Analysis of Power Modules Including Phase Change Materials in the Top Interconnection of Semiconductor Devices
Abstract
:1. Introduction
- To experimentally validate the previous models by using two types of PCMs and by closely reproducing the test conditions in simulations in order to be confident in the virtual prototyping results.
- To evaluate the ability of the solution to be used under repetitive power cycles for two potential PCM candidates showing different behaviors during cooling.
- To evaluate the reliability and the lifetime of the two PCMs under isothermal accelerated aging conditions in the temperature range between 130 °C and 150 °C. This can correspond to the temperature range encountered in real applications.
2. Materials and Methods
2.1. Samples Preparation and Characterization Techniques
2.2. Transient Thermal Simulation
2.2.1. Governing Heat Transfer Equation
2.2.2. Geometry and Assumptions
2.2.3. Material Properties
3. Results and Discussions
3.1. Thermal Experiments and Model Validation
3.2. Behavior under Repetitive Power Cycles
3.3. Isothermal Accelerated Aging of PCM
3.3.1. Thermophysical Properties Variation during Aging
3.3.2. Kinetic Model
3.3.3. Lifetime Estimation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sarlioglu, B.; Morris, C.T. More electric aircraft: Review, challenges, and opportunities for commercial transport aircraft. IEEE Trans. Transp. Electrif. 2015, 1, 54–64. [Google Scholar] [CrossRef]
- Son, K.A.; Liao, A.; Lung, G.; Gallegos, M.; Hatake, T.; Harris, R.; Scheick, L.; Smythe, W. GaN-based high temperature and radiation-hard electronics for harsh environments. Micro-Nanotechnol. Sens. Syst. Appl. 2010, 2, 89–95. [Google Scholar]
- Funaki, T.; Balda, J.C.; Junghans, J.; Kashyap, A.A.; Barlow, F.; Mantooth, H.A.; Kimoto, T.; Hikihara, T. SiC JFET dc characteristics under extremely high ambient temperatures. IEICE Electron. Express 2004, 1, 523–527. [Google Scholar] [CrossRef]
- Sakanova, A.; Tong, C.; Nawawi, A.; Simanjorang, R.; Tseng, K.; Gupta, A. Investigation on weight consideration of liquid coolant system for power electronics converter in future aircraft. Appl. Therm. Eng. 2016, 104, 603–615. [Google Scholar] [CrossRef]
- Reddy Prasad, D.M.; Senthilkumar, R.; Lakshmanarao, G.; Krishnan, S.; Naveen Prasad, B.S. A critical review on thermal energy storage materials and systems for solar applications. AIMS Energy 2019, 7, 507–526. [Google Scholar] [CrossRef]
- Pillai, K.K.; Brinkwarth, B.J. The storage of low grade thermal energy using phase change materials. Appl. Energy 1976, 2, 205–216. [Google Scholar] [CrossRef]
- Abhat, A. Low temperature latent heat thermal energy storage. In Thermal Energy Storage; Beghi, C., Ed.; D. Reidel Publication Co., Ltd.: Dordrect, Holland, 1981. [Google Scholar]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sust. Energ. Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Lane, G.A.; Glew, D.N. Heat of fusion system for solar energy storage. In Proceedings of the Workshop on Solar Energy Storage Subsystems for the Heating and Cooling of Buildings, Charlottesville, Virginia, 16–18 April 1975; p. 43. [Google Scholar]
- Herrick, S.; Golibersuch, D.C. Quantitative behavior of a new latent heat storage device for solar heating/cooling systems. In Proceedings of the General International Solar Energy Society Conference, Denver, Colorado, 28–31 August 1978. [Google Scholar]
- Palomo del Barrioa, E.; Godinb, A.; Duquesnec, M.; Daranlotd, J.; Jollyd, J.; Alshaere, W.; Kouadiob, T.; Sommier, A. Characterization of different sugar alcohols as phase change materials for thermal energy storage applications. Sol. Energ. Mat. Sol. Cells 2017, 159, 560–569. [Google Scholar] [CrossRef]
- Baetens, R.; Jelle, B.P.; Gustavsen, A. Phase change materials for building applications: A state-of-the-art review. Energy Build. 2010, 42, 1361–1368. [Google Scholar] [CrossRef]
- Souayfane, F.; Fardoun, F.; Biwole, P.H. Phase change materials (PCM) for cooling applications in buildings: A review. Energy Build. 2016, 129, 396–431. [Google Scholar] [CrossRef]
- Hasan, A.; Hejase, H.; Abdelbaqi, S.; Assi, A.; Hamdan, M. Comparative Effectiveness of Different Phase Change Materials to Improve Cooling Performance of Heat Sinks for Electronic Devices. Appl. Sci. 2016, 6, 226. [Google Scholar] [CrossRef]
- Park, J.J.; Butt, D.P.; Beard, C.A. Review of liquid metal corrosion issues for potential containment materials for liquid lead and lead–bismuth eutectic spallation targets as a neutron source. Nucl. Eng. Des. 2000, 196, 315–325. [Google Scholar] [CrossRef]
- Mjallal, I.; Farhat, H.; Hammod, M.; Ali, S.; Assi, I. Improving the Cooling Efficiency of Heat Sinks through the Use of Different Types of Phase Change Material. Technologies 2018, 6, 5. [Google Scholar] [CrossRef]
- Shao, W.; Ran, L.; Zeng, Z.; Wu, R.; Mawby, P.; Kastha, D.; Bajpai, P. Power module with large short-term current capability by using phase change material. J. Eng. 2018, 16, 3225–3229. [Google Scholar]
- Maxa, J.; Novikov, A.; Nowottnick, M. Thermal Peak Management Using Organic Phase Change Materials for Latent Heat Storage in Electronic Applications. Materials 2017, 11, 31. [Google Scholar] [CrossRef]
- Khazaka, R.; Avenas, Y.; Hanna, R.; Azzopardi, S. Design of Power Modules Using Containers Filled With Phase Change Materials as Device Top Interconnection for Power Peak Management. In Proceedings of the 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Graz, Austria, 16–19 April 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, H.; Liu, Z. A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams. Int. J. Therm. Sci. 2015, 97, 56–67. [Google Scholar] [CrossRef]
- Meng, X.; Yan, L.; Xu, J.; He, F.; Yu, H.; Zhang, M. Effect of porosity and pore density of copper foam on thermal performance of the paraffin-copper foam composite Phase-Change Material. Case Stud Ther Eng. 2020, 22, 2020. [Google Scholar] [CrossRef]
- Hoffmann, F.; Schmitt, S.; Kaminski, N. Lifetime Modeling of SiC MOSFET Power Modules during Power Cycling Tests at Low Temperature Swings. In Proceedings of the 2023 35th International Symposium on Power Semiconductor Devices and ICs (ISPSD), Hong Kong, 28 May–1 June 2023; pp. 294–297. [Google Scholar] [CrossRef]
- Mitsubishi Electric Increases Reliability of Automotive Power Modules with Direct Lead Bonding. Available online: https://chargedevs.com/features/mitsubishi-electric-increases-reliability-of-automotive-power-module-with-direct-lead-bonding/ (accessed on 1 January 2024).
- Neumann, H.; Niedermaier, S.; Gschwander, S.; Schossig, P. Cycling stability of d-mannitol when used as phase change material for thermal storage applications. Thermochim. Acta 2018, 660, 134–143. [Google Scholar] [CrossRef]
- Solé, A.; Neumann, H.; Niedermaier, S.; Martorell, I.; Schossig, P.; Cabeza, L.F. Stability of sugar alcohols as PCM for thermal energy storage. Sol. Energy Mater. Sol. Cells 2014, 126, 125–134. [Google Scholar] [CrossRef]
- Inagaki, T.; Ishida, T. Computational design of non-natural sugar alcohols to increase thermal storage density: Beyond existing organic phase change materials. J. Am. Chem. Soc. 2016, 138, 11810–11819. [Google Scholar] [CrossRef]
- Matuszek, K.; Vijayaraghavan, R.; Kar, M.; Macfarlane, D.R. Role of hydrogen bonding in phase change materials. Cryst. Growth Des. 2019, 20, 1285–1291. [Google Scholar] [CrossRef]
- Feng, H.; Liu, X.; He, S.; Wu, K.; Zhang, J. Studies on solid-solid phase transitions of polyols by infrared spectroscopy. Thermochim. Acta 2000, 348, 175–179. [Google Scholar] [CrossRef]
- Wu, N.; Li, X.; Liu, S.; Zhang, M.; Ouyang, S. Effect of hydrogen bonding on the surface tension properties of binary mixture (acetone-water) by Raman spectroscopy. Appl. Sci. 2019, 9, 1235. [Google Scholar] [CrossRef]
- Alferez Luna, M.P.; Neumann, H.; Gschwander, S. Stability Study of Erythritol as Phase Change Material for Medium Temperature Thermal Applications. Appl. Sci. 2021, 11, 5448. [Google Scholar] [CrossRef]
- Ogden, S.; Klintberg, L.; Thornell, G.; Hjort, K.; Bodén, R. Review on miniaturized paraffin phase change actuators, valves, and pumps. Microfluid Nanofluid 2014, 17, 53–71. [Google Scholar] [CrossRef]
- Nomura, T.; Zhu, C.; Sagara, A.; Okinaka, N.; Akiyama, T. Estimation of thermal endurance of multicomponent sugar alcohols as phase change materials. Appl. Therm. Eng. 2015, 75, 481–486. [Google Scholar] [CrossRef]
Al | Au80Sn20 | Cu | AlN | SiC | Mo60Cu40 | |
---|---|---|---|---|---|---|
ρ [kg.m−3] | 2689 | 11,000 | 8933 | 3260 | 2300 | 9600 |
λ [W.m−1.K−1] | 237.5 | 57 | 380 | Linear dependence vs. temperature 170@20 °C; 140@150 °C | 300 | 220 |
Cp [J.kg−1.K−1] | 951 | 385 | 385 | 740 | 700 | 310 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khazaka, R.; Hanna, R.; Avenas, Y.; Azzopardi, S. Analysis of Power Modules Including Phase Change Materials in the Top Interconnection of Semiconductor Devices. Electron. Mater. 2024, 5, 204-220. https://doi.org/10.3390/electronicmat5040014
Khazaka R, Hanna R, Avenas Y, Azzopardi S. Analysis of Power Modules Including Phase Change Materials in the Top Interconnection of Semiconductor Devices. Electronic Materials. 2024; 5(4):204-220. https://doi.org/10.3390/electronicmat5040014
Chicago/Turabian StyleKhazaka, Rabih, Rachelle Hanna, Yvan Avenas, and Stephane Azzopardi. 2024. "Analysis of Power Modules Including Phase Change Materials in the Top Interconnection of Semiconductor Devices" Electronic Materials 5, no. 4: 204-220. https://doi.org/10.3390/electronicmat5040014
APA StyleKhazaka, R., Hanna, R., Avenas, Y., & Azzopardi, S. (2024). Analysis of Power Modules Including Phase Change Materials in the Top Interconnection of Semiconductor Devices. Electronic Materials, 5(4), 204-220. https://doi.org/10.3390/electronicmat5040014