Polymer Composites Containing Ionic Liquids: A Study of Electrical Conductivity
Abstract
:1. Introduction
2. Polymer Matrices in Composites Containing Ionic Liquids
Polymer Matrix | Abbreviation | References |
---|---|---|
Thermoplastic | ||
Cellulose acetate | CA | [33] |
Polyaniline | PANI | [15,19,34] |
Polybutylene terephthalate | PBT | [35] |
Polyetherimide | PEI | [36] |
Polymethyl methacrylate | PMMA | [29,30,31,37] |
Polystyrene | PS | [3] |
Polyvinyl alcohol | PVA | [38,39,40] |
Polyvinylidene fluoride | PVDF | [1,23,24,26,27,28,41,42] |
Thermoset | ||
Diglycidyl ester of aliphatic cyclo | DGEAC | [11] |
Diglycidyl ether of bisphenol A | DGEBA | [6,21] |
Phenolic formaldehyde | PF | [5,9] |
Polyurethane | PU | [4,43] |
Elastomer | ||
Ethylene acrylic elastomer | AEM | [8] |
Natural rubber | NR | [44] |
Polychloroprene | CR | [7,45,46,47,48] |
Polydimethylsiloxane | PDMS | [10] |
Poly(vinylidene fluoride-co-hexafluoropropylene) | FKM | [49] |
Styrene butadiene rubber | SBR | [20,50,51,52,53] |
3. Conductive Fillers in Polymer Composites Containing Ionic Liquids
Conductive Filler | Abbreviation | References |
---|---|---|
Carbon black | CB | [28] |
Carboxylated multiwalled carbon nanotubes | MWCNT-COOH | [35] |
Exfoliated graphite | xGnP | [4] |
Graphene | Gra | [9,20,23,29,31,42] |
Graphene oxide | GO | [11,24,33,38,43] |
Multiwalled carbon nanotubes | MWCNTs | [1,3,6,7,8,15,19,21,26,27,30,36,37,40,41,44,45,46,47,48,50,51,52,53] |
Reduced graphene oxide | rGO | [34,39,49] |
Silanized graphene | Gra-Si | [5] |
Single-walled carbon nanotubes | SWCNTs | [10] |
4. Ionic Liquids in Polymer Composites
Ionic Liquid | Abbreviation | References |
---|---|---|
Imidazolium-based | ||
1-Allyl-3-methylimidazolium chloride | [Amim][Cl] | [8,38] |
1-(2-Aminoethyl)-3-methylimidazolium bromide | [Aemim][Br] | [24,41] |
1-Benzyl-3-methylimidazolium chloride | [Bzmim][Cl] | [40,50] |
1,6-Bis[3-(vinylbenzyl)imidazolium-1-yl]hexane chloride | [Bvbzimh][Cl] | [31] |
1,10-Bis[1-vinylimidazolium-3-yl]decane bromide | [Bvimd][Br] | [5,9] |
1-(3-Butoxy-2-hydroxypropyl)-3-methylimidazolium tetrafluoroborate | [Bhpmim][BF4] | [11] |
1-Butyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide | [C4mim][NTf2] | [7,10,44,45,46,47,48,51] |
1-Butyl-3-methylimidazolium chloride | [C4mim][Cl] | [33] |
1-Butyl-3-methylimidazolium hexafluorophosphate | [C4mim][PF6] | [30,37,42] |
1-Butyl-3-methylimidazolium tetrafluoroborate | [C4mim][BF4] | [15,19,21,36,42] |
1-Decyl-3-methylimidazolium chloride | [C10mim][Cl] | [52] |
1-Ethyl-2,3-dimethylimidazolium bis(trifluoromethylsulphonyl)imide | [C2dmim][NTf2] | [53] |
1-Ethyl-3-methylimidazolium bis(trifluoromethylsulphonyl)imide | [C2mim][NTf2] | [1] |
1-Ethyl-3-methylimidazolium dicyanamide | [C2mim][Dca] | [49] |
1-Hexadecyl-3-methylimidazolium bromide | [C16mim][Br] | [23] |
1-Hexyl-3-methylimidazolium hexafluorophosphate | [C6mim][PF6] | [30] |
1-Methylimidazolium chloride | [Cim][Cl] | [43] |
1-Methyl-3-octylimidazolium chloride | [Coim][Cl] | [8] |
1-Oxiranylmethyl-3-methylimidazolium tetrafluoroborate | [Oxmmim][BF4] | [35] |
1-(3-Sulfonato)-propyl-3-methylimidazolium hydrogen sulfate | [Supmim][HSO4] | [34] |
1-Vinyl-3-ethylimidazolium tetrafluoroborate | [Veim][BF4] | [26,28] |
Phosphonium-based | ||
Tributyl(ethyl)phosphonium diethyl phosphate | [P4,4,4,2][Dep] | [27] |
Trihexyl(tetradecyl)phosphonium bistriflimide | [P6,6,6,14][NTf2] | [3,27] |
Trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate | [P6,6,6,14][Tmpp] | [6] |
Trihexyl(tetradecyl)phosphonium dicyanamide | [P6,6,6,14][Dca] | [4] |
Others | ||
1-Butyl-4-methylpyridinium bromide | [C4mpy][Br] | [20] |
1-Butylpyridinium bromide | [C4py][Br] | [20] |
N-Dodecyl-4-vinylpyridinium bis(trifluoromethylsulphonyl)imide | [C12vpy][NTf2] | [29] |
Methacryloxyethyltrimethylammonium chloride | [Moetmam][Cl] | [39] |
5. Electrical Conductivity of Polymer Composites Containing Ionic Liquids
5.1. Electrical Conductivity of Thermoplastic Composites Containing Ionic Liquids
5.2. Electrical Conductivity of Thermoset Composites Containing Ionic Liquids
5.3. Electrical Conductivity of Elastomer Composites Containing Ionic Liquids
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharma, M.; Sharma, S.; Abraham, J.; Thomas, S.; Madras, G.; Bose, S. Flexible EMI Shielding Materials Derived by Melt Blending PVDF and Ionic Liquid Modified MWNTs. Mater. Res. Express 2014, 1, 035003. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.; Yusoff, M.Z.M.; Abdan, K. Methods and Mechanical Properties of Polymer Hybrid Composites and Hybrid Polymer Composites: Influence of Ionic Liquid Addition. Appl. Mech. 2024, 5, 1–19. [Google Scholar] [CrossRef]
- Soares da Silva, J.P.; Soares, B.G.; Livi, S.; Barra, G.M.O. Phosphonium–Based Ionic Liquid as Dispersing Agent for MWCNT in Melt-Mixing Polystyrene Blends: Rheology, Electrical Properties and EMI Shielding Effectiveness. Mater. Chem. Phys. 2017, 189, 162–168. [Google Scholar] [CrossRef]
- Vargas, P.C.; Merlini, C.; Livi, S.; de Nardi Martins, J.; Soares, B.G.; Barra, G.M.O. The Influence of Carbon Nanotubes and Exfoliated Graphite Nanoplatelets Modified by Phosphonium-based Ionic Liquids on Polyurethane Composites. J. Appl. Polym. Sci. 2023, 140, e54289. [Google Scholar] [CrossRef]
- Li, Y.-C.; Lee, S.-Y.; Wang, H.; Jin, F.-L.; Park, S.-J. Enhanced Electrical Properties and Impact Strength of Phenolic Formaldehyde Resin Using Silanized Graphene and Ionic Liquid. ACS Omega 2024, 9, 294–303. [Google Scholar] [CrossRef]
- Soares, B.G.; Riany, N.; Silva, A.A.; Barra, G.M.O.; Livi, S. Dual-Role of Phosphonium—Based Ionic Liquid in Epoxy/MWCNT Systems: Electric, Rheological Behavior and Electromagnetic Interference Shielding Effectiveness. Eur. Polym. J. 2016, 84, 77–88. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Highly Conducting Polychloroprene Composites Based on Multi-Walled Carbon Nanotubes and Bis (Trifluoromethylsulphonyl) Imide. KGK Kautsch. Gummi Kunststoffe 2012, 65, 44–46. [Google Scholar]
- Prasad Sahoo, B.; Naskar, K.; Kumar Tripathy, D. Multiwalled Carbon Nanotube-Filled Ethylene Acrylic Elastomer Nanocomposites: Influence of Ionic Liquids on the Mechanical, Dynamic Mechanical, and Dielectric Properties. Polym. Compos. 2016, 37, 2568–2580. [Google Scholar] [CrossRef]
- Wang, H.; Yao, S.-S.; Guan, Z.; Jin, F.-L.; Park, S.-J. Electrical Property Improvement of Phenolic Formaldehyde Resin with Graphene and Ionic Liquid. Korean J. Chem. Eng. 2021, 38, 2332–2340. [Google Scholar] [CrossRef]
- Zhao, X.; Ounaies, Z. A Facile Method to Enhance the Flexibility and Triboelectric Output of PDMS Using Ionic Liquid-Coated Single-Wall Carbon Nanotubes. Nano Energy 2022, 94, 106908. [Google Scholar] [CrossRef]
- Shi, K.; Luo, J.; Huan, X.; Lin, S.; Liu, X.; Jia, X.; Zu, L.; Cai, Q.; Yang, X. Ionic Liquid-Graphene Oxide for Strengthening Microwave Curing Epoxy Composites. ACS Appl. Nano Mater. 2020, 3, 11955–11969. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Abdan, K.; Yusoff, M.Z.M.; Jamil, S.N.A.M. Impact of Ionic Liquids on the Thermal Properties of Polymer Composites. e-Polymers 2024, 24, 20240020. [Google Scholar] [CrossRef]
- Norfarhana, A.S.; Ilyas, R.A.; Ngadi, N.; Othman, M.H.D.; Misenan, M.S.M.; Norrrahim, M.N.F. Revolutionizing Lignocellulosic Biomass: A Review of Harnessing the Power of Ionic Liquids for Sustainable Utilization and Extraction. Int. J. Biol. Macromol. 2024, 256, 128256. [Google Scholar] [CrossRef] [PubMed]
- Shamsuri, A.A.; Jamil, S.N.A.M.; Abdan, K. The Influence of Ionic Liquid Pretreatment on the Physicomechanical Properties of Polymer Biocomposites: A Mini-Review. e-Polymers 2022, 22, 809–820. [Google Scholar] [CrossRef]
- Souto, L.F.C.; Soares, B.G. Polyaniline/Carbon Nanotube Hybrids Modified with Ionic Liquids as Anticorrosive Additive in Epoxy Coatings. Prog. Org. Coat. 2020, 143, 105598. [Google Scholar] [CrossRef]
- Norfarhana, A.S.; Ilyas, R.A.; Ngadi, N.; Dzarfan Othman, M.H. Innovative Ionic Liquid Pretreatment Followed by Wet Disk Milling Treatment Provides Enhanced Properties of Sugar Palm Nano-Fibrillated Cellulose. Heliyon 2024, 10, e27715. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Abdan, K.; Jamil, S.N.A.M. Properties and Applications of Cellulose Regenerated from Cellulose/Imidazolium-Based Ionic Liquid/Co-Solvent Solutions: A Short Review. e-Polymers 2021, 21, 869–880. [Google Scholar] [CrossRef]
- Norfarhana, A.S.; Ilyas, R.A.; Ngadi, N.; Hafiz Dzarfan Othman, M. Optimization of Ionic Liquid Pretreatment of Sugar Palm Fiber for Cellulose Extraction. J. Mol. Liq. 2024, 398, 124256. [Google Scholar] [CrossRef]
- Calheiros Souto, L.F.; Henriques, R.R.; Soares, B.G. Influence of Acidic and Alkaline Environmental Anticorrosive Performance of Epoxy Coatings Based on Polyaniline/Carbon Nanotube Hybrids Modified with Ionic Liquid. Prog. Org. Coat. 2022, 173, 107206. [Google Scholar] [CrossRef]
- Gaca, M.; Ilcikova, M.; Mrlik, M.; Cvek, M.; Vaulot, C.; Urbanek, P.; Pietrasik, R.; Krupa, I.; Pietrasik, J. Impact of Ionic Liquids on the Processing and Photo-Actuation Behavior of SBR Composites Containing Graphene Nanoplatelets. Sens. Actuators B Chem. 2021, 329, 129195. [Google Scholar] [CrossRef]
- Lopes Pereira, E.C.; Soares, B.G. Conducting Epoxy Networks Modified with Non-covalently Functionalized Multi-walled Carbon Nanotube with Imidazolium-based Ionic Liquid. J. Appl. Polym. Sci. 2016, 133, 43976. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Md. Jamil, S.N.A.; Abdan, K. Coupling Effect of Ionic Liquids on the Mechanical, Thermal, and Chemical Properties of Polymer Composites: A Succinct Review. Vietnam. J. Chem. 2024, 13, 2597. [Google Scholar] [CrossRef]
- Xu, P.; Gui, H.; Wang, X.; Hu, Y.; Ding, Y. Improved Dielectric Properties of Nanocomposites Based on Polyvinylidene Fluoride and Ionic Liquid-Functionalized Graphene. Compos. Sci. Technol. 2015, 117, 282–288. [Google Scholar] [CrossRef]
- Maity, N.; Mandal, A.; Nandi, A.K. Interface Engineering of Ionic Liquid Integrated Graphene in Poly(Vinylidene Fluoride) Matrix Yielding Magnificent Improvement in Mechanical, Electrical and Dielectric Properties. Polymer 2015, 65, 154–167. [Google Scholar] [CrossRef]
- Shamsuri, A.A.; Yusoff, M.Z.M.; Abdan, K.; Jamil, S.N.A.M. Flammability Properties of Polymers and Polymer Composites Combined with Ionic Liquids. e-Polymers 2023, 23, 20230060. [Google Scholar] [CrossRef]
- Wang, Y.; Xing, C.; Guan, J.; Li, Y. Towards Flexible Dielectric Materials with High Dielectric Constant and Low Loss: PVDF Nanocomposites with Both Homogenously Dispersed CNTs and Ionic Liquids Nanodomains. Polymers 2017, 9, 562. [Google Scholar] [CrossRef]
- dos Santos, S.C.S.M.; Soares, B.G.; Lopes Pereira, E.C.; Indrusiak, T.; Silva, A.A. Impact of Phosphonium-Based Ionic Liquids-Modified Carbon Nanotube on the Microwave Absorbing Properties and Crystallization Behavior of Poly(Vinylidene Fluoride) Composites. Mater. Chem. Phys. 2022, 280, 125853. [Google Scholar] [CrossRef]
- Xing, C.; Wang, Y.; Huang, X.; Li, Y.; Li, J. Poly(Vinylidene Fluoride) Nanocomposites with Simultaneous Organic Nanodomains and Inorganic Nanoparticles. Macromolecules 2016, 49, 1026–1035. [Google Scholar] [CrossRef]
- Caldas, C.M.; Soares, B.G.; Indrusiak, T.; Barra, G.M.O. Ionic Liquids as Dispersing Agents of Graphene Nanoplatelets in Poly(Methyl Methacrylate) Composites with Microwave Absorbing Properties. J. Appl. Polym. Sci. 2021, 138, 49814. [Google Scholar] [CrossRef]
- Fang, D.; Zhou, C.; Liu, G.; Luo, G.; Gong, P.; Yang, Q.; Niu, Y.; Li, G. Effects of Ionic Liquids and Thermal Annealing on the Rheological Behavior and Electrical Properties of Poly(Methyl Methacrylate)/Carbon Nanotubes Composites. Polymer 2018, 148, 68–78. [Google Scholar] [CrossRef]
- Yang, Y.-K.; He, C.-E.; Peng, R.-G.; Baji, A.; Du, X.-S.; Huang, Y.-L.; Xie, X.-L.; Mai, Y.-W. Non-Covalently Modified Graphene Sheets by Imidazolium Ionic Liquids for Multifunctional Polymer Nanocomposites. J. Mater. Chem. 2012, 22, 5666. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Häußler, L.; Harnisch, C.; Stöckelhuber, K.W.; Heinrich, G. Enhanced Thermal Stability of Polychloroprene Rubber Composites with Ionic Liquid Modified MWCNTs. Polym. Degrad. Stab. 2012, 97, 776–785. [Google Scholar] [CrossRef]
- Javed, K.; Krumme, A.; Viirsalu, M.; Krasnou, I.; Plamus, T.; Vassiljeva, V.; Tarasova, E.; Savest, N.; Mere, A.; Mikli, V.; et al. A Method for Producing Conductive Graphene Biopolymer Nanofibrous Fabrics by Exploitation of an Ionic Liquid Dispersant in Electrospinning. Carbon 2018, 140, 148–156. [Google Scholar] [CrossRef]
- Dong, C.; Zhang, X.; Yu, Y.; Huang, L.; Li, J.; Wu, Y.; Liu, Z. An Ionic Liquid-Modified RGO/Polyaniline Composite for High-Performance Flexible All-Solid-State Supercapacitors. Chem. Commun. 2020, 56, 11993–11996. [Google Scholar] [CrossRef]
- Lv, X.; Liu, C.; Wu, D.; Song, S.; Shao, Z.; Sun, S. Epoxy-Based Ionic Liquid towards Multi-Walled Carbon Nanotubes/Polybutylene Terephthalate Composite with Excellent Dispersion and Conductivity Behaviors. J. Polym. Res. 2020, 27, 237. [Google Scholar] [CrossRef]
- Ke, F.; Yang, X.; Zhang, M.; Chen, Y.; Wang, H. Preparation and Properties of Polyetherimide Fibers Based on the Synergistic Effect of Carbon Nanotubes and Ionic Liquids. Polym. Compos. 2023, 44, 8917–8927. [Google Scholar] [CrossRef]
- Zhao, L.; Li, Y.; Cao, X.; You, J.; Dong, W. Multifunctional Role of an Ionic Liquid in Melt-Blended Poly(Methyl Methacrylate)/ Multi-Walled Carbon Nanotube Nanocomposites. Nanotechnology 2012, 23, 255702. [Google Scholar] [CrossRef]
- Sahu, G.; Tripathy, J.; Sahoo, B.P. Significant Enhancement of Dielectric Properties of Graphene Oxide Filled Polyvinyl Alcohol Nanocomposites: Effect of Ionic Liquid and Temperature. Polym. Compos. 2020, 41, 4411–4430. [Google Scholar] [CrossRef]
- Wang, L.; Wang, W.; Fan, P.; Zhou, M.; Yang, J.; Chen, F.; Zhong, M. Ionic Liquid-modified Graphene/Poly(Vinyl Alcohol) Composite with Enhanced Properties. J. Appl. Polym. Sci. 2017, 134, 45006. [Google Scholar] [CrossRef]
- Santillo, C.; Godoy, A.P.; Donato, R.K.; Espanhol Andrade, R.J.; Buonocore, G.G.; Xia, H.; Lavorgna, M.; Sorrentino, A. Tuning the Structural and Functional Properties of HAVOH-Based Composites via Ionic Liquid Tailoring of MWCNTs Distribution. Compos. Sci. Technol. 2021, 207, 108742. [Google Scholar] [CrossRef]
- Mandal, A.; Nandi, A.K. Ionic Liquid Integrated Multiwalled Carbon Nanotube in a Poly(Vinylidene Fluoride) Matrix: Formation of a Piezoelectric β-Polymorph with Significant Reinforcement and Conductivity Improvement. ACS Appl. Mater. Interfaces 2013, 5, 747–760. [Google Scholar] [CrossRef] [PubMed]
- Widakdo, J.; Huang, T.-J.; Subrahmanya, T.M.; Austria, H.F.M.; Chou, H.-L.; Hung, W.-S.; Wang, C.-F.; Hu, C.-C.; Lee, K.-R.; Lai, J.-Y. Bioinspired Ionic Liquid-Graphene Based Smart Membranes with Electrical Tunable Channels for Gas Separation. Appl. Mater. Today 2022, 27, 101441. [Google Scholar] [CrossRef]
- Mondal, T.; Basak, S.; Bhowmick, A.K. Ionic Liquid Modification of Graphene Oxide and Its Role towards Controlling the Porosity, and Mechanical Robustness of Polyurethane Foam. Polymer 2017, 127, 106–118. [Google Scholar] [CrossRef]
- Krainoi, A.; Kummerloewe, C.; Nakaramontri, Y.; Wisunthorn, S.; Vennemann, N.; Pichaiyut, S.; Kiatkamjornwong, S.; Nakason, C. Influence of Carbon Nanotube and Ionic Liquid on Properties of Natural Rubber Nanocomposites. Express Polym. Lett. 2019, 13, 327–348. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Heinrich, G. Improved Oxidation Resistance of Conducting Polychloroprene Composites. Compos. Sci. Technol. 2013, 74, 14–19. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Steinhauser, D.; Klüppel, M.; Heinrich, G. Effect of Ionic Liquid on Dielectric, Mechanical and Dynamic Mechanical Properties of Multi-Walled Carbon Nanotubes/Polychloroprene Rubber Composites. Eur. Polym. J. 2011, 47, 2234–2243. [Google Scholar] [CrossRef]
- Le, H.H.; Hoang, X.T.; Das, A.; Gohs, U.; Stoeckelhuber, K.-W.; Boldt, R.; Heinrich, G.; Adhikari, R.; Radusch, H.-J. Kinetics of Filler Wetting and Dispersion in Carbon Nanotube/Rubber Composites. Carbon 2012, 50, 4543–4556. [Google Scholar] [CrossRef]
- Steinhauser, D.; Subramaniam, K.; Das, A.; Heinrich, G.; Klueppel, M. Influence of Ionic Liquids on the Dielectric Relaxation Behavior of CNT Based Elastomer Nanocomposites. Express Polym. Lett. 2012, 6, 927–936. [Google Scholar] [CrossRef]
- Moni, G.; Mayeen, A.; Mohan, A.; George, J.J.; Thomas, S.; George, S.C. Ionic Liquid Functionalised Reduced Graphene Oxide Fluoroelastomer Nanocomposites with Enhanced Mechanical, Dielectric and Viscoelastic Properties. Eur. Polym. J. 2018, 109, 277–287. [Google Scholar] [CrossRef]
- Abraham, J.; Arif P, M.; Xavier, P.; Bose, S.; George, S.C.; Kalarikkal, N.; Thomas, S. Investigation into Dielectric Behaviour and Electromagnetic Interference Shielding Effectiveness of Conducting Styrene Butadiene Rubber Composites Containing Ionic Liquid Modified MWCNT. Polymer 2017, 112, 102–115. [Google Scholar] [CrossRef]
- Subramaniam, K.; Das, A.; Simon, F.; Heinrich, G. Networking of Ionic Liquid Modified CNTs in SSBR. Eur. Polym. J. 2013, 49, 345–352. [Google Scholar] [CrossRef]
- Le, H.H.; Wießner, S.; Das, A.; Fischer, D.; auf der Landwehr, M.; Do, Q.K.; Stöckelhuber, K.-W.; Heinrich, G.; Radusch, H.-J. Selective Wetting of Carbon Nanotubes in Rubber Compounds—Effect of the Ionic Liquid as Dispersing and Coupling Agent. Eur. Polym. J. 2016, 75, 13–24. [Google Scholar] [CrossRef]
- Abraham, J.; Kailas, L.; Kalarikkal, N.; George, S.C.; Thomas, S. Developing Highly Conducting and Mechanically Durable Styrene Butadiene Rubber Composites with Tailored Microstructural Properties by a Green Approach Using Ionic Liquid Modified MWCNTs. RSC Adv. 2016, 6, 32493–32504. [Google Scholar] [CrossRef]
Thermoplastic | Conductive Filler | Content (wt.%) | Ionic Liquid | Content (wt.%) | Preparation Method | Electrical Conductivity (S/cm) | References |
---|---|---|---|---|---|---|---|
PANI | MWCNTs | 12 | [C4mim][BF4] | 5.0 | IEP | 4.5 | [19] |
PBT | MWCNT-COOH | 0.7 | [Oxmmim][BF4] | 2.0 | MB | 1 × 10−6 | [35] |
PEI | MWCNTs | 0.5 | [C4mim][BF4] | 1.0 | ME | 1.06 × 10−5 | [36] |
PMMA | Gra | 1.8 | [C12vpy][NTf2] | 8.9 | SM | 2 × 10−6 | [29] |
PMMA | MWCNTs | 2.0 | [C4mim][PF6] | 10 | MB | 1 × 10−2 | [37] |
PS | MWCNTs | 0.66 | [P6,6,6,14][NTf2] | 3.34 | MB | 1 × 10−3 | [3] |
PVA | GO | 2.89 | [Amim][Cl] | 0.67 | SM | 9.28 × 10−3 | [38] |
PVDF | GO | 3.0 * | [Aemim][Br] | - | SM | 8.9 × 10−3 | [24] |
PVDF | MWCNTs | 2.0 * | [C2mim][NTf2] | - | MB | 1 × 10−3 | [1] |
Thermoset | Conductive Filler | Content (wt.%/phr) | Ionic Liquid | Content (wt.%/phr) | Preparation Method | Electrical Conductivity (S/cm) | References |
---|---|---|---|---|---|---|---|
DGEBA | MWCNTs | 0.5 * | [C4mim][BF4] | - | SM | 1 × 10−3 | [21] |
DGEBA | MWCNTs | 1.0 | [P6,6,6,14][Tmpp] | 10 | SM | 6 × 10−4 | [6] |
PF | Gra | 15 | [Bvimd][Br] | 5.0 | HB | 9.2 × 10−4 | [9] |
PF | Gra-Si | 15 | [Bvimd][Br] | 5.0 | HB | 1.45 × 10−3 | [5] |
PU | xGnP | 7.0 * | [P6,6,6,14][Dca] | - | SB | 2.47 × 10−2 | [4] |
Elastomer | Conductive Filler | Content (phr/wt.%) | Ionic Liquid | Content (wt.%) | Preparation Method | Electrical Conductivity (S/cm) | References |
---|---|---|---|---|---|---|---|
CR | MWCNTs | 3.0 * | [C4mim][NTf2] | - | MM | 1 × 10−3 | [45] |
PDMS | SWCNTs | 0.1 | [C4mim][NTf2] | 2.0 | SM | 4 × 10−5 | [10] |
SBR | MWCNTs | 5.0 * | [Bzmim][Cl] | - | MM | 1 × 10−1 | [50] |
SBR | MWCNTs | 10 * | [C4mim][NTf2] | - | MM | 1 × 10−2 | [51] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamsuri, A.A.; Md. Jamil, S.N.A.; Yusoff, M.Z.M.; Abdan, K. Polymer Composites Containing Ionic Liquids: A Study of Electrical Conductivity. Electron. Mater. 2024, 5, 189-203. https://doi.org/10.3390/electronicmat5040013
Shamsuri AA, Md. Jamil SNA, Yusoff MZM, Abdan K. Polymer Composites Containing Ionic Liquids: A Study of Electrical Conductivity. Electronic Materials. 2024; 5(4):189-203. https://doi.org/10.3390/electronicmat5040013
Chicago/Turabian StyleShamsuri, Ahmad Adlie, Siti Nurul Ain Md. Jamil, Mohd Zuhri Mohamed Yusoff, and Khalina Abdan. 2024. "Polymer Composites Containing Ionic Liquids: A Study of Electrical Conductivity" Electronic Materials 5, no. 4: 189-203. https://doi.org/10.3390/electronicmat5040013
APA StyleShamsuri, A. A., Md. Jamil, S. N. A., Yusoff, M. Z. M., & Abdan, K. (2024). Polymer Composites Containing Ionic Liquids: A Study of Electrical Conductivity. Electronic Materials, 5(4), 189-203. https://doi.org/10.3390/electronicmat5040013