Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma
Abstract
:1. Introduction
2. Material and methods
2.1. Preparation of C. sativus Extract (CSE)
2.2. Animals
2.3. Chemicals
2.4. Preparation of Crocus Sativus Extract (CSE):
2.5. Induction of Asthma
- Normal Control—0.9% w/v saline
- Negative control—1mg OVA + 300 mg Aluminium hydroxide
- Standard—Dexamethasone (0.1 mg/kg) i.p + Salbutamol (0.5 mg/kg) oral
- Combination 1—Saffron (30 mg/kg) i.p + Salbutamol (0.5 mg/kg) oral
- Combination 2—Saffron (60 mg/kg) i.p + Salbutamol (0.5 mg/kg) oral
2.6. Determination of Cell Count in Blood
2.7. Collection of Bronchoalveolar Lavage Fluid (BALF)
2.8. Lung Tissue Homogenate Preparation
2.9. Determination of Inflammatory Cytokines Using Enzyme-Linked Immunosorbent Assay (ELISA)
2.10. Biochemical Estimation (Total Protein and Albumin)
2.11. Enzyme-Linked Immunosorbent Assay (ELISA)
2.12. Histopathological Examination
2.13. Statistical Analysis
3. Results
3.1. Effect of Treatment Combination on OVA Induced Alterations in Body Weight and Relative Lungs Weight
3.2. Effect of Treatment Combination on OVA-Induced Alteration in Hematological Parameters
3.3. Inflammatory and Differential Cell Counts in BALF
3.4. Effect of Treatment Combination on OVA-Induced Alteration in the Levels of Total Protein in Serum, BALF and Lung Tissues of Rats
3.5. Effect of Treatment Combination on OVA-Induced Alteration in Albumin Levels in Serum and BALF
3.6. Effect of Treatment Combination on OVA-Induced Alteration in Cytokine Analysis of BALF and Lung Tissues
3.7. Effect of Treatment Combination on OVA-Induced Histopathological Alteration in Rat Lungs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Symptoms, R. Economic burden of asthma in India. Lung India Off. Organ Indian Chest Soc. 2018, 35, 281. [Google Scholar]
- Nakagome, K.; Matsushita, S.; Nagata, M. Neutrophilic inflammation in severe asthma. Int. Arch. Allergy Immunol. 2012, 158, 96–102. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, W.J. Nocturnal Asthma. Chest 2003, 123, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Access, O.; Keglowich, L.F.; Borger, P. The Three A’s in Asthma—Airway Smooth Muscle. Airw. Remodel. Angiogenesis 2015, 70–80. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P. Drugs for asthma. Br. J. Pharmacol. 2016, 147, S297–S303. [Google Scholar] [CrossRef]
- Tal, A.; Bavilski, C.; Yohai, D.; Bearman, J.E.; Gorodischer, R.; Moses, S.W. Dexamethasone and salbutamol in the treatment of acute wheezing in infants. Pediatrics 1983, 71, 13–18. [Google Scholar]
- Pauwels, R.A.; Löfdahl, C.G.; Postma, D.S.; Tattersfield, A.E.; O’Byrne, P.; Barnes, P.J.; Ullman, A. Effect of inhaled formoterol and budesonide on exacerbations of asthma. Formoterol and Corticosteroids Establishing Therapy (FACET) International Study Group. N. Engl. J. Med. 1997, 337, 1405–1411, Erratum in: N. Engl. J. Med. 1998, 338, 139. [Google Scholar] [CrossRef]
- Plint, A.C.; Johnson, D.W.; Patel, H.; Wiebe, N.; Correll, R.; Brant, R.; Mitton, C.; Gouin, S.; Bhatt, M.; Joubert, G.; et al. Pediatric Emergency Research Canada (PERC). Epinephrine and dexamethasone in children with bronchiolitis. N. Engl. J. Med. 2009, 360, 2079–2089. [Google Scholar] [CrossRef] [Green Version]
- Pitsikas, N.; Sakellaridis, N. Crocus sativus L. extracts antagonize memory impairments in different behavioural tasks in the rat. Behav. Brain Res. 2006, 173, 112–115. [Google Scholar] [CrossRef]
- Salami, E.O.; Ozolua, R.I.; Okpo, S.O.; Eze, G.I.; Uwaya, D.O. Studies on the anti—Asthmatic and antitussive properties of aqueous leaf extract of Bryophyllum pinnatum in rodent species. Asian Pac. J. Trop. Med. 2013, 6, 421–425. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, A.A.; Kandhare, A.D.; Rojatkar, S.R.; Bodhankar, S.L. Ameliorative effects of Artemisia pallens in a murine model of ovalbumin-induced allergic asthma via modulation of biochemical perturbations. Biomed. Pharmacother. 2017, 94, 880–889. [Google Scholar] [CrossRef] [PubMed]
- Zemmouri, H.; Sekiou, O.; Ammar, S.; El Feki, A.; Bouaziz, M.; Messarah, M.; Boumendjel, A. Urtica dioica attenuates ovalbumin-induced inflammation and lipid peroxidation of lung tissues in rat asthma model. Pharm. Biol. 2017, 55, 1561–1568. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ye, W.-J.; Xu, W.-G.; Guo, X.-J.; Han, F.-F.; Peng, J.; Li, X.-M.; Guan, W.-B.; Yu, L.-W.; Sun, J.-Y.; Cui, Z.-L.; et al. Differences in airway remodeling and airway inflammation among moderate-severe asthma clinical phenotypes. J. Thorac. Dis. 2017, 9, 2904–2914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahng, J.W.; Kim, N.Y.; Ryu, V.; Yoo, S.B.; Kim, B.T.; Kang, D.W.; Lee, J.H. Dexamethasone reduces food intake, weight gain and the hypothalamic 5-HT concentration and increases plasma leptin in rats. Eur. J. Pharmacol. 2008, 581, 64–70. [Google Scholar] [CrossRef] [PubMed]
- Michel, C.; Cabanac, M. Effects of dexamethasone on the body weight set point of rats. Physiol. Behav. 1999, 68, 145–150. [Google Scholar] [CrossRef]
- Parihar, A.; Eubank, D.; Doseff, A.I. Monocytes and Macrophages Regulate Immunity through Dynamic Networks of Survival and Cell Death. J. Innate Immun. 2010, 43220, 204–215. [Google Scholar] [CrossRef] [Green Version]
- Vosooghi, S.; Mahmoudabady, M.; Neamati, A.; Aghababa, H. Preventive effects of hydroalcoholic extract of saffron on hematological parameters of experimental asthmatic rats. Avicenna J. Phytomed. 2013, 3, 279–27987. [Google Scholar]
- Gholamnezhad, Z.; Koushyar, H.; Byrami, G.; Boskabady, M.H. The Extract of Crocus sativus and Its Constituent Safranal, Affect Serum Levels of Endothelin and Total Protein in Sensitized Guinea Pigs. Iran J Basic Med Sci 2013, 16, 1022–1026. [Google Scholar]
- Palmqvist, C.; Wardlaw, A.J.; Bradding, P. Chemokines and their receptors as potential targets for the treatment of asthma. Br. J. Pharmacol. 2007, 151, 725–736. [Google Scholar] [CrossRef]
- Poulsen, L.K.; Hummelshoj, L. Triggers of IgE class switching and allergy development. Ann. Med. 2007, 39, 440–456. [Google Scholar] [CrossRef]
- Muraro, A.; Lemanske, R.F.; Hellings, P.W.; Akdis, C.A.; Bieber, T.; Casale, T.B.; Jutel, M.; Ong, P.Y.; Poulsen, L.K.; Schmid-Grendelmeier, P.; et al. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. J. Allergy Clin. Immunol. 2016, 137, 1347–1358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dejager, L.; Dendoncker, K.; Eggermont, M.; Souffriau, J.; Van Hauwermeiren, F.; Willart, M.; Van Wonterghem, E.; Naessens, T.; Ballegeer, M.; Vandevyver, S.; et al. Neutralizing TNFα restores glucocorticoid sensitivity in a mouse model of neutrophilic airway inflammation. Mucosal Immunol. 2015, 8, 1212–1225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, Y.; Wang, J.; Yu, H.; Zhang, X.; Miao, C. Nti-asthma potential of crocin and its effect on MAPK signaling pathway in a murine model of allergic airway disease. Immunopharmacol. Immunotoxicol. 2015, 37, 236–243. [Google Scholar] [CrossRef] [PubMed]
Parameter | Normal Control | Negative Control | Standard | Combination 1 | Combination 2 |
---|---|---|---|---|---|
Body weight (gm) | 273 ± 4.74 | 202 ± 3.94 ** | 193 ± 3.16 ** | 210.2 ± 3.26 ** | 223.2 ± 4.79 **## |
Relative Lungs weight (gm) | 0.72 ± 4.55 | 1.76 ± 0.20 ** | 0.87 ± 1.47 | 1.02 ± 2.14 ** | 0.95 ± 3.17 * |
Parameter | Normal Control | Negative Control | Standard | Treatment 1 | Treatment 2 |
---|---|---|---|---|---|
Hemoglobin (gm/dl) | 15.05 ± 0.25 | 11.15 ± 0.11 ** | 14.38 ± 0.35 **## | 12.73 ± 0.11 **## | 13.93 ± 0.24 **## |
RBC | 8.84 ± 0.2 | 8.18 ± 0.12 | 8.74 ± 0.10 | 8.09 ± 0.16 | 8.76 ± 0.23 |
PCV% | 43.2 ±1.34 | 35.98 ± 0.86 ** | 44.11 ± 0.83 ## | 37.73 ± 0.43 ** | 41.91 ± 1.51 ## |
MCV% | 47.93 ± 0.42 | 41.05 ± 0.34 ** | 48.78 ± 1.44 ## | 46.03 ± 1.20 ## | 46.88 ±0.78 ## |
Mean Platelets | 4.84 ± 0.30 | 8.24 ± 0.67 *** | 5.46 ± 0.19 ## | 7.10 ± 0.69 * | 6.01 ± 0.35 # |
WBC (× 103/mm3) | 15.83 ± 0.85 | 26.89 ± 1.49 ** | 16.41 ± 0.56 ## | 19.88 ± 1.30 *## | 18.45 ± 1.13 ## |
N (%) | 28.5 ± 1.05 | 46.16 ± 1.03 ** | 29.83 ± 0.87 ## | 35.5 ± 0.42 **## | 66 ± 0.89 ## |
L (%) | 62.83 ± 1.40 | 74.33 ± 1.41 ** | 63.66 ± 1.28 ## | 32.66 ± 0.76 *## | 64.83 ± 0.98 ## |
BALF- Total cell count | 9.63 ± 0.52 | 49.85 ± 2.53 *** | 15.01 ± 1.05 | 27.45 ± 1.24 *** | 21.09 ± 1.79 *** |
N (× 103) | 2.69 ±0.17 | 15.32 ± 1.66 ** | 4.17± 0.28 ## | 8.35 ± 0.42 *## | 6.18 ± 0.54 **## |
L (× 103) | 3.113 ± 0.23 | 15.57 ± 1.62 ** | 4.72 ± 0.33 ## | 9.33 ± 0.42 **## | 7.80 ± 0.76 **## |
E (× 103) | 0.16 ± 0.02 | 2.29 ± 0.22 ** | 0.22 ± 0.04 ## | 0.77 ± 0.04 **## | 0.67 ± 0.09 *## |
M (× 103) | 0.15 ± 0.17 | 1.39 ± 0.19 ** | 0.26 ± 0.02 ## | 1.09 ± 0.04 ** | 0.53 ± 0.10 *## |
Epithelial cells (× 103) | 3.507 ± 0.21 | 15.26 ± 0.51 ** | 5.45 ± 0.42 ## | 7.89 ± 0.52 **## | 5.89 ± 0.50 ## |
Parameter | Normal Control | Negative Control | Standard | Combination 1 | Combination 2 |
---|---|---|---|---|---|
Serum total protein (gm/dl) | 7.36 ± 0.20 | 9.43 ± 0.21 ** | 7.66 ± 0.20 ## | 9.43 ± 0.21 ** | 8.36 ± 0.20 *# |
BALF total protein (gm/dl) | 1.12 ± 0.06 | 2.98 ± 0.04 ** | 1.27 ± 0.05 ## | 1.95 ±0.08 **## | 1.52 ± 0.07 *## |
Lung total protein (gm/dl) | 0.822 ± 0.11 | 2.26 ± 0.08 ** | 1.17 ± 0.03 *## | 1.37 ± 0.10 **## | 1.83 ± 0.05 *## |
Serum albumin (gm/dl) | 0.56 ± 0.02 | 1.11 ± 0.04 ** | 0.59 ± 0.05 ## | 0.89 ± 0.07 **# | 0.69 ± 0.08 ## |
BALF albumin (gm/dl) | 0.084 ± 0.02 | 0.17 ± 0.02 ** | 0.112 ± 0.01 # | 0.11 ± 0.03 ## | 0.098 ± 0.02 ## |
Groups | Eosinophilic Infiltration | Leukocyte Infiltration | Other Changes | Grade of Infiltration |
---|---|---|---|---|
Normal control | Not noted | Not noted | Not noted | 00 |
Negative control | Mild | Moderate to severe | Minimal degree hemorrhage | 3–4 |
Standard | --- | Minimal | --- | 0–1 |
Combination 1 | Minimal | Mild to moderate | Minimal degree hemorrhage | 2 |
Combination 2 | Minimal | Mild | Minimal degree hemorrhage | 1–2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nair, P.; Prabhavalkar, K. Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma. Sinusitis 2021, 5, 17-31. https://doi.org/10.3390/sinusitis5010003
Nair P, Prabhavalkar K. Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma. Sinusitis. 2021; 5(1):17-31. https://doi.org/10.3390/sinusitis5010003
Chicago/Turabian StyleNair, Pranav, and Kedar Prabhavalkar. 2021. "Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma" Sinusitis 5, no. 1: 17-31. https://doi.org/10.3390/sinusitis5010003
APA StyleNair, P., & Prabhavalkar, K. (2021). Anti-Asthmatic Effects of Saffron Extract and Salbutamol in an Ovalbumin-Induced Airway Model of Allergic Asthma. Sinusitis, 5(1), 17-31. https://doi.org/10.3390/sinusitis5010003