Granulosa Cells: Central Regulators of Female Fertility
Abstract
:1. Introduction
2. Ovarian Steroidogenesis
3. Ovarian Folliculogenesis
4. Factors That Regulate Function of Granulosa Cells
4.1. The Insulin-like Growth Factor System
4.2. Fibroblast Growth Factors
4.3. Adipokines
4.4. Factors Derived from Gastrointestinal Tract
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Coe, B.L.; Allrich, R.D. Relationship between Endogenous Estradiol-17β and Estrous Behavior in Heifers. J. Anim. Sci. 1989, 67, 1546. [Google Scholar] [CrossRef] [PubMed]
- Rissman, E.F.; Early, A.H.; Taylor, J.A.; Korach, K.S.; Lubahn, D.B. Estrogen Receptors Are Essential for Female Sexual Receptivity. Endocrinology 1997, 138, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Simpson, E.R.; Misso, M.; Hewitt, K.N.; Hill, R.A.; Boon, W.C.; Jones, M.E.; Kovacic, A.; Zhou, J.; Clyne, C.D. Estrogen—The Good, the Bad, and the Unexpected. Endocr. Rev. 2005, 26, 322–330. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.K.; Britt, K.; Kerr, J.B.; O’Donnell, L.; Jones, M.E.; Drummond, A.E.; Simpson, E.R. The Road to Ovulation: The Role of Estrogens. Reprod. Fertil. Dev. 2001, 13, 543–547. [Google Scholar] [CrossRef]
- Paria, B.C.; Das, S.K.; Dey, S.K. Embryo Implantation Requires Estrogen-Directed Uterine Preparation and Catecholestrogen-Mediated Embyronic Activation. Adv. Pharmacol. 1998, 42, 840–843. [Google Scholar] [CrossRef]
- Ma, W.-G.; Song, H.; Das, S.K.; Paria, B.C.; Dey, S.K. Estrogen Is a Critical Determinant That Specifies the Duration of the Window of Uterine Receptivity for Implantation. Proc. Natl. Acad. Sci. USA 2003, 100, 2963–2968. [Google Scholar] [CrossRef]
- Berga, S.; Naftolin, F. Neuroendocrine Control of Ovulation. Gynecol. Endocrinol. 2012, 28, 9–13. [Google Scholar] [CrossRef]
- Chauvin, S.; Cohen-Tannoudji, J.; Guigon, C.J. Estradiol Signaling at the Heart of Folliculogenesis: Its Potential Deregulation in Human Ovarian Pathologies. Int. J. Mol. Sci. 2022, 23, 512. [Google Scholar] [CrossRef]
- Richards, J.S. Maturation of Ovarian Follicles: Actions and Interactions of Pituitary and Ovarian Hormones on Follicular Cell Differentiation. Physiol. Rev. 1980, 60, 51–89. [Google Scholar] [CrossRef]
- Farookhi, R.; Desjardins, J. Luteinizing Hormone Receptor Induction in Dispersed Granulosa Cells Requires Estrogen. Mol. Cell. Endocrinol. 1986, 47, 13–24. [Google Scholar] [CrossRef]
- Couse, J.F.; Yates, M.M.; Deroo, B.J.; Korach, K.S. Estrogen Receptor-β Is Critical to Granulosa Cell Differentiation and the Ovulatory Response to Gonadotropins. Endocrinology 2005, 146, 3247–3262. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Auchus, R.J. The Molecular Biology, Biochemistry, and Physiology of Human Steroidogenesis and Its Disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [PubMed]
- Grummer, R.R.; Carroll, D.J. A Review of Lipoprotein Cholesterol Metabolism: Importance to Ovarian Function. J. Anim. Sci. 1988, 66, 3160. [Google Scholar] [CrossRef] [PubMed]
- Reaven, E.; Lua, Y.; Nomoto, A.; Temel, R.; Williams, D.L.; van der Westhuyzen, D.R.; Azhar, S. The Selective Pathway and a High-Density Lipoprotein Receptor (SR-BI) in Ovarian Granulosa Cells of the Mouse. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 1999, 1436, 565–576. [Google Scholar] [CrossRef]
- Lai, W.-A.; Yeh, Y.-T.; Lee, M.-T.; Wu, L.-S.; Ke, F.-C.; Hwang, J.-J. Ovarian Granulosa Cells Utilize Scavenger Receptor SR-BI to Evade Cellular Cholesterol Homeostatic Control for Steroid Synthesis. J. Lipid Res. 2013, 54, 365–378. [Google Scholar] [CrossRef]
- Chang, X.-L.; Liu, L.; Wang, N.; Chen, Z.-J.; Zhang, C. The Function of High-Density Lipoprotein and Low-Density Lipoprotein in the Maintenance of Mouse Ovarian Steroid Balance. Biol. Reprod. 2017, 97, 862–872. [Google Scholar] [CrossRef]
- Azhar, S.; Tsai, L.; Medicherla, S.; Chandrasekher, Y.; Giudice, L.; Reaven, E. Human Granulosa Cells Use High Density Lipoprotein Cholesterol for Steroidogenesis. J. Clin. Endocrinol. Metab. 1998, 83, 983–991. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.-Y.; Wu, Y.; Zhao, S.; Liu, Z.-X.; Zeng, S.-M.; Zhang, G.-X. Lysosomes Are Involved in Induction of Steroidogenic Acute Regulatory Protein (StAR) Gene Expression and Progesterone Synthesis through Low-Density Lipoprotein in Cultured Bovine Granulosa Cells. Theriogenology 2015, 84, 811–817. [Google Scholar] [CrossRef]
- Savion, N.; Laherty, R.; Cohen, D.; Lui, G.-M.; Gospodarowicz, D. Role of Lipoproteins and 3-Hydroxy-3-Methylglutaryl Coenzyme A Reductase in Progesterone Production by Cultured Bovine Granulosa Cells. Endocrinology 1982, 110, 13–22. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Gwynne, J.T. Insulin-Like Growth Factor Type I (Somatomedin-C) Stimulates High Density Lipoprotein (HDL) Metabolism and HDL-Supported Progesterone Biosynthesis by Swine Granulosa Cells In Vitro. Endocrinology 1989, 124, 3069–3076. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Nestler, J.E.; Strauss, J.F.; Gwynne, J.T.; Azimi, P.; Garmey, J.; Juchter, D. Insulin Regulates Low Density Lipoprotein Metabolism by Swine Granulosa Cells. Endocrinology 1986, 118, 2242–2253. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, K.; Ly, H.; Schott, P.W.; Murphy, B.D. Use of Low-Density and High-Density Lipoproteins in Undifferentiated Porcine Granulosa Cells. Biol. Reprod. 1989, 41, 855–861. [Google Scholar] [CrossRef] [PubMed]
- Christenson, L.K.; Osborne, T.F.; McAllister, J.M.; Strauss, J.F. Conditional Response of the Human Steroidogenic Acute Regulatory Protein Gene Promoter to Sterol Regulatory Element Binding Protein-1a. Endocrinology 2001, 142, 28–36. [Google Scholar] [CrossRef]
- Galano, M.; Venugopal, S.; Papadopoulos, V. Role of STAR and SCP2/SCPx in the Transport of Cholesterol and Other Lipids. Int. J. Mol. Sci. 2022, 23, 12115. [Google Scholar] [CrossRef]
- Hauet, T.; Liu, J.; Li, H.; Gazouli, M.; Culty, M.; Papadopoulos, V. PBR, StAR, and PKA: Partners in Cholesterol Transport in Steroidogenic Cells. Endocr. Res. 2002, 28, 395–401. [Google Scholar] [CrossRef]
- Soccio, R.E.; Breslow, J.L. StAR-Related Lipid Transfer (START) Proteins: Mediators of Intracellular Lipid Metabolism. J. Biol. Chem. 2003, 278, 22183–22186. [Google Scholar] [CrossRef] [PubMed]
- Yahya, N.A.; King, S.R.; Shi, B.; Shaaban, A.; Whitfield, N.E.; Yan, C.; Kordus, R.J.; Whitman-Elia, G.F.; LaVoie, H.A. Differential Regulation of STARD1, STARD4 and STARD6 in the Human Ovary. J. Endocrinol. 2024, 262, e230385. [Google Scholar] [CrossRef]
- Hsueh, A.J.W.; Adashi, E.Y.; Jones, P.B.C.; Jones, P.B.C. Hormonal Regulation of the Differentiation of Cultured Ovarian Granulosa Cells. Endocr. Rev. 1984, 5, 76–127. [Google Scholar] [CrossRef]
- Cherradi, N.; Rossier, M.F.; Vallotton, M.B.; Timberg, R.; Friedberg, I.; Orly, J.; Wang, X.J.; Stocco, D.M.; Capponi, A.M. Submitochondrial Distribution of Three Key Steroidogenic Proteins (Steroidogenic Acute Regulatory Protein and Cytochrome P450scc and 3β-Hydroxysteroid Dehydrogenase Isomerase Enzymes) upon Stimulation by Intracellular Calcium in Adrenal Glomerulosa Cells. J. Biol. Chem. 1997, 272, 7899–7907. [Google Scholar] [CrossRef]
- Rodgers, R.J.; Rodgers, H.F.; Hall, P.F.; Waterman, M.R.; Simpson, E.R. Immunolocalization of Cholesterol Side-Chain-Cleavage Cytochrome P-450 and 17-Hydroxylase Cytochrome P-450 in Bovine Ovarian Follicles. Reproduction 1986, 78, 627–638. [Google Scholar] [CrossRef]
- Hillier, S.G.; Whitelaw, P.F.; Smyth, C.D. Follicular Oestrogen Synthesis: The ‘Two-Cell, Two-Gonadotrophin’ Model Revisited. Mol. Cell. Endocrinol. 1994, 100, 51–54. [Google Scholar] [CrossRef] [PubMed]
- Hatzirodos, N.; Hummitzsch, K.; Irving-Rodgers, H.F.; Rodgers, R.J. Transcriptome Comparisons Identify New Cell Markers for Theca Interna and Granulosa Cells from Small and Large Antral Ovarian Follicles. PLoS ONE 2015, 10, e0119800. [Google Scholar] [CrossRef] [PubMed]
- Fortune, J.E. Bovine Theca and Granulosa Cells Interact to Promote Androgen Production. Biol. Reprod. 1986, 35, 292–299. [Google Scholar] [CrossRef] [PubMed]
- Sahmi, M.; Nicola, E.S.; Silva, J.M.; Price, C.A. Expression of 17β- and 3β-Hydroxysteroid Dehydrogenases and Steroidogenic Acute Regulatory Protein in Non-Luteinizing Bovine Granulosa Cells In Vitro. Mol. Cell. Endocrinol. 2004, 223, 43–54. [Google Scholar] [CrossRef]
- Xu, Z.; Garverick, H.A.; Smith, G.W.; Smith, M.F.; Hamilton, S.A.; Youngquist, R.S. Expression of Messenger Ribonucleic Acid Encoding Cytochrome P450 Side-Chain Cleavage, Cytochrome P450 17 Alpha-Hydroxylase, and Cytochrome P450 Aromatase in Bovine Follicles during the First Follicular Wave. Endocrinology 1995, 136, 981–989. [Google Scholar] [CrossRef]
- Bao, B.; Garverick, H.A. Expression of Steroidogenic Enzyme and Gonadotropin Receptor Genes in Bovine Follicles during Ovarian Follicular Waves: A Review. J. Anim. Sci. 1998, 76, 1903. [Google Scholar] [CrossRef]
- Fortune, J.E.; Rivera, G.M.; Evans, A.C.O.; Turzillo, A.M. Differentiation of Dominant Versus Subordinate Follicles in Cattle. Biol. Reprod. 2001, 65, 648–654. [Google Scholar] [CrossRef]
- Walsh, S.W.; Mehta, J.P.; McGettigan, P.A.; Browne, J.A.; Forde, N.; Alibrahim, R.M.; Mulligan, F.J.; Loftus, B.; Crowe, M.A.; Matthews, D.; et al. Effect of the Metabolic Environment at Key Stages of Follicle Development in Cattle: Focus on Steroid Biosynthesis. Physiol. Genom. 2012, 44, 504–517. [Google Scholar] [CrossRef] [PubMed]
- Alemu, T.W.; Schuermann, Y.; Madogwe, E.; St. Yves, A.; Dicks, N.; Bohrer, R.; Higginson, V.; Mondadori, R.G.; de Macedo, M.P.; Taibi, M.; et al. Severe Body Condition Loss Lowers Hepatic Output of IGF1 with Adverse Effects on the Dominant Follicle in Dairy Cows. Animal 2024, 18, 101063. [Google Scholar] [CrossRef]
- Picton, H.M. Activation of Follicle Development: The Primordial Follicle. Theriogenology 2001, 55, 1193–1210. [Google Scholar] [CrossRef]
- Van Wezel, I.L.; Rodgers, R.J. Morphological Characterization of Bovine Primordial Follicles and Their Environment In Vivo. Biol. Reprod. 1996, 55, 1003–1011. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, K. Cellular and Molecular Regulation of the Activation of Mammalian Primordial Follicles: Somatic Cells Initiate Follicle Activation in Adulthood. Hum. Reprod. Update 2015, 21, 779–786. [Google Scholar] [CrossRef]
- Mcgee, E.A.; Hsueh, A.J.W. Initial and Cyclic Recruitment of Ovarian Follicles. Endocr. Rev. 2000, 21, 200–214. [Google Scholar] [PubMed]
- McLaughlin, E.A.; McIver, S.C. Awakening the Oocyte: Controlling Primordial Follicle Development. Reproduction 2009, 137, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Ernst, E.H.; Grøndahl, M.L.; Grund, S.; Hardy, K.; Heuck, A.; Sunde, L.; Franks, S.; Andersen, C.Y.; Villesen, P.; Lykke-Hartmann, K. Dormancy and Activation of Human Oocytes from Primordial and Primary Follicles: Molecular Clues to Oocyte Regulation. Hum. Reprod. 2017, 32, 1684–1700. [Google Scholar] [CrossRef]
- Skinner, M.K. Regulation of Primordial Follicle Assembly and Development. Hum. Reprod. Update 2005, 11, 461–471. [Google Scholar] [CrossRef]
- Fortune, J.E. Ovarian Follicular Growth and Development in Mammals. Biol. Reprod. 1994, 50, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, D.; Liu, K. Molecular Mechanisms Underlying the Activation of Mammalian Primordial Follicles. Endocr. Rev. 2009, 30, 438–464. [Google Scholar] [CrossRef]
- Matzuk, M.M.; Burns, K.H.; Viveiros, M.M.; Eppig, J.J. Intercellular Communication in the Mammalian Ovary: Oocytes Carry the Conversation. Science 2002, 296, 2178–2180. [Google Scholar] [CrossRef]
- Hsueh, A.J.W.; McGee, E.A.; Hayashi, M.; Hsu, S.Y. Hormonal Regulation of Early Follicle Development in the Rat Ovary. Mol. Cell. Endocrinol. 2000, 163, 95–100. [Google Scholar] [CrossRef]
- Hsueh, A.J.W.; Kawamura, K.; Cheng, Y.; Fauser, B.C.J.M. Intraovarian Control of Early Folliculogenesis. Endocr. Rev. 2015, 36, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, R.B.; Ritter, L.J.; Myllymaa, S.; Kaivo-Oja, N.; Dragovic, R.A.; Hickey, T.E.; Ritvos, O.; Mottershead, D.G. Molecular Basis of Oocyte-Paracrine Signalling That Promotes Granulosa Cell Proliferation. J. Cell Sci. 2006, 119, 3811–3821. [Google Scholar] [CrossRef]
- Richards, J.S. Hormonal Control of Gene Expression in the Ovary. Endocr. Rev. 1994, 15, 725–751. [Google Scholar] [CrossRef] [PubMed]
- Candelaria, J.I.; Rabaglino, M.B.; Denicol, A.C. Ovarian Preantral Follicles Are Responsive to FSH as Early as the Primary Stage of Development. J. Endocrinol. 2020, 247, 153–168. [Google Scholar] [CrossRef]
- Campbell, B.K.; Telfer, E.E.; Webb, R.; Baird, D.T. Evidence of a Role for Follicle-Stimulating Hormone in Controlling the Rate of Preantral Follicle Development in Sheep. Endocrinology 2004, 145, 1870–1879. [Google Scholar] [CrossRef]
- Hirshfield, A.N. Development of Follicles in the Mammalian Ovary. Int. Rev. Citol. 1991, 124, 43–101. [Google Scholar] [CrossRef]
- Spicer, L.J.; Echternkamp, S.E. Ovarian Follicular Growth, Function and Turnover in Cattle: A Review. J. Anim. Sci. 1986, 62, 428–451. [Google Scholar] [CrossRef] [PubMed]
- Adams, G.P.; Matteri, R.L.; Ginther, O.J. Effect of Progesterone on Ovarian Follicles, Emergence of Follicular Waves and Circulating Follicle-Stimulating Hormone in Heifers. Reproduction 1992, 96, 627–640. [Google Scholar] [CrossRef]
- Gastal, E.L.; Gastal, M.O.; Bergfelt, D.R.; Ginther, O.J. Role of Diameter Differences among Follicles in Selection of a Future Dominant Follicle in Mares. Biol. Reprod. 1997, 57, 1320–1327. [Google Scholar] [CrossRef]
- Adams, G.P. Comparative Patterns of Follicle Development and Selection in Ruminants. J. Reprod. Fertil. Suppl. 1999, 54, 17–32. [Google Scholar] [CrossRef]
- Baerwald, A.; Pierson, R. Ovarian Follicular Waves During the Menstrual Cycle: Physiologic Insights into Novel Approaches for Ovarian Stimulation. Fertil. Steril. 2020, 114, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Ireland, J.J.; Mihm, M.; Austin, E.; Diskin, M.G.; Roche, J.F. Historical Perspective of Turnover of Dominant Follicles During the Bovine Estrous Cycle: Key Concepts, Studies, Advancements, and Terms. J. Dairy Sci. 2000, 83, 1648–1658. [Google Scholar] [CrossRef] [PubMed]
- Baerwald, A.R.; Adams, G.P.; Pierson, R.A. Ovarian Antral Folliculogenesis during the Human Menstrual Cycle: A Review. Hum. Reprod. Update 2012, 18, 73–91. [Google Scholar] [CrossRef]
- Rao, M.; Midgley, A.; Richards, J.S. Hormonal Regulation of Ovarian Cellular Proliferation. Cell 1978, 14, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Lussier, J.G.; Matton, P.; Dufour, J.J. Growth Rates of Follicles in the Ovary of the Cow. Reproduction 1987, 81, 301–307. [Google Scholar] [CrossRef] [PubMed]
- Fortune, J.E.; Rivera, G.M.; Yang, M.Y. Follicular Development: The Role of the Follicular Microenvironment in Selection of the Dominant Follicle. Anim. Reprod. Sci. 2004, 82–83, 109–126. [Google Scholar] [CrossRef]
- Evans, A.C.O.; Fortune, J.E. Selection of the Dominant Follicle in Cattle Occurs in the Absence of Differences in the Expression of Messenger Ribonucleic Acid for Gonadotropin Receptors. Endocrinology 1997, 138, 2963–2971. [Google Scholar] [CrossRef]
- Tian, X.C.; Berndtson, A.K.; Fortune, J.E. Differentiation of Bovine Preovulatory Follicles during the Follicular Phase Is Associated with Increases in Messenger Ribonucleic Acid for Cytochrome P450 Side-Chain Cleavage, 3 Beta-Hydroxysteroid Dehydrogenase, and P450 17 Alpha-Hydroxylase, but Not P450 Aromatase. Endocrinology 1995, 136, 5102–5110. [Google Scholar] [CrossRef]
- Uilenbroek, J.T.J.; Richards, J.S. Ovarian Follicular Development during the Rat Estrous Cycle: Gonadotropin Receptors and Follicular Responsiveness. Biol. Reprod. 1979, 20, 1159–1165. [Google Scholar] [CrossRef]
- Kessel, B.; Liu, Y.X.; Jia, X.C.; Hsueh, A.J.W. Autocrine Role of Estrogens in the Augmentation of Luteinizing Hormone Receptor Formation in Cultured Rat Granulosa Cells. Biol. Reprod. 1985, 32, 1038–1050. [Google Scholar] [CrossRef]
- Robker, R.L.; Richards, J.S. Hormonal Control of the Cell Cycle in Ovarian Cells: Proliferation Versus Differentiation. Biol. Reprod. 1998, 59, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Richards, J.S.; Ascoli, M. Endocrine, Paracrine, and Autocrine Signaling Pathways That Regulate Ovulation. Trends Endocrinol. Metab. 2018, 29, 313–325. [Google Scholar] [CrossRef] [PubMed]
- Hughes, F.M.; Gorospe, W.C. Biochemical Identification of Apoptosis (Programmed Cell Death) in Granulosa Cells: Evidence for a Potential Mechanism Underlying Follicular Atresia. Endocrinology 1991, 129, 2415–2422. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-M.; Yoon, Y.-D.; Tsang, B.K. Involvement of the Fas/Fas Ligand System in P53-Mediated Granulosa Cell Apoptosis during Follicular Development and Atresia. Endocrinology 1999, 140, 2307–2317. [Google Scholar] [CrossRef]
- Manabe, N.; Goto, Y.; Matsuda-Minehata, F.; Inoue, N.; Maeda, A.; Sakamaki, K.; Miyano, T. Regulation Mechanism of Selective Atresia in Porcine Follicles: Regulation of Granulosa Cell Apoptosis during Atresia. J. Reprod. Dev. 2004, 50, 493–514. [Google Scholar] [CrossRef]
- Yeung, C.K.; Wang, G.; Yao, Y.; Liang, J.; Tenny Chung, C.Y.; Chuai, M.; Lee, K.K.H.; Yang, X. BRE Modulates Granulosa Cell Death to Affect Ovarian Follicle Development and Atresia in the Mouse. Cell Death Dis. 2017, 8, e2697. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, F.; Inoue, N.; Manabe, N.; Ohkura, S. Follicular Growth and Atresia in Mammalian Ovaries: Regulation by Survival and Death of Granulosa Cells. J. Reprod. Dev. 2012, 58, 44–50. [Google Scholar] [CrossRef]
- Matsuda-Minehata, F.; Inoue, N.; Goto, Y.; Manabe, N. The Regulation of Ovarian Granulosa Cell Death by Pro- and Anti-Apoptotic Molecules. J. Reprod. Dev. 2006, 52, 695–705. [Google Scholar] [CrossRef]
- Rossi, R.O.D.S.; Costa, J.J.N.; Silva, A.W.B.; Saraiva, M.V.A.; Hurk, R.V.D.; Silva, J.R.V. The Bone Morphogenetic Protein System and the Regulation of Ovarian Follicle Development in Mammals. Zygote 2016, 24, 1–17. [Google Scholar] [CrossRef]
- Gonçalves, P.B.; Ferreira, R.; Gasperin, B.; Oliveira, J.F. Role of Angiotensin in Ovarian Follicular Development and Ovulation in Mammals: A Review of Recent Advances. Reproduction 2012, 143, 11–20. [Google Scholar] [CrossRef]
- Chowdhury, I.; Thomas, K.; Thompson, W.E. Prohibitin (PHB) Roles in Granulosa Cell Physiology. Cell Tissue Res. 2016, 363, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Ervin, J.M.; Schütz, L.F.; Spicer, L.J. Current Status of the Role of Endothelins in Regulating Ovarian Follicular Function: A Review. Anim. Reprod. Sci. 2017, 186, 1–10. [Google Scholar] [CrossRef]
- Spicer, L.J.; Echternkamp, S.E. The Ovarian Insulin and Insulin-like Growth Factor System with an Emphasis on Domestic Animals. Domest. Anim. Endocrinol. 1995, 12, 223–245. [Google Scholar] [CrossRef] [PubMed]
- Dewailly, D.; Robin, G.; Peigne, M.; Decanter, C.; Pigny, P.; Catteau-Jonard, S. Interactions between Androgens, FSH, Anti-Müllerian Hormone and Estradiol during Folliculogenesis in the Human Normal and Polycystic Ovary. Hum. Reprod. Update 2016, 22, 709–724. [Google Scholar] [CrossRef] [PubMed]
- Rinderknecht, E.; Humbel, R.E. The Amino Acid Sequence of Human Insulin-like Growth Factor I and Its Structural Homology with Proinsulin. J. Biol. Chem. 1978, 253, 2769–2776. [Google Scholar] [CrossRef]
- Zapf, J.; Schmid, C.H.; Froesch, E.R. 1 Biological and Immunological Properties of Insulin-like Growth Factors (IGF) I and II. Clin. Endocrinol. Metab. 1984, 13, 3–30. [Google Scholar] [CrossRef]
- Sara, V.R.; Hall, K. Insulin-like Growth Factors and Their Binding Proteins. Physiol. Rev. 1990, 70, 591–614. [Google Scholar] [CrossRef]
- LeRoith, D.; Holly, J.M.P.; Forbes, B.E. Insulin-like Growth Factors: Ligands, Binding Proteins, and Receptors. Mol. Metab. 2021, 52, 101245. [Google Scholar] [CrossRef]
- Brown, J.; Jones, E.Y.; Forbes, B.E. Keeping IGF-II Under Control: Lessons from the IGF-II–IGF2R Crystal Structure. Trends Biochem. Sci. 2009, 34, 612–619. [Google Scholar] [CrossRef]
- Massagué, J.; Czech, M.P. The Subunit Structures of Two Distinct Receptors for Insulin-like Growth Factors I and II and Their Relationship to the Insulin Receptor. J. Biol. Chem. 1982, 257, 5038–5045. [Google Scholar] [CrossRef]
- Schmid, C. Insulin-like Growth Factors. Cell Biol. Int. 1995, 19, 445–457. [Google Scholar] [CrossRef] [PubMed]
- Leroith, D.; Werner, H.; Beitner-Johnson, D.; Roberts, A.T. Molecular and Cellular Aspects of the Insulin-Like Growth Factor I Receptor. Endocr. Rev. 1995, 16, 143–163. [Google Scholar] [CrossRef] [PubMed]
- Morgan, D.O.; Jarnagin, K.; Roth, R.A. Purification and Characterization of the Receptor for Insulin-like Growth Factor I. Biochemistry 1986, 25, 5560–5564. [Google Scholar] [CrossRef] [PubMed]
- Girnita, L.; Worrall, C.; Takahashi, S.-I.; Seregard, S.; Girnita, A. Something Old, Something New and Something Borrowed: Emerging Paradigm of Insulin-like Growth Factor Type 1 Receptor (IGF-1R) Signaling Regulation. Cell. Mol. Life Sci. 2014, 71, 2403–2427. [Google Scholar] [CrossRef]
- Spicer, L.J. Proteolytic Degradation of Insulin-Like Growth Factor Binding Proteins by Ovarian Follicles: A Control Mechanism for Selection of Dominant Follicles. Biol. Reprod. 2004, 70, 1223–1230. [Google Scholar] [CrossRef]
- Mazerbourg, S.; Monget, P. Insulin-Like Growth Factor Binding Proteins and IGFBP Proteases: A Dynamic System Regulating the Ovarian Folliculogenesis. Front. Endocrinol. 2018, 9, 134. [Google Scholar] [CrossRef]
- Oliver, J.E.; Aitman, T.J.; Powell, J.F.; Wilson, C.A.; Clayton, R.N. Insulin-Like Growth Factor I Gene Expression in the Rat Ovary Is Confined to the Granulosa Cells of Developing Follicles. Endocrinology 1989, 124, 2671–2679. [Google Scholar] [CrossRef]
- Hernandez, E.R. Regulation of the Genes for Insulin-like Growth Factor (IGF) I and II and Their Receptors by Steroids and Gonadotropins in the Ovary. J. Steroid Biochem. Mol. Biol. 1995, 53, 219–221. [Google Scholar] [CrossRef]
- Yuan, W.; Bao, B.; Garverick, H.A.; Youngquist, R.S.; Lucy, M.C. Follicular Dominance in Cattle Is Associated With Divergent Patterns of Ovarian Gene Expression for Insulin-Like Growth Factor (IGF)-I, IGF-II, and IGF Binding Protein-2 in Dominant and Subordinate Follicles. Domest. Anim. Endocrinol. 1998, 15, 55–63. [Google Scholar] [CrossRef]
- Schams, D.; Berisha, B.; Kosmann, M.; Amselgruber, W.M. Expression and Localization of IGF Family Members in Bovine Antral Follicles during Final Growth and in Luteal Tissue during Different Stages of Estrous Cycle and Pregnancy. Domest. Anim. Endocrinol. 2002, 22, 51–72. [Google Scholar] [CrossRef]
- Spicer, L.J.; Alpizar, E.; Echternkamp, S.E. Effects of Insulin, Insulin-like Growth Factor I, and Gonadotropins on Bovine Granulosa Cell Proliferation, Progesterone Production, Estradiol Production, and(or) Insulin-like Growth Factor I Production In Vitro. J. Anim. Sci. 1993, 71, 1232–1241. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Adesanya, O.O.; Vatzias, G.; Hammond, J.M.; Bondy, C.A. Selective Expression of Insulin-like Growth Factor System Components During Porcine Ovary Follicular Selection. Endocrinology 1996, 137, 4893–4901. [Google Scholar] [CrossRef]
- Yuan, W.; Lucy, M.C.; Smith, M.F. Messenger Ribonucleic Acid for Insulin-Like Growth Factors-I and -II, Insulin-Like Growth Factor-Binding Protein-2, Gonadotropin Receptors, and Steroidogenic Enzymes in Porcine Follicles. Biol. Reprod. 1996, 55, 1045–1054. [Google Scholar] [CrossRef] [PubMed]
- Leeuwenberg, B.R.; Hurst, P.R.; McNatty, K.P. Expression of IGF-I mRNA in the Ovine Ovary. J. Mol. Endocrinol. 1995, 15, 251–258. [Google Scholar] [CrossRef]
- Hastie, P.M.; Haresign, W. Expression of MRNAs Encoding Insulin-like Growth Factor (IGF) Ligands, IGF Receptors and IGF Binding Proteins during Follicular Growth and Atresia in the Ovine Ovary throughout the Oestrous Cycle. Anim. Reprod. Sci. 2006, 92, 284–299. [Google Scholar] [CrossRef]
- El-Roeiy, A.; Chen, X.; Roberts, V.J.; LeRoith, D.; Roberts, C.T.; Yen, S.S. Expression of Insulin-like Growth Factor-I (IGF-I) and IGF-II and the IGF-I, IGF-II, and Insulin Receptor Genes and Localization of the Gene Products in the Human Ovary. J. Clin. Endocrinol. Metab. 1993, 77, 1411–1418. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, D.; Gutierrez, C.; Baxter, G.; Glazyrin, A.; Mann, G.; Woad, K.; Hogg, C.; Webb, R. Expression of MRNA Encoding IGF-I, IGF-II and Type 1 IGF Receptor in Bovine Ovarian Follicles. J. Endocrinol. 2000, 165, 101–113. [Google Scholar] [CrossRef]
- Velazquez, M.A.; Spicer, L.J.; Wathes, D.C. The Role of Endocrine Insulin-like Growth Factor-I (IGF-I) in Female Bovine Reproduction. Domest. Anim. Endocrinol. 2008, 35, 325–342. [Google Scholar] [CrossRef]
- Baumgarten, S.C.; Armouti, M.; Ko, C.; Stocco, C. IGF1R Expression in Ovarian Granulosa Cells Is Essential for Steroidogenesis, Follicle Survival, and Fertility in Female Mice. Endocrinology 2017, 158, 2309–2318. [Google Scholar] [CrossRef]
- De Neubourg, D.; Robins, A.; Fishel, S.; Delbeke, L. Quantification of Insulin-like Growth Factor I Receptors on Granulosa Cells with Flow Cytometry after Follicular Stimulation. Hum. Reprod. 1998, 13, 161–164. [Google Scholar] [CrossRef]
- Savion, N.; Lui, G.-M.; Laherty, R.; Gospodarowicz, D. Factors Controlling Proliferation and Progesterone Production by Bovine Granulosa Cells in Serum-Free Medium. Endocrinology 1981, 109, 409–420. [Google Scholar] [CrossRef] [PubMed]
- Adashi, E.Y.; Resnick, C.E.; Rosenfeld, R.G. Insulin-Like Growth Factor-I (IGF-I) and IGF-II Hormonal Action in Cultured Rat Granulosa Cells: Mediation via Type I but Not Type II IGF Receptors. Endocrinology 1990, 126, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Olsson, J.H.; Carlsson, B.; Hillensjö, T. Effect of Insulin-like Growth Factor I on Deoxyribonucleic Acid Synthesis in Cultured Human Granulosa Cells. Fertil. Steril. 1990, 54, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Di Blasio, A.M.; Viganó, P.; Ferrari, A. Insulin-like Growth Factor-II Stimulates Human Granulosa-Luteal Cell Proliferation In Vitro. Fertil. Steril. 1994, 61, 483–487. [Google Scholar] [CrossRef]
- Duleba, A.J.; Spaczynski, R.Z.; Olive, D.L.; Behrman, H.R. Effects of Insulin and Insulin-Like Growth Factors on Proliferation of Rat Ovarian Theca-Interstitial Cells. Biol. Reprod. 1997, 56, 891–897. [Google Scholar] [CrossRef]
- Baumgarten, S.C.; Convissar, S.M.; Zamah, A.M.; Fierro, M.A.; Winston, N.J.; Scoccia, B.; Stocco, C. FSH Regulates IGF-2 Expression in Human Granulosa Cells in an AKT-Dependent Manner. J. Clin. Endocrinol. Metab. 2015, 100, E1046–E1055. [Google Scholar] [CrossRef]
- Spicer, L.J.; Aad, P.Y. Insulin-Like Growth Factor (IGF) 2 Stimulates Steroidogenesis and Mitosis of Bovine Granulosa Cells Through the IGF1 Receptor: Role of Follicle-Stimulating Hormone and IGF2 Receptor. Biol. Reprod. 2007, 77, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Adashi, E.Y.; Resnick, C.E.; Hernandez, E.R.; Hurwitz, A.; Roberts, C.T.; Leroith, D.; Rosenfeld, R. Insulin-like Growth Factor I as an Intraovarian Regulator: Basic and Clinical Implications. Ann. N. Y. Acad. Sci. 1991, 626, 161–168. [Google Scholar] [CrossRef]
- Adashi, E.Y.; Resnick, C.E.; Joseph D’ercole, A.; Svoboda, M.E.; Van Wyk, J.J. Insulin-Like Growth Factors as Intraovarian Regulators of Granulosa Cell Growth and Function. Endocr. Rev. 1985, 6, 400–420. [Google Scholar] [CrossRef]
- Erickson, G.F.; Garzo, V.G.; Magoffin, D.A. Insulin-Like Growth Factor-I Regulates Aromatase Activity in Human Granulosa and Granulosa Luteal Cells. J. Clin. Endocrinol. Metab. 1989, 69, 716–724. [Google Scholar] [CrossRef]
- Devoto, L. Insulin and Insulin-like Growth Factor-I and- II Modulate Human Granulosa-Lutein Cell Steroidogenesis: Enhancement of Steroidogenic Acute Regulatory Protein (StAR) Expression. Mol. Hum. Reprod. 1999, 5, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Davoren, J.B.; Kasson, B.G.; Li, C.H.; Hsueh, A.J.W. Specific Insulin-Like Growth Factor (IGF) I- and II-Binding Sites on Rat Granulosa Cells: Relation to IGF Action. Endocrinology 1986, 119, 2155–2162. [Google Scholar] [CrossRef]
- Marsters, P.; Kendall, N.R.; Campbell, B.K. Temporal Relationships between FSH Receptor, Type 1 Insulin-like Growth Factor Receptor, and Aromatase Expression during FSH-Induced Differentiation of Bovine Granulosa Cells Maintained in Serum-Free Culture. Mol. Cell. Endocrinol. 2003, 203, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Collett-Solberg, P.F.; Cohen, P. The Role of the Insulin-like Growth Factor Binding Proteins and The IGFBP Proteases in modulating IGF Action. Endocrinol. Metab. Clin. N. Am. 1996, 25, 591–614. [Google Scholar] [CrossRef] [PubMed]
- Yakar, S.; Wu, Y.; Setser, J.; Rosen, C.J. The Role of Circulating IGF-I: Lessons from Human and Animal Models. Endocrine 2002, 19, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Stewart, R.E.; Spicer, L.J.; Hamilton, T.D.; Keefer, B.E.; Dawson, L.J.; Morgan, G.L.; Echternkamp, S.E. Levels of Insulin-like Growth Factor (IGF) Binding Proteins, Luteinizing Hormone and IGF-I Receptors, and Steroids in Dominant Follicles during the First Follicular Wave in Cattle Exhibiting Regular Estrous Cycles. Endocrinology 1996, 137, 2842–2850. [Google Scholar] [CrossRef]
- Monget, P.; Monniaux, D.; Pisselet, C.; Durand, P. Changes in Insulin-like Growth Factor-I (IGF-I), IGF-II, and Their Binding Proteins during Growth and Atresia of Ovine Ovarian Follicles. Endocrinology 1993, 132, 1438–1446. [Google Scholar] [CrossRef]
- Van Dessel, H.J.T.; Chandrasekher, Y.; Yap, O.W.; Lee, P.D.; Hintz, R.L.; Faessen, G.H.; Braat, D.D.; Fauser, B.C.; Giudice, L.C. Serum and Follicular Fluid Levels of Insulin-like Growth Factor I (IGF-I), IGF-II, and IGF-Binding Protein-1 and -3 during the Normal Menstrual Cycle. J. Clin. Endocrinol. Metab. 1996, 81, 1224–1231. [Google Scholar] [CrossRef]
- Wandji, S.-A.; Wood, T.L.; Crawford, J.; Levison, S.W.; Hammond, J.M. Expression of Mouse Ovarian Insulin Growth Factor System Components During Follicular Development and Atresia. Endocrinology 1998, 139, 5205–5214. [Google Scholar] [CrossRef]
- Rivera, G.M.; Fortune, J.E. Selection of the Dominant Follicle and Insulin-Like Growth Factor (IGF)-Binding Proteins: Evidence That Pregnancy-Associated Plasma Protein A Contributes to Proteolysis of IGF-Binding Protein 5 in Bovine Follicular Fluid. Endocrinology 2003, 144, 437–446. [Google Scholar] [CrossRef]
- Spicer, L.J.; Chamberlain, C.S.; Morgan, G.L. Proteolysis of Insulin-like Growth Factor Binding Proteins during Preovulatory Follicular Development in Cattle. Domest. Anim. Endocrinol. 2001, 21, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Beg, M.A.; Ginther, O.J. Follicle Selection in Cattle and Horses: Role of Intrafollicular Factors. Reproduction 2006, 132, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Matsui, M.; Sonntag, B.; Hwang, S.S.; Byerly, T.; Hourvitz, A.; Adashi, E.Y.; Shimasaki, S.; Erickson, G.F. Pregnancy-Associated Plasma Protein-A Production in Rat Granulosa Cells: Stimulation by Follicle-Stimulating Hormone and Inhibition by the Oocyte-Derived Bone Morphogenetic Protein-15. Endocrinology 2004, 145, 3686–3695. [Google Scholar] [CrossRef] [PubMed]
- Bøtkjær, J.A.; Jeppesen, J.V.; Wissing, M.L.; Kløverpris, S.; Oxvig, C.; Mason, J.I.; Borgbo, T.; Andersen, C.Y. Pregnancy-Associated Plasma Protein A in Human Ovarian Follicles and Its Association with Intrafollicular Hormone Levels. Fertil. Steril. 2015, 104, 1294–1301.e1. [Google Scholar] [CrossRef]
- Gospodarowicz, D. Localisation of a Fibroblast Growth Factor and Its Effect Alone and with Hydrocortisone on 3T3 Cell Growth. Nature 1974, 249, 123–127. [Google Scholar] [CrossRef]
- Armelin, H.A. Pituitary Extracts and Steroid Hormones in the Control of 3T3 Cell Growth. Proc. Natl. Acad. Sci. USA 1973, 70, 2702–2706. [Google Scholar] [CrossRef]
- Rubin, J.S.; Osada, H.; Finch, P.W.; Taylor, W.G.; Rudikoff, S.; Aaronson, S.A. Purification and Characterization of a Newly Identified Growth Factor Specific for Epithelial Cells. Proc. Natl. Acad. Sci. USA 1989, 86, 802–806. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Xiao, J.; McKeehan, W.L.; Wang, F. Fibroblast Growth Factors, Old Kids on the New Block. Semin. Cell Dev. Biol. 2016, 53, 155–167. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Itoh, N. Fibroblast Growth Factors. Genome. Biol. 2001, 2, reviews3005.1. [Google Scholar] [CrossRef]
- Berisha, B.; Sinowatz, F.; Schams, D. Expression and Localization of Fibroblast Growth Factor (FGF) Family Members During the Final Growth of Bovine Ovarian Follicles. Mol. Reprod. Dev. 2004, 67, 162–171. [Google Scholar] [CrossRef]
- Berisha, B.; Schams, D.; Kosmann, M.; Amselgruber, W.; Einspanier, R. Expression and Localisation of Vascular Endothelial Growth Factor and Basic Fibroblast Growth Factor During the Final Growth of Bovine Ovarian Follicles. J. Endocrinol. 2000, 167, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.A.; Skinner, M.K. Developmental and Hormonal Regulation of Hepatocyte Growth Factor Expression and Action in the Bovine Ovarian Follicle. Biol. Reprod. 1998, 59, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Buratini, J.; Teixeira, A.B.; Costa, I.B.; Glapinski, V.F.; Pinto, M.G.L.; Giometti, I.C.; Barros, C.M.; Cao, M.; Nicola, E.S.; Price, C.A. Expression of Fibroblast Growth Factor-8 and Regulation of Cognate Receptors, Fibroblast Growth Factor Receptor-3c and -4, in Bovine Antral Follicles. Reproduction 2005, 130, 343–350. [Google Scholar] [CrossRef]
- Drummond, A.E.; Tellbach, M.; Dyson, M.; Findlay, J.K. Fibroblast Growth Factor-9, a Local Regulator of Ovarian Function. Endocrinology 2007, 148, 3711–3721. [Google Scholar] [CrossRef]
- Schreiber, N.B.; Spicer, L.J. Effects of Fibroblast Growth Factor 9 (FGF9) on Steroidogenesis and Gene Expression and Control of FGF9 mRNA in Bovine Granulosa Cells. Endocrinology 2012, 153, 4491–4501. [Google Scholar] [CrossRef] [PubMed]
- Schütz, L.F.; Schreiber, N.B.; Gilliam, J.N.; Cortinovis, C.; Totty, M.L.; Caloni, F.; Evans, J.R.; Spicer, L.J. Changes in Fibroblast Growth Factor 9 mRNA in Granulosa and Theca Cells during Ovarian Follicular Growth in Dairy Cattle. J. Dairy Sci. 2016, 99, 9143–9151. [Google Scholar] [CrossRef]
- Castilho, A.C.S.; Price, C.A.; Dalanezi, F.; Ereno, R.L.; Machado, M.F.; Barros, C.M.; Gasperin, B.G.; Gonçalves, P.B.D.; Buratini, J. Evidence That Fibroblast Growth Factor 10 Plays a Role in Follicle Selection in Cattle. Reprod. Fertil. Dev. 2017, 29, 234. [Google Scholar] [CrossRef]
- Ferreira, R.M.; Chiaratti, M.R.; Macabelli, C.H.; Rodrigues, C.A.; Ferraz, M.L.; Watanabe, Y.F.; Smith, L.C.; Meirelles, F.V.; Baruselli, P.S. The Infertility of Repeat-Breeder Cows During Summer Is Associated with Decreased Mitochondrial DNA and Increased Expression of Mitochondrial and Apoptotic Genes in Oocytes. Biol. Reprod. 2016, 94, 66. [Google Scholar] [CrossRef]
- Machado, M.F.; Portela, V.M.; Price, C.A.; Costa, I.B.; Ripamonte, P.; Amorim, R.L.; Buratini, J. Regulation and Action of Fibroblast Growth Factor 17 in Bovine Follicles. J. Endocrinol. 2009, 202, 347–353. [Google Scholar] [CrossRef]
- Portela, V.M.; Machado, M.; Buratini, J.; Zamberlam, G.; Amorim, R.L.; Goncalves, P.; Price, C.A. Expression and Function of Fibroblast Growth Factor 18 in the Ovarian Follicle in Cattle. Biol. Reprod. 2010, 83, 339–346. [Google Scholar] [CrossRef]
- Hu, Y.; Xu, J.; Shi, S.J.; Zhou, X.; Wang, L.; Huang, L.; Gao, L.; Pang, W.; Yang, G.; Chu, G. Fibroblast Growth Factor 21 (FGF21) Promotes Porcine Granulosa Cell Estradiol Production and Proliferation via PI3K/AKT/MTOR Signaling. Theriogenology 2022, 194, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Buratini, J.; Pinto, M.G.L.; Castilho, A.C.; Amorim, R.L.; Giometti, I.C.; Portela, V.M.; Nicola, E.S.; Price, C.A. Expression and Function of Fibroblast Growth Factor 10 and Its Receptor, Fibroblast Growth Factor Receptor 2B, in Bovine Follicles. Biol. Reprod. 2007, 77, 743–750. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, N.B.; Totty, M.L.; Spicer, L.J. Expression and Effect of Fibroblast Growth Factor 9 in Bovine Theca Cells. J. Endocrinol. 2012, 215, 167–175. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Ornitz, D.M. Evolution of the Fgf and Fgfr Gene Families. Trends Genet. 2004, 20, 563–569. [Google Scholar] [CrossRef] [PubMed]
- Ornitz, D.M.; Itoh, N. The Fibroblast Growth Factor Signaling Pathway. WIREs Dev. Biol. 2015, 4, 215–266. [Google Scholar] [CrossRef]
- Givol, D.; Yayon, A. Complexity of FGF Receptors: Genetic Basis for Structural Diversity and Functional Specificity. FASEB J. 1992, 6, 3362–3369. [Google Scholar] [CrossRef]
- Schütz, L.F.; Hemple, A.M.; Morrell, B.C.; Schreiber, N.B.; Gilliam, J.N.; Cortinovis, C.; Totty, M.L.; Caloni, F.; Aad, P.Y.; Spicer, L.J. Changes in Fibroblast Growth Factor Receptors-1c, -2c, -3c, and -4 MRNA in Granulosa and Theca Cells during Ovarian Follicular Growth in Dairy Cattle. Domest. Anim. Endocrinol. 2022, 80, 106712. [Google Scholar] [CrossRef]
- Price, C.A. Mechanisms of Fibroblast Growth Factor Signaling in the Ovarian Follicle. J. Endocrinol. 2016, 228, R31–R43. [Google Scholar] [CrossRef]
- Chaves, R.N.; Tavares de Matos, M.H.; Buratini, J.; Ricardo de Figueiredo, J. The Fibroblast Growth Factor Family: Involvement in the Regulation of Folliculogenesis. Reprod. Fertil. Dev. 2012, 24, 905. [Google Scholar] [CrossRef]
- Gospodarowicz, D.; Charles, R., III; Birdwell, C.R. Effects of Fibroblast and Epidermal Growth Factors on Ovarian Cell Proliferation In Vitro. I. Characterization of the Response of Granulosa Cells to FGF and EGF. Endocrinology 1977, 100, 1108–1120. [Google Scholar] [CrossRef]
- Gospodarowicz, D.; Cheng, J.; Lui, G.M.; Baird, A.; Esch, F.; Bohlen, P. Corpus Luteum Angiogenic Factor Is Related to Fibroblast Growth Factor. Endocrinology 1985, 117, 2383–2391. [Google Scholar] [CrossRef] [PubMed]
- Gospodarowicz, D.; Charles, R., III; Hornsby, P.J.; Gill, G.N. Control of Bovine Adrenal Cortical Cell Proliferation by Fibroblast Growth Factor. Lack of Effect of Epidermal Growth Factor. Endocrinology 1977, 100, 1080–1089. [Google Scholar] [CrossRef]
- Gospodarowicz, D.; Charles, R., III; Birdwell, C.R. Effects of Fibroblast and Epidermal Growth Factors on Ovarian Cell Proliferation In Vitro. II. Proliferative Response of Luteal Cells to FGF but Not EGF. Endocrinology 1977, 100, 1121–1128. [Google Scholar] [CrossRef] [PubMed]
- Parrott, J.A.; Vigne, J.L.; Chu, B.Z.; Skinner, M.K. Mesenchymal-Epithelial Interactions in the Ovarian Follicle Involve Keratinocyte and Hepatocyte Growth Factor Production by Thecal Cells and Their Action on Granulosa Cells. Endocrinology 1994, 135, 569–575. [Google Scholar] [CrossRef] [PubMed]
- Spicer, L.J.; Stewart, R.E. Interactions among Basic Fibroblast Growth Factor, Epidermal Growth Factor, Insulin, and Insulin-Like Growth Factor-I (IGF-I) on Cell Numbers and Steroidogenesis of Bovine Thecal Cells: Role of IGF-I Receptors. Biol. Reprod. 1996, 54, 225–263. [Google Scholar] [CrossRef]
- Schams, D.; Kosmann, M.; Berisha, B.; Amselgruber, W.; Miyamoto, A. Stimulatory and Synergistic Effects of Luteinising Hormone and Insulin like Growth Factor 1 on the Secretion of Vascular Endothelial Growth Factor and Progesterone of Cultured Bovine Granulosa Cells. Exp. Clin. Endocrinol. Diabetes 2001, 109, 155–162. [Google Scholar] [CrossRef]
- Biswas, S.B.; Hammond, R.W.; Anderson, L.D. Fibroblast Growth Factors from Bovine Pituitary and Human Placenta and Their Functions in the Maturation of Porcine Granulosa Cells In Vitro. Endocrinology 1988, 123, 559–566. [Google Scholar] [CrossRef] [PubMed]
- Yamoto, M.; Shikone, T.; Nakano, R. Opposite Effects of Basic Fibroblast Growth Factor on Gonadotropin-Stimulated Steroidogenesis in Rat Granulosa Cells. Endocr. J. 1993, 40, 691–697. [Google Scholar] [CrossRef]
- Baird, A.; Hsueh, A.J.W. Fibroblast Growth Factor as an Intraovarian Hormone: Differential Regulation of Steroidogenesis by an Angiogenic Factor. Regul. Pept. 1986, 16, 243–250. [Google Scholar] [CrossRef]
- Vernon, R.K.; Spicer, L.J. Effects of Basic Fibroblast Growth Factor and Heparin on Follicle-Stimulating Hormone-Induced Steroidogenesis by Bovine Granulosa Cells. J. Anim. Sci. 1994, 72, 2696–2702. [Google Scholar] [CrossRef]
- Archilia, E.C.; Bello, C.A.P.; Batalha, I.M.; Wulstein, K.; Enriquez, C.; Schütz, L.F. Effects of Follicle-Stimulating Hormone, Insulin-like Growth Factor 1, Fibroblast Growth Factor 2, and Fibroblast Growth Factor 9 on Sirtuins Expression and Histone Deacetylase Activity in Bovine Granulosa Cells. Theriogenology 2023, 210, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Osuga, Y.; Koga, K.; Tsutsumi, O.; Yano, T.; Kugu, K.; Momoeda, M.; Okagari, R.; Suenaga, A.; Fujiwara, T.; Fujimoto, A.; et al. Evidence for the Presence Keratinocyte Growth Factor (KGF) in Human Ovarian Follicles. Endocr. J. 2001, 48, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, T.; Otsuka, F.; Yamashita, M.; Inagaki, K.; Nakamura, E.; Tsukamoto, N.; Takeda, M.; Suzuki, J.; Makino, H. Functional Relationship Between Fibroblast Growth Factor-8 and Bone Morphogenetic Proteins in Regulating Steroidogenesis by Rat Granulosa Cells. Mol. Cell. Endocrinol. 2010, 325, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Evans, J.R.; Schreiber, N.B.; Williams, J.A.; Spicer, L.J. Effects of Fibroblast Growth Factor 9 on Steroidogenesis and Control of FGFR2IIIc MRNA in Porcine Granulosa Cells. J. Anim. Sci. 2014, 92, 511–519. [Google Scholar] [CrossRef]
- Portela, V.M.; Dirandeh, E.; Guerrero-Netro, H.M.; Zamberlam, G.; Barreta, M.H.; Goetten, A.F.; Price, C.A. The Role of Fibroblast Growth Factor-18 in Follicular Atresia in Cattle. Biol. Reprod. 2015, 92, 14. [Google Scholar] [CrossRef]
- Frühbeck, G.; Gómez-Ambrosi, J.; Muruzábal, F.J.; Burrell, M.A. The Adipocyte: A Model for Integration of Endocrine and Metabolic Signaling in Energy Metabolism Regulation. Am. J. Physiol. Endocrinol. Metab. 2001, 280, 827–847. [Google Scholar] [CrossRef]
- Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the Pleiotropic Role of White Adipose Tissue. Br. J. Nutr. 2004, 92, 347–355. [Google Scholar] [CrossRef]
- Campos, D.B.; Palin, M.F.; Bordignon, V.; Murphy, B.D. The “Beneficial” Adipokines in Reproduction and Fertility. Int. J. Obes. 2008, 32, 223–231. [Google Scholar] [CrossRef]
- Dupont, J.; Reverchon, M.; Cloix, L.; Froment, P.; Rame, C.; Ramé, C. Involvement of Adipokines, AMPK, PI3K and the PPAR Signaling Pathways in Ovarian Follicle Development and Cancer. Int. J. Dev. Biol. 2012, 56, 10–11. [Google Scholar] [CrossRef]
- Reverchon, M.; Ramé, C.; Bertoldo, M.; Dupont, J. Adipokines and the Female Reproductive Tract. Int. J. Endocrinol. 2014, 2014, 232454. [Google Scholar] [CrossRef]
- Nikanfar, S.; Oghbaei, H.; Rastgar Rezaei, Y.; Zarezadeh, R.; Jafari-gharabaghlou, D.; Nejabati, H.R.; Bahrami, Z.; Bleisinger, N.; Samadi, N.; Fattahi, A.; et al. Role of Adipokines in the Ovarian Function: Oogenesis and Steroidogenesis. J. Steroid Biochem. Mol. Biol. 2021, 209, 105852. [Google Scholar] [CrossRef] [PubMed]
- Maylem, E.R.S.; Schütz, L.F.; Spicer, L.J. The Role of Asprosin in Regulating Ovarian Granulosa- and Theca-Cell Steroidogenesis: A Review with Comparisons to Other Adipokines. Reprod. Fertil. Dev. 2024, 36, RD24027. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.; Armstrong, D.T.; Robker, R.L.; Norman, R.J. Adipokines: Implications for Female Fertility and Obesity. Reproduction 2005, 130, 583–597. [Google Scholar] [CrossRef]
- Baldelli, S.; Aiello, G.; Mansilla Di Martino, E.; Campaci, D.; Muthanna, F.M.S.; Lombardo, M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024, 16, 2436. [Google Scholar] [CrossRef]
- Kasimanickam, R.K.; Kasimanickam, V.R.; Olsen, J.R.; Jeffress, E.J.; Moore, D.A.; Kastelic, J.P. Associations among Serum Pro- and Anti-Inflammatory Cytokines, Metabolic Mediators, Body Condition, and Uterine Disease in Postpartum Dairy Cows. Reprod. Biol. Endocrinol. 2013, 11, 103. [Google Scholar] [CrossRef]
- De Koster, J.; Urh, C.; Hostens, M.; Van den Broeck, W.; Sauerwein, H.; Opsomer, G. Relationship between Serum Adiponectin Concentration, Body Condition Score, and Peripheral Tissue Insulin Response of Dairy Cows during the Dry Period. Domest. Anim. Endocrinol. 2017, 59, 100–104. [Google Scholar] [CrossRef]
- Mellouk, N.; Rame, C.; Touzé, J.L.; Briant, E.; Ma, L.; Guillaume, D.; Lomet, D.; Caraty, A.; Ntallaris, T.; Humblot, P.; et al. Involvement of Plasma Adipokines in Metabolic and Reproductive Parameters in Holstein Dairy Cows Fed with Diets with Differing Energy Levels. J. Dairy Sci. 2017, 100, 8518–8533. [Google Scholar] [CrossRef] [PubMed]
- Lagaly, D.V.; Aad, P.Y.; Grado-Ahuir, J.A.; Hulsey, L.B.; Spicer, L.J. Role of Adiponectin in Regulating Ovarian Theca and Granulosa Cell Function. Mol. Cell. Endocrinol. 2008, 284, 38–45. [Google Scholar] [CrossRef]
- Martins, K.R.; Haas, C.S.; Rovani, M.T.; Moreira, F.; Goetten, A.L.F.; Ferst, J.G.; Portela, V.M.; Duggavathi, R.; Bordignon, V.; Gonçalves, P.B.D.; et al. Regulation and Function of Leptin during Ovarian Follicular Development in Cows. Anim. Reprod. Sci. 2021, 227, 106689. [Google Scholar] [CrossRef]
- Tabandeh, M.R.; Hosseini, A.; Saeb, M.; Kafi, M.; Saeb, S. Changes in the Gene Expression of Adiponectin and Adiponectin Receptors (AdipoR1 and AdipoR2) in Ovarian Follicular Cells of Dairy Cow at Different Stages of Development. Theriogenology 2010, 73, 659–669. [Google Scholar] [CrossRef]
- Chabrolle, C.; Tosca, L.; Dupont, J. Regulation of Adiponectin and Its Receptors in Rat Ovary by Human Chorionic Gonadotrophin Treatment and Potential Involvement of Adiponectin in Granulosa Cell Steroidogenesis. Reproduction 2007, 133, 719–731. [Google Scholar] [CrossRef] [PubMed]
- Comim, F.V.; Hardy, K.; Franks, S. Adiponectin and Its Receptors in the Ovary: Further Evidence for a Link between Obesity and Hyperandrogenism in Polycystic Ovary Syndrome. PLoS ONE 2013, 8, e80416. [Google Scholar] [CrossRef]
- Gupta, M.; Korde, J.P.; Bahiram, K.B.; Sardar, V.M.; Kurkure, N.V. Expression and Localization of Apelin and Apelin Receptor (APJ) in Buffalo Ovarian Follicles and Corpus Luteum and the In-Vitro Effect of Apelin on Steroidogenesis and Survival of Granulosa Cells. Theriogenology 2023, 197, 240–251. [Google Scholar] [CrossRef]
- Roche, J.; Ramé, C.; Reverchon, M.; Mellouk, N.; Rak, A.; Froment, P.; Dupont, J. Apelin (APLN) Regulates Progesterone Secretion and Oocyte Maturation in Bovine Ovarian Cells. Reproduction 2017, 153, 589–603. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Kosaka, N.; Murayama, C.; Tetsuka, M.; Miyamoto, A. Apelin and APJ Receptor Expression in Granulosa and Theca Cells during Different Stages of Follicular Development in the Bovine Ovary: Involvement of Apoptosis and Hormonal Regulation. Anim. Reprod. Sci. 2009, 116, 28–37. [Google Scholar] [CrossRef]
- Schilffarth, S.; Antoni, B.; Schams, D.; Meyer, H.H.; Berisha, B. The Expression of Apelin and its Receptor APJ During Different Physiological Stages in the Bovine Ovary. Int. J. Biol. Sci. 2009, 5, 344–350. [Google Scholar] [CrossRef]
- Roche, J.; Ramé, C.; Reverchon, M.; Mellouk, N.; Cornuau, M.; Guerif, F.; Froment, P.; Dupont, J. Apelin (APLN) and Apelin Receptor (APLNR) in Human Ovary: Expression, Signaling, and Regulation of Steroidogenesis in Primary Human Luteinized Granulosa Cells. Biol. Reprod. 2016, 95, 104. [Google Scholar] [CrossRef]
- Maylem, E.R.S.; Spicer, L.J.; Batalha, I.; Schutz, L.F. Discovery of a Possible Role of Asprosin in Ovarian Follicular Function. J. Mol. Endocrinol. 2021, 66, 35–44. [Google Scholar] [CrossRef] [PubMed]
- Maylem, E.R.S.; Spicer, L.J.; Batalha, I.M.; Schütz, L.F. Developmental and Hormonal Regulation of FBN1 and OR4M1 mRNA in Bovine Granulosa Cells. Domest. Anim. Endocrinol. 2023, 84–85, 106791. [Google Scholar] [CrossRef]
- Reverchon, M.; Bertoldo, M.J.; Ramé, C.; Froment, P.; Dupont, J. CHEMERIN (RARRES2) Decreases In Vitro Granulosa Cell Steroidogenesis and Blocks Oocyte Meiotic Progression in Bovine Species. Biol. Reprod. 2014, 90, 102. [Google Scholar] [CrossRef]
- Reverchon, M.; Cornuau, M.; Ram, C.; Guerif, F.; Royre, D.; Dupont, J. Chemerin Inhibits IGF-1-Induced Progesterone and Estradiol Secretion in Human Granulosa Cells. Hum. Reprod. 2012, 27, 1790–1800. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Leader, A.; Tsang, B.K. Inhibitory Roles of Prohibitin and Chemerin in FSH-Induced Rat Granulosa Cell Steroidogenesis. Endocrinology 2013, 154, 956–967. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Ramé, C.; Price, C.; Dupont, J. Irisin Modulates Glucose Metabolism and Inhibits Steroidogenesis in Bovine Granulosa Cells. Reproduction 2023, 165, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Cioffi, J. The Expression of Leptin and Its Receptors in Pre-Ovulatory Human Follicles. Mol. Hum. Reprod. 1997, 3, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Archanco, M.; Muruzábal, F.J.; Llopiz, D.; Garayoa, M.; Gómez–Ambrosi, J.; Frühbeck, G.; Burrell, M.A. Leptin Expression in the Rat Ovary Depends on Estrous Cycle. J. Histochem. Cytochem. 2003, 51, 1269–1277. [Google Scholar] [CrossRef]
- Maillard, V.; Froment, P.; Ramé, C.; Uzbekova, S.; Elis, S.; Dupont, J. Expression and Effect of Resistin on Bovine and Rat Granulosa Cell Steroidogenesis and Proliferation. Reproduction 2011, 141, 467–479. [Google Scholar] [CrossRef]
- Reverchon, M.; Cornuau, M.; Ramé, C.; Guerif, F.; Royère, D.; Dupont, J. Resistin Decreases Insulin-like Growth Factor I–Induced Steroid Production and Insulin-like Growth Factor I Receptor Signaling in Human Granulosa Cells. Fertil. Steril. 2013, 100, 247–255.e3. [Google Scholar] [CrossRef]
- Niles, L.P.; Lobb, D.K.; Kang, N.H.; Armstrong, K.J. Resistin Expression in Human Granulosa Cells. Endocrine 2012, 42, 742–745. [Google Scholar] [CrossRef]
- Cloix, L.; Reverchon, M.; Cornuau, M.; Froment, P.; Ramé, C.; Costa, C.; Froment, G.; Lecomte, P.; Chen, W.; Royère, D.; et al. Expression and Regulation of INTELECTIN1 in Human Granulosa-Lutein Cells: Role in IGF-1-Induced Steroidogenesis Through NAMPT. Biol. Reprod. 2014, 91, 50. [Google Scholar] [CrossRef]
- Pich, K.; Respekta, N.; Kurowska, P.; Rame, C.; Dobrzyń, K.; Smolińska, N.; Dupont, J.; Rak, A. Omentin Expression in the Ovarian Follicles of Large White and Meishan Sows during the Oestrous Cycle and In Vitro Effect of Gonadotropins and Steroids on Its Level: Role of ERK1/2 and PI3K Signaling Pathways. PLoS ONE 2024, 19, e0297875. [Google Scholar] [CrossRef]
- Reverchon, M.; Cornuau, M.; Cloix, L.; Ramé, C.; Guerif, F.; Royère, D.; Dupont, J. Visfatin Is Expressed in Human Granulosa Cells: Regulation by Metformin through Ampk/Sirt1 Pathways and Its Role in Steroidogenesis. Mol. Hum. Reprod. 2013, 19, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Spicer, L.J.; Francisco, C.C. The Adipose Obese Gene Product, Leptin: Evidence of a Direct Inhibitory Role in Ovarian Function. Endocrinology 1997, 138, 3374–3379. [Google Scholar] [CrossRef]
- Spicer, L.J.; Schreiber, N.B.; Lagaly, D.V.; Aad, P.Y.; Douthit, L.B.; Grado-Ahuir, J.A. Effect of Resistin on Granulosa and Theca Cell Function in Cattle. Anim. Reprod. Sci. 2011, 124, 19–27. [Google Scholar] [CrossRef]
- Maillard, V.; Uzbekova, S.; Guignot, F.; Perreau, C.; Ramé, C.; Coyral-Castel, S.; Dupont, J. Effect of Adiponectin on Bovine Granulosa Cell Steroidogenesis, Oocyte Maturation and Embryo Development. Reprod. Biol. Endocrinol. 2010, 8, 23. [Google Scholar] [CrossRef]
- Reverchon, M.; Rame, C.; Bunel, A.; Chen, W.; Froment, P.; Dupont, J. VISFATIN (NAMPT) Improves in Vitro IGF1-Induced Steroidogenesis and IGF1 Receptor Signaling through SIRT1 in Bovine Granulosa Cells. Biol. Reprod. 2016, 94, 54. [Google Scholar] [CrossRef] [PubMed]
- Spicer, L.J.; Schutz, L.F.; Aad, P.Y. Effects of Bone Morphogenetic Protein 4, Gremlin, and Connective Tissue Growth Factor on Estradiol and Progesterone Production by Bovine Granulosa Cells. J. Anim. Sci. 2021, 99, skab318. [Google Scholar] [CrossRef]
- Spicer, L.J.; Chamberlain, C.S.; Francisco, C.C. Ovarian Action of Leptin: Effects on Insulin-Like Growth Factor-I-Stimulated Function of Granulosa and Thecal Cells. Endocrine 2000, 12, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Batalha, I.M.; Maylem, E.R.S.; Spicer, L.J.; Pena Bello, C.A.; Archilia, E.C.; Schütz, L.F. Effects of Asprosin on Estradiol and Progesterone Secretion and Proliferation of Bovine Granulosa Cells. Mol. Cell. Endocrinol. 2023, 565, 111890. [Google Scholar] [CrossRef]
- Messini, C.I.; Vasilaki, A.; Korona, E.; Anifandis, G.; Georgoulias, P.; Dafopoulos, K.; Garas, A.; Daponte, A.; Messinis, I.E. Effect of Resistin on Estradiol and Progesterone Secretion from Human Luteinized Granulosa Cells in Culture. Syst. Biol. Reprod. Med. 2019, 65, 350–356. [Google Scholar] [CrossRef]
- Karlsson, C.; Lindell, K.; Svensson, E.; Bergh, C.; Lind, P.; Billig, H.; Carlsson, L.M.S.; Carlsson, B. Expression of Functional Leptin Receptors in the Human Ovary. J. Clin. Endocrinol. Metab. 1997, 82, 4144–4148. [Google Scholar] [CrossRef]
- Zachow, R.J.; Magoffin, D.A. Direct Intraovarian Effects of Leptin: Impairment of the Synergistic Action of Insulin-Like Growth Factor-I on Follicle-Stimulating Hormone-Dependent Estradiol-17β Production by Rat Ovarian Granulosa Cells. Endocrinology 1997, 138, 847–850. [Google Scholar] [CrossRef] [PubMed]
- Maylem, E.R.S.; Spicer, L.J.; Atabay, E.P.; Atabay, E.C.; Batalha, I.; Schutz, L.F. A Potential Role of Fibrillin-1 (FBN1) MRNA and Asprosin in Follicular Development in Water Buffalo. Theriogenology 2022, 178, 67–72. [Google Scholar] [CrossRef]
- Phillips, L.K.; Prins, J.B. Update on Incretin Hormones. Ann. N. Y. Acad. Sci. 2011, 1243, E55–E74. [Google Scholar] [CrossRef] [PubMed]
- Gil-Campos, M.; Aguilera, C.M.; Cañete, R.; Gil, A. Ghrelin: A Hormone Regulating Food Intake and Energy Homeostasis. Br. J. Nutr. 2006, 96, 201–226. [Google Scholar] [CrossRef] [PubMed]
- Gupta, M.; Dangi, S.S.; Singh, G.; Sarkar, M. Expression and Localization of Ghrelin and Its Receptor in Ovarian Follicles during Different Stages of Development and the Modulatory Effect of Ghrelin on Granulosa Cells Function in Buffalo. Gen. Comp. Endocrinol. 2015, 210, 87–95. [Google Scholar] [CrossRef]
- Viani, I.; Vottero, A.; Tassi, F.; Cremonini, G.; Sartori, C.; Bernasconi, S.; Ferrari, B.; Ghizzoni, L. Ghrelin Inhibits Steroid Biosynthesis by Cultured Granulosa-Lutein Cells. J. Clin. Endocrinol. Metab. 2008, 93, 1476–1481. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Hasegawa, T.; Fujita, S.; Iwata, N.; Nagao, S.; Hosoya, T.; Inagaki, K.; Wada, J.; Otsuka, F. Incretins Modulate Progesterone Biosynthesis by Regulating Bone Morphogenetic Protein Activity in Rat Granulosa Cells. J. Steroid Biochem. Mol. Biol. 2018, 178, 82–88. [Google Scholar] [CrossRef]
Fibroblast Growth Factor | Main Source Within Ovarian Follicles | Effects on Steroidogenesis of Granulosa Cells | References |
---|---|---|---|
FGF2 | Theca cells | FGF2 suppresses FSH- and FSH plus IGF1-induced estradiol production | [141,170,171] |
FGF7 | Theca cells | FGF7 suppresses FSH-induced estradiol and progesterone synthesis | [142,149] |
FGF9 | Granulosa cells | FGF9 suppresses FSH plus IGF1-induced estradiol and progesterone synthesis and mRNA expression of CYP19A1 and FSHR | [145,153,171] |
FGF10 | Theca cells and oocytes | FGF10 suppresses FSH-induced estradiol synthesis | [152] |
FGF18 | Theca cells | FGF18 suppresses FSH-induced estradiol and progesterone synthesis and mRNA expression of CYP19A1, CYP11A1, FSHR, STAR, HSD3B1, and HSD17B1 | [150] |
Adipokine | Expression of Ligand or Receptor | Species | Reference |
---|---|---|---|
Adiponectin | AdipoR2 mRNA is predominantly present in theca cells but also in granulosa cells and is greater in theca cells of larger follicles with no differences in expression in granulosa cells according to size of follicles. | Bovine | [188] |
AdipoR1 and AdipoR2 mRNA is greater in granulosa cells of dominant than subordinate follicles. | Bovine | [189] | |
mRNA expression of adiponectin is greater in granulosa cells of large follicles and in theca cells of small follicles, while adipoR1 and adipoR2 mRNA is expressed in granulosa and theca cells of large follicles. | Bovine | [190] | |
Adiponectin and receptors adipoR1 and adipoR2 mRNA and protein expression are predominantly expressed in theca cells, but also in granulosa cells. | Murine | [191] | |
AdipoR1 and AdipoR2 mRNA and protein are expressed in granulosa cells, but AdipoR2 expression is greater. | Human | [191] | |
AdipoR1 and AdipoR2 mRNA is expressed both in granulosa and theca cells. | Human | [192] | |
Apelin | mRNA and protein expression of apelin and receptor is greater in granulosa and theca cells of large follicles than in cells of small follicles. | Bovine | [193] |
mRNA and protein expression of apelin and its receptor is expressed in granulosa and increases according to follicular size. | Bovine | [194] | |
mRNA expression of apelin was not detected in granulosa cells and apelin receptor mRNA was greater in granulosa cells of large estradiol-inactive (subordinate) follicles in comparison to small subordinate and dominant follicle | Bovine | [195] | |
mRNA expression of apelin and its receptor in granulosa cells does not change according to follicular size and estradiol levels in follicular fluid. | Bovine | [196] | |
mRNA and protein expression of apelin and its receptor is expressed in granulosa and theca cells. | Human | [197] | |
Asprosin | FBN1 mRNA 1 expression is greater in theca cells than in granulosa cells, and it varies in theca cells but not granulosa cells, according to the size of the follicle. mRNA expression of the asprosin receptor (OR4M1) is greater in granulosa cells than theca cells and is greater in both cells of small follicles in comparison to large follicles. | Bovine | [198] |
FBN1 mRNA is greater in granulosa cells of medium subordinate follicles than dominant follicles and other sizes of subordinate follicles; OR4M1 mRNA is greater in granulosa cells of small subordinate follicles than dominant follicles and other sizes of subordinate follicles. | Bovine | [199] | |
Chemerin | Chemerin mRNA and protein expression is greater in granulosa cells of small follicles than of large follicles, whereas there is no influence of follicular size in expression of chemerin receptors (CMKLR1, GPR1, and CCRL2). | Bovine | [200] |
mRNA and protein expression of chemerin and its receptor, CMKLR1, is greater in granulosa cells than in theca cells. | Human | [201] | |
Chemerin mRNA abundance is expressed in granulosa cells. | Murine | [202] | |
Irisin | FNDC5 2 and irisin receptors (ITGAV and ITGB1) mRNA is expressed by granulosa cells. | Bovine | [203] |
Leptin | Leptin protein expression is greater in granulosa cells of subordinate than of dominant follicles, whereas no differences exist in protein expression of leptin receptor (LEPR) in granulosa cells according to size of follicles. | Bovine | [189] |
mRNA and protein expression of leptin and its receptor is detected in granulosa cells of preovulatory follicles. | Human | [204] | |
mRNA and protein expression of leptin is greater in theca cells than in granulosa cells. | Murine | [205] | |
Resistin | Resistin mRNA is detected in granulosa cells. | Bovine | [206] |
Resistin mRNA and protein is detected in granulosa cells. | Human | [207,208] | |
Resistin mRNA is not detected in granulosa cells. | Murine | [206] | |
Omentin | INTL1 3 mRNA is detected in granulosa–lutein cells. | Human | [209] |
INTL1 protein expression was observed in granulosa and theca cells. Omentin gene and protein expression in follicles changed throughout the estrous cycle. | Porcine | [210] | |
Visfatin | Visfatin mRNA and protein is expressed by granulosa cells. | Human | [211] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schütz, L.F.; Batalha, I.M. Granulosa Cells: Central Regulators of Female Fertility. Endocrines 2024, 5, 547-565. https://doi.org/10.3390/endocrines5040040
Schütz LF, Batalha IM. Granulosa Cells: Central Regulators of Female Fertility. Endocrines. 2024; 5(4):547-565. https://doi.org/10.3390/endocrines5040040
Chicago/Turabian StyleSchütz, Luis Fernando, and Isadora M. Batalha. 2024. "Granulosa Cells: Central Regulators of Female Fertility" Endocrines 5, no. 4: 547-565. https://doi.org/10.3390/endocrines5040040
APA StyleSchütz, L. F., & Batalha, I. M. (2024). Granulosa Cells: Central Regulators of Female Fertility. Endocrines, 5(4), 547-565. https://doi.org/10.3390/endocrines5040040