
- Yang, J.; Shi, R.; Lou, Z.; Chai, R.; Jiang, K.; Shen, G. Flexible smart noncontact control systems with ultrasensitive humidity sensors. Small 2019, 15, 1902801. [Google Scholar] [CrossRef]
- Carvalho, H.; Tama, D.; Gomes, P.; Abreu, M.; Yao, Y.; Souto, A. Flexible piezoresistive pressure sensors for smart textiles. IOP Conf. Ser. Mater. Sci. Eng. 2018, 459, 012035. [Google Scholar] [CrossRef]
- Guo, Y.; Zhong, M.; Fang, Z.; Wan, P.; Yu, G. A wearable transient pressure sensor made with MXene nanosheets for sensitive broad-range human–machine interfacing. Nano Lett. 2019, 19, 1143–1150. [Google Scholar] [CrossRef]
- Ryu, S.; Lee, P.; Chou, J.B.; Xu, R.; Zhao, R.; Hart, A.J.; Kim, S.-G. Extremely elastic wearable carbon nanotube fiber strain sensor for monitoring of human motion. ACS Nano 2015, 9, 5929–5936. [Google Scholar] [CrossRef]
- Park, J.J.; Hyun, W.J.; Mun, S.C.; Park, Y.T.; Park, O.O. Highly stretchable and wearable graphene strain sensors with controllable sensitivity for human motion monitoring. ACS Appl. Mater. Interfaces 2015, 7, 6317–6324. [Google Scholar] [CrossRef]
- Wang, X.; Gu, Y.; Xiong, Z.; Cui, Z.; Zhang, T. Silk-molded flexible, ultrasensitive, and highly stable electronic skin for monitoring human physiological signals. Adv. Mater. 2014, 26, 1336–1342. [Google Scholar] [CrossRef]
- Lou, Z.; Chen, S.; Wang, L.; Jiang, K.; Shen, G. An ultra-sensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring. Nano Energy 2016, 23, 7–14. [Google Scholar] [CrossRef]
- Wang, J.-C.; Karmakar, R.S.; Lu, Y.-J.; Chan, S.-H.; Wu, M.-C.; Lin, K.-J.; Chen, C.-K.; Wei, K.-C.; Hsu, Y.-H. Miniaturized flexible piezoresistive pressure sensors: Poly (3, 4-ethylenedioxythiophene): Poly (styrenesulfonate) copolymers blended with graphene oxide for biomedical applications. ACS Appl. Mater. Interfaces 2019, 11, 34305–34315. [Google Scholar] [CrossRef] [PubMed]
- Sang, Z.; Ke, K.; Manas-Zloczower, I. Design strategy for porous composites aimed at pressure sensor application. Small 2019, 15, 1903487. [Google Scholar] [CrossRef] [PubMed]
- Zazoum, B.; Batoo, K.M.; Khan, M.A.A. Recent advances in flexible sensors and their applications. Sensors 2022, 22, 4653. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Wang, L.; Dai, Z.; Zhao, L.; Du, M.; Li, H.; Fang, Y. Multiscale hierarchical design of a flexible piezoresistive pressure sensor with high sensitivity and wide linearity range. Small 2018, 14, 1800819. [Google Scholar] [CrossRef]
- Xu, H.; Xie, Y.; Zhu, E.; Liu, Y.; Shi, Z.; Xiong, C.; Yang, Q. Supertough and ultrasensitive flexible electronic skin based on nanocellulose/sulfonated carbon nanotube hydrogel films. J. Mater. Chem. A 2020, 8, 6311–6318. [Google Scholar] [CrossRef]
- Gupta, N.; Adepu, V.; Tathacharya, M.; Siraj, S.; Pal, S.; Sahatiya, P.; Kuila, B.K. Piezoresistive pressure sensor based on conjugated polymer framework for pedometer and smart tactile glove applications. Sens. Actuators A Phys. 2023, 350, 114139. [Google Scholar] [CrossRef]
- Su, F.-C.; Huang, H.-X. Flexible Switching Pressure Sensors with Fast Response and Less Bending-Sensitive Performance Applied to Pain-Perception-Mimetic Gloves. ACS Appl. Mater. Interfaces 2023, 15, 56328–56336. [Google Scholar] [CrossRef]
- Roh, E.; Hwang, B.-U.; Kim, D.; Kim, B.-Y.; Lee, N.-E. Stretchable, transparent, ultrasensitive, and patchable strain sensor for human–machine interfaces comprising a nanohybrid of carbon nanotubes and conductive elastomers. ACS Nano 2015, 9, 6252–6261. [Google Scholar] [CrossRef]
- Wang, X.; Yue, O.; Liu, X.; Hou, M.; Zheng, M. A novel bio-inspired multi-functional collagen aggregate based flexible sensor with multi-layer and internal 3D network structure. Chem. Eng. J. 2020, 392, 123672. [Google Scholar] [CrossRef]
- Zhang, Y.-Z.; Lee, K.H.; Anjum, D.H.; Sougrat, R.; Jiang, Q.; Kim, H.; Alshareef, H.N. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 2018, 4, eaat0098. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Ladani, R.B.; Zhang, J.; Ghorbani, K.; Zhang, X.; Mouritz, A.P.; Kinloch, A.J.; Wang, C.H. Strain sensors with adjustable sensitivity by tailoring the microstructure of graphene aerogel/PDMS nanocomposites. ACS Appl. Mater. Interfaces 2016, 8, 24853–24861. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Haniff, M.A.S.; Muhammad Hafiz, S.; Wahid, K.A.A.; Endut, Z.; Wah Lee, H.; Bien, D.C.; Abdul Azid, I.; Abdullah, M.Z.; Ming Huang, N.; Abdul Rahman, S. Piezoresistive effects in controllable defective HFTCVD graphene-based flexible pressure sensor. Sci. Rep. 2015, 5, 14751. [Google Scholar] [CrossRef] [PubMed]
- Amjadi, M.; Kyung, K.U.; Park, I.; Sitti, M. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: A review. Adv. Funct. Mater. 2016, 26, 1678–1698. [Google Scholar] [CrossRef]
- Yao, S.; Zhu, Y. Nanomaterial-enabled stretchable conductors: Strategies, materials and devices. Adv. Mater. 2015, 27, 1480–1511. [Google Scholar] [CrossRef]
- Wang, L.; Chiang, W.-H.; Loh, K.J. Topological design of strain sensing nanocomposites. Sci. Rep. 2022, 12, 9179. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.A.; Zhao, Y.; Wang, L.; Park, Y.; Yeh, Y.J.; Chiang, W.H.; Loh, K.J. Graphene K-Tape meshes for densely distributed human motion monitoring. Adv. Mater. Technol. 2021, 6, 2000861. [Google Scholar] [CrossRef]
- Kim, E.; Khaleghian, S.; Emami, A. Behavior of 3D printed stretchable structured sensors. Electronics 2022, 12, 18. [Google Scholar] [CrossRef]
- Banks, J.D.; Khaleghian, M.; Emami, A. Effects of Infill on the Additive Manufacturing of Piezoresistive Pressure Sensors. In Proceedings of the ASME 2022 International Mechanical Engineering Congress and Exposition, Columbus, OH, USA, 30 October–3 November 2022. [Google Scholar]
- Bhate, D. Classification of Cellular Solids. Available online: https://www.padtinc.com/2016/08/29/classification-of-cellular-solids-and-why-it-matters/ (accessed on 11 April 2024).
- Pilkey, W.D.; Pilkey, D.F.; Bi, Z. Peterson’s Stress Concentration Factors; John Wiley & Sons: Hoboken, NJ, USA, 2020. [Google Scholar]
- Costa, J.C.; Spina, F.; Lugoda, P.; Garcia-Garcia, L.; Roggen, D.; Münzenrieder, N. Flexible sensors—From materials to applications. Technologies 2019, 7, 35. [Google Scholar] [CrossRef]
- Ahn, K.; Kim, K.; Kim, J. Thermal conductivity and electric properties of epoxy composites filled with TiO2-coated copper nanowire. Polymer 2015, 76, 313–320. [Google Scholar] [CrossRef]
- Gong, S.; Zhao, Y.; Yap, L.W.; Shi, Q.; Wang, Y.; Bay, J.A.P.; Lai, D.T.; Uddin, H.; Cheng, W. Fabrication of highly transparent and flexible nanomesh electrode via self-assembly of ultrathin gold nanowires. Adv. Electron. Mater. 2016, 2, 1600121. [Google Scholar] [CrossRef]
- Dickey, M.D.; Chiechi, R.C.; Larsen, R.J.; Weiss, E.A.; Weitz, D.A.; Whitesides, G.M. Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature. Adv. Funct. Mater. 2008, 18, 1097–1104. [Google Scholar] [CrossRef]
- Jiang, J.; Li, Y.; Liu, J.; Huang, X.; Yuan, C.; Lou, X.W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Lee, W.; Kim, S.W.; Kim, J.J.; Kim, B.S. Flexible textile strain wireless sensor functionalized with hybrid carbon nanomaterials supported ZnO nanowires with controlled aspect ratio. Adv. Funct. Mater. 2016, 26, 6206–6214. [Google Scholar] [CrossRef]
- Huang, J.C. Carbon black filled conducting polymers and polymer blends. Adv. Polym. Technol. J. Polym. Process. Inst. 2002, 21, 299–313. [Google Scholar] [CrossRef]
- Abshirini, M.; Charara, M.; Liu, Y.; Saha, M.; Altan, M.C. 3D printing of highly stretchable strain sensors based on carbon nanotube nanocomposites. Adv. Eng. Mater. 2018, 20, 1800425. [Google Scholar] [CrossRef]
- Secor, E.B.; Prabhumirashi, P.L.; Puntambekar, K.; Geier, M.L.; Hersam, M.C. Inkjet printing of high conductivity, flexible graphene patterns. J. Phys. Chem. Lett. 2013, 4, 1347–1351. [Google Scholar] [CrossRef]
- Bonavolontà, C.; Camerlingo, C.; Carotenuto, G.; De Nicola, S.; Longo, A.; Meola, C.; Boccardi, S.; Palomba, M.; Pepe, G.P.; Valentino, M. Characterization of piezoresistive properties of graphene-supported polymer coating for strain sensor applications. Sens. Actuators A Phys. 2016, 252, 26–34. [Google Scholar] [CrossRef]
- NextGen 3Dresyn TFA70 Tough & Foldable with SHORE A70. Available online: https://www.3dresyns.com/products/nextgen-3dresyn-tfa70-tough-foldable-with-shore-a70 (accessed on 21 March 2024).
- 3D-ADD GrapEK1 Bio, Biocompatible Electrically Conductive Nano Graphene 3D Additive. Available online: https://www.3dresyns.com/products/3d-add-grapek1-bio-biocompatible-electrically-conductive-nano-graphene-3d-additive?_pos=2&_sid=9ed40c20f&_ss=r (accessed on 21 March 2024).
- Khatibi, E. Piezoresistivity of Graphene. 2010. Available online: https://www.politesi.polimi.it/handle/10589/16787 (accessed on 13 May 2024).
- Banks, J.D.; Emami, A. Carbon-based piezoresistive polymer nanocomposites by extrusion additive manufacturing: Process, material design, and current progress. 3D Print. Addit. Manuf. 2024, 11, e548–e571. [Google Scholar] [CrossRef]
- Smith, A.D.; Niklaus, F.; Paussa, A.; Schröder, S.; Fischer, A.C.; Sterner, M.; Wagner, S.; Vaziri, S.; Forsberg, F.; Esseni, D. Piezoresistive properties of suspended graphene membranes under uniaxial and biaxial strain in nanoelectromechanical pressure sensors. ACS Nano 2016, 10, 9879–9886. [Google Scholar] [CrossRef]
- Al Zoubi, N.F.; Tarlochan, F.; Mehboob, H. Mechanical and fatigue behavior of cellular structure Ti-6AL-4V alloy femoral stems: A finite element analysis. Appl. Sci. 2022, 12, 4197. [Google Scholar] [CrossRef]
- Liu, F.; Zhang, D.Z.; Zhang, P.; Zhao, M.; Jafar, S. Mechanical properties of optimized diamond lattice structure for bone scaffolds fabricated via selective laser melting. Materials 2018, 11, 374. [Google Scholar] [CrossRef] [PubMed]
- Dos Reis, F.; Ganghoffer, J. Equivalent mechanical properties of auxetic lattices from discrete homogenization. Comput. Mater. Sci. 2012, 51, 314–321. [Google Scholar] [CrossRef]
- Chung, J.Y.; Chastek, T.Q.; Fasolka, M.J.; Ro, H.W.; Stafford, C.M. Quantifying residual stress in nanoscale thin polymer films via surface wrinkling. Acs Nano 2009, 3, 844–852. [Google Scholar] [CrossRef] [PubMed]
- Kishore, V.; Chen, X.; Hassen, A.; Lindahl, J.; Kunc, V.; Duty, C. Effect of Post-Processing Annealing on Crystallinity Development and Mechanical Properties of Polyphenylene Sulfide Composites Printed on Large-Format Extrusion Deposition System; Oak Ridge National Laboratory (ORNL): Oak Ridge, TN, USA, 2019.
- Thi, T.B.N.; Ata, S.; Morimoto, T.; Kato, Y.; Horibe, M.; Yamada, T.; Okazaki, T.; Hata, K. Annealing-induced enhancement of electrical conductivity and electromagnetic interference shielding in injection-molded CNT polymer composites. Polymer 2022, 245, 124680. [Google Scholar]
- Seok, W.; Jeon, E.; Kim, Y. Effects of annealing for strength enhancement of FDM 3D-printed ABS reinforced with recycled carbon fiber. Polymers 2023, 15, 3110. [Google Scholar] [CrossRef]
- Mooney-Rivlin Model. Available online: https://www.sciencedirect.com/topics/engineering/mooney-rivlin-model (accessed on 11 April 2024).
- Hyperelastic Model Comparison. Available online: https://reference.wolfram.com/language/PDEModels/tutorial/StructuralMechanics/ModelCollection/HyperelasticModelComparison.html (accessed on 28 May 2024).
- Zang, Y.; Zhang, F.; Di, C.-A.; Zhu, D. Advances of flexible pressure sensors toward artificial intelligence and health care applications. Mater. Horiz. 2015, 2, 140–156. [Google Scholar] [CrossRef]
- Nurprasetio, I.P.; Budiman, B.A.; Afwan, A.A.; Halimah, P.N.; Utami, S.T.; Aziz, M. Nonlinear piezoresistive behavior of plain-woven carbon fiber reinforced polymer composite subjected to tensile loading. Appl. Sci. 2020, 10, 1366. [Google Scholar] [CrossRef]
- Azam, M.U.; Schiffer, A.; Kumar, S. Mechanical and piezoresistive properties of GNP/UHMWPE composites and their cellular structures manufactured via selective laser sintering. J. Mater. Res. Technol. 2024, 28, 1359–1369. [Google Scholar] [CrossRef]
- Devi, R.; Gill, S.S.; Singh, B. Parametric evaluation of carbon nano-tube based piezoresistive pressure sensor. Mater. Today Proc. 2022, 71, 357–361. [Google Scholar] [CrossRef]
Properties of TFA70 [43] | Properties of Graphene Nanoparticles [32] |
---|---|
|
|
Printing Layers | Layer Thickness (mm) | Curing Time (s) | Build Plate Lift Speed (mm/min) |
---|---|---|---|
Bottom layers | 0.05 | 90 | 120 |
Normal layers | 0.05 | 40 | 60 |
Ellipse Structure | Parameters |
---|---|
ES01 | a = 1.5b |
ES02 | a = 2b |
ES03 | a = 2.5b |
ES04 | 2.5a = b |
ES05 | 1.5a = b |
ES06 | a = b |
Diamond Structure | Parameters |
---|---|
DS01 | p = 3q |
DS02 | p = 2q |
DS03 | p = q |
DS04 | 2p = q |
DS05 | 3p = q |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanim, M.I.K.; Emami, A. Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries. Appl. Nano 2024, 5, 258-278. https://doi.org/10.3390/applnano5040017
Tanim MIK, Emami A. Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries. Applied Nano. 2024; 5(4):258-278. https://doi.org/10.3390/applnano5040017
Chicago/Turabian StyleTanim, Md Ibrahim Khalil, and Anahita Emami. 2024. "Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries" Applied Nano 5, no. 4: 258-278. https://doi.org/10.3390/applnano5040017
APA StyleTanim, M. I. K., & Emami, A. (2024). Tailoring Piezoresistive Performance in 3D-Printed Nanocomposite Sensors Through Cellular Geometries. Applied Nano, 5(4), 258-278. https://doi.org/10.3390/applnano5040017