The Extraction of the Density of States of Atomic-Layer-Deposited ZnO Transistors by Analyzing Gate-Dependent Field-Effect Mobility
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Data Availability Statement
Conflicts of Interest
References
- Kim, S.; Kwon, H.J.; Lee, S.; Shim, H.; Chun, Y.; Choi, W.; Kwack, J.; Han, D.; Song, M.; Kim, S.; et al. Low-Power Flexible Organic Light-Emitting Diode Display Device. Adv. Mater. 2011, 23, 3511–3516. [Google Scholar] [CrossRef] [PubMed]
- Rogers, J.A.; Someya, T.; Huang, Y. Materials and Mechanics for Stretchable Electronics. Science 2010, 327, 1603–1607. [Google Scholar] [CrossRef] [PubMed]
- Xu, R.P.; Li, Y.Q.; Tang, J.X. Recent Advances in Flexible Organic Light-Emitting Diodes. J. Mater. Chem. C 2016, 4, 9116–9142. [Google Scholar] [CrossRef]
- Yoon, M.; Hyun, D.; Kim, H.S. Subgap States in Aluminium- and Hydrogen-Doped Zinc-Oxide Thin-Film Transistors. J. Mater. Chem. C 2023, 11, 9952–9959. [Google Scholar] [CrossRef]
- Tseng, R.; Wang, S.T.; Ahmed, T.; Pan, Y.Y.; Chen, S.C.; Shih, C.C.; Tsai, W.W.; Chen, H.C.; Kei, C.C.; Chou, T.T.; et al. Wide-Range and Area-Selective Threshold Voltage Tunability in Ultrathin Indium Oxide Transistors. Nat. Commun. 2023, 14, 10–17. [Google Scholar] [CrossRef]
- Yoon, M. Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals 2023, 13, 1075. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Charge Transfer Doping with an Organic Layer to Achieve a High-Performance p-Type WSe2 transistor. J. Mater. Chem. C 2021, 9, 9592–9598. [Google Scholar] [CrossRef]
- Nagata, T.; Oh, S.; Yamashita, Y.; Yoshikawa, H.; Ikeno, N.; Kobayashi, K.; Chikyow, T.; Wakayama, Y. Photoelectron Spectroscopic Study of Band Alignment of Polymer/ZnO Photovoltaic Device Structure. Appl. Phys. Lett. 2013, 102, 043302. [Google Scholar] [CrossRef]
- Chiu, F.C.; Chiang, W.P. Trap Exploration in Amorphous Boron-Doped ZnO Films. Materials 2015, 8, 5795–5805. [Google Scholar] [CrossRef]
- Harun, K.; Salleh, N.A.; Deghfel, B.; Yaakob, M.K.; Mohamad, A.A. DFT + U Calculations for Electronic, Structural, and Optical Properties of ZnO Wurtzite Structure: A Review. Results Phys. 2020, 16, 102829. [Google Scholar] [CrossRef]
- Jan, T.; Azmat, S.; Rahman, A.U.; Ilyas, S.Z.; Mehmood, A. Experimental and DFT Study of Al Doped ZnO Nanoparticles with Enhanced Antibacterial Activity. Ceram. Int. 2022, 48, 20838–20847. [Google Scholar] [CrossRef]
- Lee, K.; Ko, G.; Lee, G.H.; Han, G.B.; Sung, M.M.; Ha, T.W.; Kim, J.H.; Im, S. Density of Trap States Measured by Photon Probe into ZnO Based Thin-Film Transistors. Appl. Phys. Lett. 2010, 97, 082110. [Google Scholar] [CrossRef]
- Dhara, S.; Niang, K.M.; Flewitt, A.J.; Nathan, A.; Lynch, S.A. Photoconductive Laser Spectroscopy as a Method to Enhance Defect Spectral Signatures in Amorphous Oxide Semiconductor Thin-Film Transistors. Appl. Phys. Lett. 2019, 114, 011907. [Google Scholar] [CrossRef]
- Kalb, W.L.; Batlogg, B. Calculating the Trap Density of States in Organic Field-Effect Transistors from Experiment: A Comparison of Different Methods. Phys. Rev. B Condens. Matter Mater. Phys. 2010, 81, 035327. [Google Scholar] [CrossRef]
- Kim, S.; Ha, T.J.; Sonar, P.; Dodabalapur, A. Density of Trap States in a Polymer Field-Effect Transistor. Appl. Phys. Lett. 2014, 105, 133302. [Google Scholar] [CrossRef]
- George, S.M. Atomic Layer Deposition: An Overview. Chem. Rev. 2010, 110, 111–131. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Intrinsic Device Parameter Extraction Method for Zinc Oxide-Based Thin-Film Transistors. Appl. Phys. Express 2021, 14, 124003. [Google Scholar] [CrossRef]
- Yoon, M.; Park, J.; Tran, D.C.; Sung, M.M. Fermi-Level Engineering of Atomic Layer-Deposited Zinc Oxide Thin Films for a Vertically Stacked Inverter. ACS Appl. Electron. Mater. 2020, 2, 537–544. [Google Scholar] [CrossRef]
- Yoon, M. Threshold-Voltage Extraction Methods for Atomically Deposited Disordered ZnO Thin-Film Transistors. Materials 2023, 16, 2940. [Google Scholar] [CrossRef]
- Janotti, A.; Van De Walle, C.G. Fundamentals of Zinc Oxide as a Semiconductor. Rep. Prog. Phys. 2009, 72, 126501. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chiu, S.P.; Zhu, Z.X.; Li, Z.Q.; Lin, J.J. Variable-Range-Hopping Conduction Processes in Oxygen Deficient Polycrystalline ZnO Films. J. Appl. Phys. 2010, 107, 063715. [Google Scholar] [CrossRef]
- Wang, W.; Xu, G.; Chowdhury, M.D.H.; Wang, H.; Um, J.K.; Ji, Z.; Gao, N.; Zong, Z.; Bi, C.; Lu, C.; et al. Electric Field Modified Arrhenius Description of Charge Transport in Amorphous Oxide Semiconductor Thin Film Transistors. Phys. Rev. B 2018, 98, 245308. [Google Scholar] [CrossRef]
- Irsigler, P.; Wagner, D.; Dunstan, D.J. On the Application of the Meyer-Neldel Rule to a-Si:H. J. Phys. C Solid State Phys. 1983, 16, 6605–6613. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Shimizu, F.M.; Mastelaro, V.R.; M’Peko, J.C.; Lin, L.; Oliveira, O.N. UV-Assisted Chemiresistors Made with Gold-Modified ZnO Nanorods to Detect Ozone Gas at Room Temperature. Microchim. Acta 2019, 186, 418. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Liu, S.Y.; Xie, Q.; Detavernier, C.; Van Meirhaeghe, R.L.; Qu, X.P. The Effects of Deposition Temperature and Ambient on the Physical and Electrical Performance of DC-Sputtered n-ZnO/p-Si Heterojunction. Appl. Phys. A Mater. Sci. Process. 2010, 98, 357–365. [Google Scholar] [CrossRef]
- Wang, Y.; Kang, K.M.; Kim, M.; Park, H.H. Effective Oxygen-Defect Passivation in Zno Thin Films Prepared by Atomic Layer Deposition Using Hydrogen Peroxide. J. Korean Ceram. Soc. 2019, 56, 302–307. [Google Scholar] [CrossRef]
- Cervantes-López, J.L.; Rangel, R.; Espino, J.; Martínez, E.; García-Gutiérrez, R.; Bartolo-Pérez, P.; Alvarado-Gil, J.J.; Contreras, O.E. Photoluminescence on Cerium-Doped ZnO Nanorods Produced under Sequential Atomic Layer Deposition–Hydrothermal Processes. Appl. Phys. A Mater. Sci. Process. 2017, 123, 86. [Google Scholar] [CrossRef]
- Meijer, E.J.; Matters, M.; Herwig, P.T.; De Leeuw, D.M.; Klapwijk, T.M. The Meyer-Neldel Rule in Organic Thin-Film Transistors. Appl. Phys. Lett. 2000, 76, 3433–3435. [Google Scholar] [CrossRef]
- Dalvi, A.; Parvathala Reddy, N.; Agarwal, S.C. The Meyer-Neldel Rule and Hopping Conduction. Solid State Commun. 2012, 152, 612–615. [Google Scholar] [CrossRef]
- Iñiguez, B.; Nathan, A.; Kloes, A.; Bonnassieux, Y.; Romanjek, K.; Charbonneau, M.; Van Der Steen, J.L.; Gelinck, G.; Gneiting, T.; Mohamed, F.; et al. New Compact Modeling Solutions for Organic and Amorphous Oxide TFTs. IEEE J. Electron Devices Soc. 2021, 9, 911–932. [Google Scholar] [CrossRef]
- Kim, H.; Ng, T.N. Reducing Trap States in Printed Indium Zinc Oxide Transistors by Doping with Benzyl Viologen. Adv. Electron. Mater. 2018, 4, 2–6. [Google Scholar] [CrossRef]
- Lee, S.; Ghaffarzadeh, K.; Nathan, A.; Robertson, J.; Jeon, S.; Kim, C.; Song, I.H.; Chung, U.I. Trap-Limited and Percolation Conduction Mechanisms in Amorphous Oxide Semiconductor Thin Film Transistors. Appl. Phys. Lett. 2011, 98, 203508. [Google Scholar] [CrossRef]
- Upadhyaya, M.; Boyle, C.J.; Venkataraman, D.; Aksamija, Z. Effects of Disorder on Thermoelectric Properties of Semiconducting Polymers. Sci. Rep. 2019, 9, 5820. [Google Scholar] [CrossRef] [PubMed]
- Devkota, S.; Kuzior, B.M.; Karpov, V.G.; Georgiev, D.G.; Li, F.; Borra, V. Percolation Nature of Threshold Switching: An Experimental Verification. In Proceedings of the 2023 IEEE 23rd International Conference on Nanotechnology (NANO), Jeju City, Republic of Korea, 2–5 July 2023; pp. 286–290. [Google Scholar]
- Devkota, S.; Nyako, K.A.O.; Kuzior, B.; Karpov, V.; Georgiev, D.G.; Li, F.; Cortes, P.; Borra, V. Threshold Switching in CdTe Photovoltaics. ECS Meet. Abstr. 2022, 109, 831. [Google Scholar] [CrossRef]
- Itapu, S.; Borra, V.; Mossayebi, F. A Computational Study on the Variation of Bandgap Due to Native Defects in Non-Stoichiometric Nio and Pd, Pt Doping in Stoichiometric Nio. Condens. Matter 2018, 3, 46. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, M. The Extraction of the Density of States of Atomic-Layer-Deposited ZnO Transistors by Analyzing Gate-Dependent Field-Effect Mobility. Electron. Mater. 2024, 5, 239-248. https://doi.org/10.3390/electronicmat5040016
Yoon M. The Extraction of the Density of States of Atomic-Layer-Deposited ZnO Transistors by Analyzing Gate-Dependent Field-Effect Mobility. Electronic Materials. 2024; 5(4):239-248. https://doi.org/10.3390/electronicmat5040016
Chicago/Turabian StyleYoon, Minho. 2024. "The Extraction of the Density of States of Atomic-Layer-Deposited ZnO Transistors by Analyzing Gate-Dependent Field-Effect Mobility" Electronic Materials 5, no. 4: 239-248. https://doi.org/10.3390/electronicmat5040016
APA StyleYoon, M. (2024). The Extraction of the Density of States of Atomic-Layer-Deposited ZnO Transistors by Analyzing Gate-Dependent Field-Effect Mobility. Electronic Materials, 5(4), 239-248. https://doi.org/10.3390/electronicmat5040016