Microchannel Heat Sinks—A Comprehensive Review
Abstract
:1. Introduction
Microchannel Heat Sink (MCHS)
2. Methods Used to Enhance the Thermal Efficiency of MCHSs
2.1. Active Techniques
2.2. Passive Techniques
2.2.1. Flow Disruption Technique
2.2.2. Ribs
2.2.3. Grooves
2.2.4. Cavities and Dimples
2.2.5. Micro Fins
2.2.6. Channel Curvatures
2.2.7. Thermal Enhancement Techniques and Analysis for Smooth Microchannel Heat Sinks
S. No | Author | Geometry | Nature of Work | Substrate Material | Coolant Type | Key Findings |
---|---|---|---|---|---|---|
1 | Saenen, T. et al. [79] | Rectangular MCHS | Numerical | Silicon | Air | Maximum temperature of 126 °C |
2 | Wang S.l. et al. [93] | Rectangular MCHS with turbulent flow | Numerical | Copper | Hot Water | Studied Dean vortex Secondary branches weaken Dean vortex |
3 | Ali Kosar [14] | Rectangular MCHS | Numerical | Polyimide, Silica Glass, Quartz, Steel, Silicon, Copper | Water | Nu value of 4 Friction factor of 0.7 |
4 | Tsung-Hsun Tsai et al. [94] | Rectangular MCHS with porous medium | Numerical | Silicon | Cu–Water CNT–Water | Pressure drop of 350 kPa Thermal resistance of 0.073 °C/W |
5 | Zhigang et al. [92] | Rectangular microchannels | Numerical | Copper, Silicon, Stainless Steel | Water | Local friction coefficient of 1 Heat transfer coefficient of 200 kW/m2.K Nu vlaue of 25 |
6 | Chen, C.-H [19] | Rectangular MCHS | Numerical | Nu value of 280 Dimensionless velocity of 0.6 | ||
7 | Chih-Wei Chen et al. [84] | Rectangular MCHS | Silicon | Water | Thermal resistance of 0.4 °C/W/cm2 |
2.2.8. Induced Secondary Flow
2.2.9. Nanofluids
3. Conclusions
- The outcomes of this review paper suggest that flow disruption techniques, optimization, secondary flows, and the use of nanofluids are all promising approaches for optimizing the thermal performance of MCHSs.
- Flow disruption techniques such as ribs, grooves, cavities, dimples, and fins play an important role in enhancing the thermal performance of MCHSs by disturbing the flow of the coolant and promoting a better heat transfer between the coolant and the heat sink surface.
- Optimization is a crucial step in adjusting various design parameters of the heat sink to obtain an optimal performance, while using a secondary flow promotes better mixing of the fluid and enhances convective heat transfer.
- The use of nanofluids combined with flow disruption methods is also promising for enhancing MCHSs’ thermal performance by boosting the convective heat transfer coefficient and promoting improved coolant mixing.
4. Future Recommendations
- The optimization of MCHSs of different designs should be carried out to obtain their ideal geometries and enhance their heat transfer efficiency. Future research should look at the use of multi-objective optimization approaches to balance various design features for microchannel heat sinks. We can achieve optimal solutions that go beyond conventional single-objective optimization techniques by taking into account several performance indicators at once, including the pressure drop, heat transfer coefficient, and uniformity of temperature distributions.
- Future research should explore the concept or the introduction of secondary flows in various designs of microchannel heat sinks, such as asymmetric, tapered, or curved channels. Researchers can find the best designs that best use secondary flows and enhance the overall performance by carefully investigating the effects of various geometries on heat transfer characteristics.
- Future research should investigate the manufacturing of MCHSs with an unconventional fin geometry using advanced manufacturing techniques like 3D printing and selective laser sintering. Complex and complicated fin structures that were previously challenging or impossible to construct using conventional techniques can now be made because of this technology. Researchers can investigate unconventional fin shapes, such as elliptical, triangular, and conical structures or customized arrangements, by using advanced manufacturing, to improve heat transfer efficiency.
- Future studies should focus on developing nanoparticles with tailored properties specifically for microchannel heat sink applications. They should explore the use of more nanomaterials besides traditional metallic or oxides nanoparticles. Researchers should examine the possibility of adding carbon-based nanomaterials to nanofluids, such as carbon nanotubes or graphene, evaluating their effect on thermal stability and heat transfer performance and their compatibility with microchannel heat sink materials.
- Researchers should study the advantages of including more than one layer in the microchannel structure, and investigate patterns with various channel widths, heights, or shapes across multiple layers. This can improve heat transfer uniformity, flow mixing, and efficient fluid distribution. They should explore the effects of multiple-layer arrangements on the pressure drop and overall thermal performance.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furber, S. Microprocessors: The engines of the digital age. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20160893. [Google Scholar] [CrossRef] [PubMed]
- Krazit, T. Intel Unveils Its First 10-Nanometer Ice Lake Processors. The Seattle Times, 1 August 2019. [Google Scholar]
- Hanafi, M.Z.M.; Ismail, F.S.; Rosli, R. Radial plate fins heat sink model design and optimization. In Proceedings of the 2015 10th Asian Control Conference (ASCC), Kota Kinabalu, Malaysia, 31 May–3 June 2015. [Google Scholar] [CrossRef]
- Black, J.R. Electromigration—A brief survey and some recent results. IEEE Trans. Electron Devices 1969, 16, 338–347. [Google Scholar] [CrossRef]
- Deng, D.; Xie, Y.; Huang, Q.; Wan, W. On the flow boiling enhancement in interconnected reentrant microchannels. Int. J. Heat Mass Transf. 2017, 108, 453–467. [Google Scholar] [CrossRef]
- Ghani, I.A.; Sidik, N.A.C.; Kamaruzaman, N. Hydrothermal performance of microchannel heat sink: The effect of channel design. Int. J. Heat Mass Transf. 2017, 107, 21–44. [Google Scholar] [CrossRef]
- Vinoth, R.; Senthil Kumar, D. Channel cross section effect on heat transfer performance of oblique finned microchannel heat sink. Int. Commun. Heat Mass Transf. 2017, 87, 270–276. [Google Scholar] [CrossRef]
- Japar, W.M.A.A.; Sidik, N.A.C.; Saidur, R.; Asako, Y.; Nurul Akmal Yusof, S. A review of passive methods in microchannel heat sink application through advanced geometric structure and nanofluids: Current advancements and challenges. Nanotechnol. Rev. 2020, 9, 1192–1216. [Google Scholar] [CrossRef]
- Khattak, Z.; Ali, H.M. Air cooled heat sink geometries subjected to forced flow: A critical review. Int. J. Heat Mass Transf. 2019, 130, 141–161. [Google Scholar] [CrossRef]
- Adham, A.; Mohd-Ghazali, N.; Ahmad, R. Thermal and hydrodynamic analysis of microchannel heat sinks: A review. Renew. Sustain. Energy Rev. 2013, 21, 614–622. [Google Scholar] [CrossRef]
- Tuckerman, D.B.; Pease, R.F.W. High-performance heat sinking for VLSI. IEEE Electron Device Lett. 1981, 2, 126–129. [Google Scholar] [CrossRef]
- Ahmad, F.; Cheema, T.A.; Khan, A.; Mohib-Ur-Rehman, M.; Yildizhan, H. Hydrothermal Investigation of the Performance of Microchannel Heat Sink with Ribs Employed on Side Walls. J. Non-Equilib. Thermodyn. 2021, 46, 255–272. [Google Scholar] [CrossRef]
- Nemati, H. A General Equation Based on Entropy Generation Minimization to Optimize Plate Fin Heat Sink. Eng. J. 2018, 22, 159–174. [Google Scholar] [CrossRef]
- Koşar, A. Effect of substrate thickness and material on heat transfer in microchannel heat sinks. Int. J. Therm. Sci. 2010, 49, 635–642. [Google Scholar] [CrossRef]
- Woodcraft, A.L. Recommended values for the thermal conductivity of aluminium of different purities in the cryogenic to room temperature range, and a comparison with copper. Cryogenics 2005, 45, 626–636. [Google Scholar] [CrossRef]
- Dogan, M.; Sivrioglu, M. Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel. Int. J. Heat Mass Transf. 2010, 53, 2149–2158. [Google Scholar] [CrossRef]
- Khan, M.N.; Karimi, M.N. Analysis of heat transfer enhancement in microchannel by varying the height of pin fins at upstream and downstream region. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2021, 235, 758–767. [Google Scholar] [CrossRef]
- Yang, D.; Wang, Y.; Ding, G.; Jin, Z.; Zhao, J.; Wang, G. Numerical and experimental analysis of cooling performance of single-phase array microchannel heat sinks with different pin-fin configurations. Appl. Therm. Eng. 2017, 112, 1547–1556. [Google Scholar] [CrossRef]
- Chen, C.-H. Forced convection heat transfer in microchannel heat sinks. Int. J. Heat Mass Transf. 2007, 50, 2182–2189. [Google Scholar] [CrossRef]
- Qu, W.; Mudawar, I. Experimental and numerical study of pressure drop and heat transfer in a single-phase micro-channel heat sink. Int. J. Heat Mass Transf. 2002, 45, 2549–2565. [Google Scholar] [CrossRef]
- Zhai, Y.L.; Xia, G.D.; Liu, X.F.; Li, Y.F. Heat transfer in the microchannels with fan-shaped reentrant cavities and different ribs based on field synergy principle and entropy generation analysis. Int. J. Heat Mass Transf. 2014, 68, 224–233. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.; Sunden, B.; Xie, G. Laminar thermal performance of microchannel heat sinks with constructal vertical Y-shaped bifurcation plates. Appl. Therm. Eng. 2014, 73, 185–195. [Google Scholar] [CrossRef]
- Go, J.S. Design of a microfin array heat sink using flow-induced vibration to enhance the heat transfer in the laminar flow regime. Sens. Actuators Phys. 2003, 105, 201–210. [Google Scholar] [CrossRef]
- Hessami, M.-A.; Berryman, A.; Bandopdhayay, P. Heat Transfer Enhancement in an Electrically Heated Horizontal Pipe Due to Flow Pulsation. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Washington, DC, USA, 15–21 November 2003; Volume 374. [Google Scholar]
- Krishnaveni, T.; Renganathan, T.; Picardo, J.R.; Pushpavanam, S. Numerical study of enhanced mixing in pressure-driven flows in microchannels using a spatially periodic electric field. Phys. Rev. E 2017, 96, 033117. [Google Scholar] [CrossRef] [PubMed]
- Morini, G.L.; Lorenzini, M.; Salvigni, S.; Spiga, M. Thermal performance of silicon micro heat-sinks with electrokinetically-drivenflows. Int. J. Therm. Sci. 2006, 45, 955–961. [Google Scholar] [CrossRef]
- Han, Y.; Lee, Y.J.; Zhang, X. Trapezoidal Microchannel Heat Sink with Pressure-Driven and Electro-Osmotic Flows for Microelectronic Cooling. IEEE Trans. Compon. Packag. Manuf. Technol. 2013, 3, 1851–1858. [Google Scholar] [CrossRef]
- Narrein, K.; Sivasankaran, S.; Ganesan, P. Numerical investigation of two-phase laminar pulsating nanofluid flow in a helical microchannel. Numer. Heat Transf. Part A Appl. 2016, 69, 921–930. [Google Scholar] [CrossRef]
- Nandi, T.K.; Chattopadhyay, H. Numerical investigations of simultaneously developing flow in wavy microchannels under pulsating inlet flow condition. Int. Commun. Heat Mass Transf. 2013, 47, 27–31. [Google Scholar] [CrossRef]
- Wang, G.; Niu, D.; Xie, F.; Wang, Y.; Zhao, X.; Ding, G. Experimental and numerical investigation of a microchannel heat sink (MCHS) with micro-scale ribs and grooves for chip cooling. Appl. Therm. Eng. 2015, 85, 61–70. [Google Scholar] [CrossRef]
- Xia, G.D.; Jia, Y.T.; Li, Y.F.; Ma, D.D.; Cai, B. Numerical simulation and multiobjective optimization of a microchannel heat sink with arc-shaped grooves and ribs. Numer. Heat Transf. Part A Appl. 2016, 70, 1041–1055. [Google Scholar] [CrossRef]
- Ahmad, F.; Cheema, T.A.; Rehman, M.M.U. Flow and heat transfer characteristics of microchannel heat sink with cylindrical ribs and cavities. In Proceedings of the 9th International Mechanical Engineering Conference (IMEC 2019), Karachi, Pakistan, 15–16 March 2019. [Google Scholar]
- Ali, S.; Ahmad, F.; Hassan, M.; Rehman, Z.; Wadood, A.; Ahmad, K.; Park, H. Thermo-fluid characteristics of microchannel heat sink with multi-configuration NACA 2412 hydrofoil ribs. IEEE Access 2021, 9, 128407–128416. [Google Scholar] [CrossRef]
- Khan, A.A.; Kim, S.-M.; Kim, K.-Y. Performance Analysis of a Microchannel Heat Sink with Various Rib Configurations. J. Thermophys. Heat Transf. 2016, 30, 782–790. [Google Scholar] [CrossRef]
- Liu, Y.-H.; Lo, Y.-H.; Li, X.-X.; Huh, M. Heat Transfer and Friction in a Square Channel with Ribs and Grooves. J. Thermophys. Heat Transf. 2016, 30, 144–151. [Google Scholar] [CrossRef]
- Lau, S.C.; Kukreja, R.T.; Mcmillin, R.D. Turbulent heat transfer in a square channel with staggered discrete ribs. J. Thermophys. Heat Transf. 1992, 6, 171–173. [Google Scholar] [CrossRef]
- Zhang, S.; Ahmad, F.; Ali, H.; Ali, S.; Akhtar, K.; Ali, N.; Badran, M. Computational Study of Hydrothermal Performance of Microchannel Heat Sink with Trefoil Shape Ribs. IEEE Access 2022, 10, 74412–74424. [Google Scholar] [CrossRef]
- Wang, G.; Qian, N.; Ding, G. Heat transfer enhancement in microchannel heat sink with bidirectional rib. Int. J. Heat Mass Transf. 2019, 136, 597–609. [Google Scholar] [CrossRef]
- Ali, S.; Ahmad, F.; Akhtar, K.; Habib, N.; Aamir, M.; Giasin, K.; Vafadar, A.; Pimenov, D.Y. Numerical investigation of microchannel heat sink with trefoil shape ribs. Energies 2021, 14, 6764. [Google Scholar] [CrossRef]
- Ghani, I.A.; Kamaruzaman, N.; Sidik, N.A.C. Heat transfer augmentation in a microchannel heat sink with sinusoidal cavities and rectangular ribs. Int. J. Heat Mass Transf. 2017, 108, 1969–1981. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.; Zhou, M.; Li, J.; Qi, J. Optimum thermal design of interrupted microchannel heat sink with rectangular ribs in the transverse microchambers. Appl. Therm. Eng. 2013, 51, 880–889. [Google Scholar] [CrossRef]
- Li, Y.F.; Xia, G.D.; Ma, D.D.; Jia, Y.T.; Wang, J. Characteristics of laminar flow and heat transfer in microchannel heat sink with triangular cavities and rectangular ribs. Int. J. Heat Mass Transf. 2016, 98, 17–28. [Google Scholar] [CrossRef]
- Binuyo, A.S. Numerical Investigation of Two-Phase Laminar Pulsating Nanofluid Flow in AnInterruptedMicrochannel Heat Sink. GSJ 2020, 8, 1407–1418. [Google Scholar]
- Korichi, A.; Oufer, L. Heat transfer enhancement in oscillatory flow in channel with periodically upper and lower walls mounted obstacles. Int. J. Heat Fluid Flow 2007, 28, 1003–1012. [Google Scholar] [CrossRef]
- Datta, A.; Sharma, V.; Sanyal, D.; Das, P. A conjugate heat transfer analysis of performance for rectangular microchannel with trapezoidal cavities and ribs. Int. J. Therm. Sci. 2019, 138, 425–446. [Google Scholar] [CrossRef]
- Ahmad, F.; Cheema, T.A.; Mohib Ur Rehman, M.; Ilyas, M.; Park, C.W. Thermodynamic Analysis of Microchannel Heat Sink with Cylindrical Ribs and Cavities. J. Heat Transf. 2020, 142, 092503. [Google Scholar] [CrossRef]
- Zhu, Q.; Chang, K.; Chen, J.; Zhang, X.; Xia, H.; Zhang, H.; Wang, H.; Li, H.; Jin, Y. Characteristics of heat transfer and fluid flow in microchannel heat sinks with rectangular grooves and different shaped ribs. Alex. Eng. J. 2020, 59, 4593–4609. [Google Scholar] [CrossRef]
- Rehman, M.M.U.; Cheema, T.A.; Ahmad, F.; Khan, M.; Abbas, A. Thermodynamic Assessment of Microchannel Heat Sinks with Novel Sidewall Ribs. J. Thermophys. Heat Transf. 2019, 34, 243–254. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Ahmed, M.I. Optimum thermal design of triangular, trapezoidal and rectangular grooved microchannel heat sinks. Int. Commun. Heat Mass Transf. 2015, 66, 47–57. [Google Scholar] [CrossRef]
- Kumar, P. Numerical investigation of fluid flow and heat transfer in trapezoidal microchannel with groove structure. Int. J. Therm. Sci. 2019, 136, 33–43. [Google Scholar] [CrossRef]
- Xia, G.; Chai, L.; Wang, H.; Zhou, M.; Cui, Z. Optimum thermal design of microchannel heat sink with triangular reentrant cavities. Appl. Therm. Eng. 2011, 31, 1208–1219. [Google Scholar] [CrossRef]
- Herman, C.; Kang, E. Heat transfer enhancement in a grooved channel with curved vanes. Int. J. Heat Mass Transf. 2002, 45, 3741–3757. [Google Scholar] [CrossRef]
- Xu, M.; Lu, H.; Gong, L.; Chai, J.C.; Duan, X. Parametric numerical study of the flow and heat transfer in microchannel with dimples. Int. Commun. Heat Mass Transf. 2016, 76, 348–357. [Google Scholar] [CrossRef]
- Chen, Y.; Chew, Y.T.; Khoo, B.C. Enhancement of heat transfer in turbulent channel flow over dimpled surface. Int. J. Heat Mass Transf. 2012, 55, 8100–8121. [Google Scholar] [CrossRef]
- Moon, H.; O’connell, T.; Glezer, B. Channel height effect on heat transfer and friction in a dimpled passage. In Turbo Expo: Power for Land, Sea, and Air; American Society of Mechanical Engineers: Indianapolis, IN, USA, 1999. [Google Scholar] [CrossRef]
- Gururatana, S. Numerical simulation of micro-channel heat sink with dimpled surfaces. Am. J. Appl. Sci. 2012, 9, 399. [Google Scholar]
- Rehman, M.M.U.; Cheema, T.A.; Ahmad, F.; Abbas, A.; Malik, M.S. Numerical investigation of heat transfer enhancement and fluid flow characteristics in a microchannel heat sink with different wall/design configurations of protrusions/dimples. Heat Mass Transf. 2020, 56, 239–255. [Google Scholar] [CrossRef]
- Li, P.; Luo, Y.; Zhang, D.; Xie, Y. Flow and heat transfer characteristics and optimization study on the water-cooled microchannel heat sinks with dimple and pin-fin. Int. J. Heat Mass Transf. 2018, 119, 152–162. [Google Scholar] [CrossRef]
- Wazir, M.A.; Akhtar, K.; Ghani, U.; Wajib, M.; Shaukat, S.; Ali, H. Thermal enhancement of microchannel heat sink using pin-fin configurations and geometric optimization. Eng. Res. Express 2024, 6, 015526. [Google Scholar] [CrossRef]
- Hong, F.; Cheng, P. Three dimensional numerical analyses and optimization of offsetstrip-fin microchannel heat sinks. Int. Commun. Heat Mass Transf. 2009, 36, 651–656. [Google Scholar] [CrossRef]
- Chu, J.-C.; Teng, J.T.; Greif, R. Heat transfer for water flow in triangular silicon microchannels. J. Therm. Sci. Technol. 2008, 3, 410–420. [Google Scholar] [CrossRef]
- Deng, D.; Wan, W.; Tang, Y.; Shao, H.; Huang, Y. Experimental and numerical study of thermal enhancement in reentrant copper microchannels. Int. J. Heat Mass Transf. 2015, 91, 656–670. [Google Scholar] [CrossRef]
- Wu, H.; Cheng, P. An experimental study of convective heat transfer in silicon microchannels with different surface conditions. Int. J. Heat Mass Transf. 2003, 46, 2547–2556. [Google Scholar] [CrossRef]
- Deng, B.; Qiu, Y.; Kim, C.N. An improved porous medium model for microchannel heat sinks. Appl. Therm. Eng. 2010, 30, 2512–2517. [Google Scholar] [CrossRef]
- Gunnasegaran, P.; Mohammed, H.A.; Shuaib, N.H.; Saidur, R. The effect of geometrical parameters on heat transfer characteristics of microchannels heat sink with different shapes. Int. Commun. Heat Mass Transf. 2010, 37, 1078–1086. [Google Scholar] [CrossRef]
- Ghaedamini, H.; Lee, P.S.; Teo, C.J. Developing forced convection in converging–diverging microchannels. Int. J. Heat Mass Transf. 2013, 65, 491–499. [Google Scholar] [CrossRef]
- Peng, X.F.; Peterson, G.P.; Wang, B.X. Heat transfer characteristics of water flowing through microchannels. Exp. Heat Transf. 1994, 7, 265–283. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Mujumdar, A.S.; Yap, C. Thermal characteristics of tree-shaped microchannel nets for cooling of a rectangular heat sink. Int. J. Therm. Sci. 2006, 45, 1103–1112. [Google Scholar] [CrossRef]
- McHale, J.P.; Garimella, S.V. Heat transfer in trapezoidal microchannels of various aspect ratios. Int. J. Heat Mass Transf. 2010, 53, 365–375. [Google Scholar] [CrossRef]
- Harley, J.C.; Huang, Y.; Bau, H.H.; Zemel, J.N. Gas flow in micro-channels. J. Fluid Mech. 1995, 284, 257–274. [Google Scholar] [CrossRef]
- Tiselj, I.; Hetsroni, G.; Mavko, B.; Mosyak, A.; Pogrebnyak, E.; Segal, Z. Effect of axial conduction on the heat transfer in micro-channels. Int. J. Heat Mass Transf. 2004, 47, 2551–2565. [Google Scholar] [CrossRef]
- Harms, T.M.; Kazmierczak, M.J.; Gerner, F.M. Developing convective heat transfer in deep rectangular microchannels. Int. J. Heat Fluid Flow 1999, 20, 149–157. [Google Scholar] [CrossRef]
- Toh, K.C.; Chen, X.Y.; Chai, J.C. Numerical computation of fluid flow and heat transfer in microchannels. Int. J. Heat Mass Transf. 2002, 45, 5133–5141. [Google Scholar] [CrossRef]
- Gamrat, G.; Favre-Marinet, M.; Asendrych, D. Conduction and entrance effects on laminar liquid flow and heat transfer in rectangular microchannels. Int. J. Heat Mass Transf. 2005, 48, 2943–2954. [Google Scholar] [CrossRef]
- Xu, J.L.; Gan, Y.H.; Zhang, D.C.; Li, X.H. Microscale heat transfer enhancement using thermal boundary layer redeveloping concept. Int. J. Heat Mass Transf. 2005, 48, 1662–1674. [Google Scholar] [CrossRef]
- Peng, X.F.; Peterson, G.P. The effect of thermofluid and geometrical parameters on convection of liquids through rectangular microchannels. Int. J. Heat Mass Transf. 1995, 38, 755–758. [Google Scholar] [CrossRef]
- Betz, A.R.; Attinger, D. Can segmented flow enhance heat transfer in microchannel heat sinks? Int. J. Heat Mass Transf. 2010, 53, 3683–3691. [Google Scholar] [CrossRef]
- Zade, A.Q.; Renksizbulut, M.; Friedman, J. Heat transfer characteristics of developing gaseous slip-flow in rectangular microchannels with variable physical properties. Int. J. Heat Fluid Flow 2011, 32, 117–127. [Google Scholar] [CrossRef]
- Saenen, T.; Baelmans, M. Numerical model of a two-phase microchannel heat sink electronics cooling system. Int. J. Therm. Sci. 2012, 59, 214–223. [Google Scholar] [CrossRef]
- Yang, M.; Li, M.-T.; Hua, Y.-C.; Wang, W.; Cao, B.-Y. Experimental study on single-phase hybrid microchannel cooling using HFE-7100 for liquid-cooled chips. Int. J. Heat Mass Transf. 2020, 160, 120230. [Google Scholar] [CrossRef]
- Yu, Z.-Q.; Li, M.-T.; Cao, B.-Y. A comprehensive review on microchannel heat sinks for electronics cooling. Int. J. Extrem. Manuf. 2024, 6, 2. [Google Scholar] [CrossRef]
- Yang, M.; Li, M.-T.; Yu, X.-G.; Huang, L.; Zheng, H.-Y.; Miao, J.-Y.; Cao, B.-Y. A performance evaluation method based on the Pareto frontier for enhanced microchannel heat sinks. Appl. Therm. Eng. 2022, 212, 118550. [Google Scholar] [CrossRef]
- Sharma, C.S.; Tiwari, M.K.; Michel, B.; Poulikakos, D. Thermofluidics and energetics of a manifold microchannel heat sink for electronics with recovered hot water as working fluid. Int. J. Heat Mass Transf. 2013, 58, 135–151. [Google Scholar] [CrossRef]
- Chen, C.-W.; Lee, J.J.; Kou, H.S. Optimum thermal design of microchannel heat sinks by the simulated annealing method. Int. Commun. Heat Mass Transf. 2008, 35, 980–984. [Google Scholar] [CrossRef]
- Japar, W.M.A.A.; Sidik, N.A.C.; Mat, S. A comprehensive study on heat transfer enhancement in microchannel heat sink with secondary channel. Int. Commun. Heat Mass Transf. 2018, 99, 62–81. [Google Scholar] [CrossRef]
- Chai, L.; Xia, G.; Wang, L.; Zhou, M.; Cui, Z. Heat transfer enhancement in microchannel heat sinks with periodic expansion–constriction cross-sections. Int. J. Heat Mass Transf. 2013, 62, 741–75182. [Google Scholar] [CrossRef]
- Memon, S.A.; Cheema, T.A.; Kim, G.M.; Park, C.W. Hydrothermal investigation of a microchannel heat sink using secondary flows in trapezoidal and parallel orientations. Energies 2020, 13, 5616. [Google Scholar] [CrossRef]
- Yang, M.; Cao, B.-Y. Multi-objective optimization of a hybrid microchannel heat sink combining manifold concept with secondary channels. Appl. Therm. Eng. 2020, 181, 115592. [Google Scholar] [CrossRef]
- Gao, W.; Zhang, J.F.; Qu, Z.G.; Tao, W.Q. Numerical investigations of heat transfer in hybrid microchannel heat sink with multi-jet impinging and trapezoidal fins. Int. J. Therm. Sci. 2021, 164, 106902. [Google Scholar] [CrossRef]
- Raja Kuppusamy, N.; Saidur, R.; Ghazali NN, N.; Mohammed, H.A. Numerical study of thermal enhancement in micro channel heat sink with secondary flow. Int. J. Heat Mass Transf. 2014, 78, 216–223. [Google Scholar] [CrossRef]
- Bahiraei, M.; Jamshidmofid, M.; Goodarzi, M. Efficacy of a hybrid nanofluid in a new microchannel heat sink equipped with both secondary channels and ribs. J. Mol. Liq. 2019, 273, 88–98. [Google Scholar] [CrossRef]
- Li, Z.; Huai, X.; Tao, Y.; Chen, H. Effects of thermal property variations on the liquid flow and heat transfer in microchannel heat sinks. Appl. Therm. Eng. 2007, 27, 2803–2814. [Google Scholar] [CrossRef]
- Wang, S.-L.; Zhu, J.-F.; An, D.; Zhang, B.-X.; Chen, L.-Y.; Yang, Y.-R.; Zheng, S.-F.; Wang, X.-D. Heat transfer enhancement of symmetric and parallel wavy microchannel heat sinks with secondary branch design. Int. J. Therm. Sci. 2022, 171, 107229. [Google Scholar] [CrossRef]
- Tsai, T.-H.; Chein, R. Performance analysis of nanofluid-cooled microchannel heat sinks. Int. J. Heat Fluid Flow 2007, 28, 1013–1026. [Google Scholar] [CrossRef]
- Ma, D.; Tang, Y.X.; Xia, G.D. Experimental investigation of flow boiling performance in sinusoidal wavy microchannels with secondary channels. Appl. Therm. Eng. 2021, 199, 117502. [Google Scholar] [CrossRef]
- Ghani, I.A.; Sidik, N.A.C.; Mamat, R.; Najafi, G.; Ken, T.L.; Asako, Y.; Japar, W.M.A.A. Heat transfer enhancement in microchannel heat sink using hybrid technique of ribs and secondary channels. Int. J. Heat Mass Transf. 2017, 114, 640–655. [Google Scholar] [CrossRef]
- Farzaneh, M.; Salimpour, M.R.; Tavakoli, M.R. Design of bifurcating microchannels with/without loops for cooling of square-shaped electronic components. Appl. Therm. Eng. 2016, 108, 581–595. [Google Scholar] [CrossRef]
- Huang, S.; Zhao, J.; Gong, L.; Duan, X. Thermal performance and structure optimization for slotted microchannel heat sink. Appl. Therm. Eng. 2017, 115, 1266–1276. [Google Scholar] [CrossRef]
- Lee, Y.J.; Lee, P.S.; Chou, S.K. Experimental investigation of oblique finned microchannel heat sink+. In Proceedings of the 2010 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, Las Vegas, NV, USA, 2–5 June 2010; IEEE: Piscataway, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Fan, Y.; Lee, P.S.; Jin, L.; Chua, B.W. Numerical simulations of forced convection in novel cylindrical oblique-finned heat sink. In Proceedings of the 2011 IEEE 13th Electronics Packaging Technology Conference, Singapore, 7–9 December 2011; IEEE: Piscataway, NJ, USA, 2011. [Google Scholar] [CrossRef]
- Razali, S.; Sidik, N.; Yusof, S. Numerical studies of fluid flow and heat transfer in microchannel heat sink with trapezoidal cavities, ribs and secondary channel. J. Phys. Conf. Ser. 2021, 2053, 012022. [Google Scholar] [CrossRef]
- Lyu, Z.; Pourfattah, F.; Arani, A.A.A.; Asadi, A.; Foong, L.K. On the Thermal Performance of a Fractal Microchannel Subjected to Water and Kerosene Carbon Nanotube Nanofluid. Sci. Rep. 2020, 10, 7243. [Google Scholar] [CrossRef]
- Abubakar, S.; Azwadi, C.N.; Ahmad, A. The use of Fe3O4-H2O4 nanofluid for heat transfer enhancement in rectangular microchannel heatsink. J. Adv. Res. Mater. Sci. 2016, 23, 15–24. [Google Scholar]
- Sivakumar, A.; Alagumurthi, N.; Senthilvelan, T. Effect of Serpentine Grooves on Heat Transfer Characteristics of Microchannel Heat Sink with Different Nanofluids. Heat Transf.-Asian Res. 2015, 46, 201–217. [Google Scholar] [CrossRef]
- Snoussi, L.; Ouerfelli, N.; Sharma, K.V.; Vrinceanu, N.; Chamkha, A.J.; Guizani, A. Numerical simulation of nanofluids for improved cooling efficiency in a 3D copper microchannel heat sink (MCHS). Phys. Chem. Liq. 2018, 56, 311–331. [Google Scholar] [CrossRef]
- Sarafraz, M.M.; Nikkhah, V.; Nakhjavani, M.; Arya, A. Fouling formation and thermal performance of aqueous carbon nanotube nanofluid in a heat sink with rectangular parallel microchannel. Appl. Therm. Eng. 2017, 123, 29–39. [Google Scholar] [CrossRef]
- Thansekhar, M.R.; Anbumeenakshi, C. Experimental Investigation of Thermal Performance of Microchannel Heat Sink with Nanofluids Al2O3/Water and SiO2/Water. Exp. Tech. 2017, 41, 399–406. [Google Scholar] [CrossRef]
- Arani, A.A.A.; Akbari, O.A.; Safaei, M.R.; Marzban, A.; Alrashed, A.A.A.A.; Ahmadi, G.R.; Nguyen, T.K. Heat transfer improvement of water/single-wall carbon nanotubes (SWCNT) nanofluid in a novel design of a truncated double-layered microchannel heat sink. Int. J. Heat Mass Transf. 2017, 113, 780–795. [Google Scholar] [CrossRef]
- Arabpour, A.; Karimipour, A.; Toghraie, D. The study of heat transfer and laminar flow of kerosene/multi-walled carbon nanotubes (MWCNTs) nanofluid in the microchannel heat sink with slip boundary condition. J. Therm. Anal. Calorim. 2017, 131, 1553–1566. [Google Scholar] [CrossRef]
- Abdollahi, A.; Sharma, R.N.; Mohammed, H.A.; Vatani, A. Heat transfer and flow analysis of Al2O3-Water nanofluids in interrupted microchannel heat sink with ellipse and diamond ribs in the transverse microchambers. Heat Transf. Eng. 2017, 39, 1461–1469. [Google Scholar] [CrossRef]
- Alfaryjat, A.; Gheorghian, A.T.; Nabbat, A.; Ștefănescu, M.F.; Dobrovicescu, A. The impact of different base nanofluids on the fluid flow and heat transfer characteristics in rhombus microchannels heat sink. UPB Sci. Bull. Ser. D Mech. Eng. 2018, 80, 181–194. [Google Scholar]
- Sarafraz, M.M.; Nikkhah, V.; Nakhjavani, M.; Arya, A. Thermal performance of a heat sink microchannel working with biologically produced silver-water nanofluid: Experimental assessment. Exp. Therm. Fluid Sci. 2018, 91, 509–519. [Google Scholar] [CrossRef]
- Tran, N.; Chang, Y.-J.; Wang, C.-C. Optimization of thermal performance of multi-nozzle trapezoidal microchannel heat sinks by using nanofluids of Al2O3 and TiO2. Int. J. Heat Mass Transf. 2018, 117, 787–798. [Google Scholar] [CrossRef]
- Razali, A.A.; Sadikin, A.; Ibrahim, S.A. Heat transfer of Al2O3 nanofluids in microchannel heat sink. AIP Conf. Proc. 2017, 1831, 020050. [Google Scholar]
- Manay, E.; Sahin, B. Heat Transfer and Pressure Drop of Nanofluids in a Microchannel Heat Sink. Heat Transf. Eng. 2017, 38, 510–522. [Google Scholar] [CrossRef]
- Chabi, A.R.; Zarrinabadi, S.; Peyghambarzadeh, S.M.; Hashemabadi, S.H.; Salimi, M. Local convective heat transfer coefficient and friction factor of CuO/water nanofluid in a microchannel heat sink. Heat Mass Transf. 2016, 53, 661–671. [Google Scholar] [CrossRef]
S. No | Authors | Geometry | Nature of Work | Substrate Material | Coolant Type | Key Findings |
---|---|---|---|---|---|---|
1 | D. B. Tuckerman et al. [11] | Rectangular | Experimental | Silicon | Water | Maximum thermal resistance of 0.1 °C/W for 1 cm2 area Thermal resistance depends on water flow rate |
2 | Guilian Wang et al. [30] | Rectangular with microscale ribs and grooves | Experimental and Numerical | Silicon | Water | Nusselt number is 1.55 times and friction factor is 4.09 greater than smooth channel |
3 | Y. L. Zhai et al. [21] | Rectangular with rectangular, trapezoidal, and circular ribs | Numerical | Water | Maximum Nu value of 15 at Re 600 Thermal enhancement factor of 1.6 Field synergy number of 14 Entropy augmentation number of 0.94 | |
4 | G. D. Xia et al. [31] | Rectangular with arc-shaped ribs and grooves | Numerical | Silicon | Water | Relative rib height shows best performance in terms of thermal resistance |
5 | Faraz Ahmad et al. [32] | Rectangular with cylindrical ribs and cavities | Numerical | Silicon | Water | Maximum Nu value of 20 at Re 1000 Maximum thermal enhancement factor of 1.02 |
6 | Shahzad Ali et al. [33] | Rectangular with hydrofoil ribs | Numerical | Copper | Water | Nu value of 15 at Re 1000 Thermal enhancement factor value of 1.07 |
7 | Aatif Ali Khan et al. [34] | Rectangular heat sink with different rib configurations | Numerical | Silicon | Water | Rectangular ribs show greatest pressure drop of 100 kPa Nu value of 8.5 at Re 500 Thermal enhancement factor of 0.91 |
7 | Yao Hsien et al. [35] | Rectangular with ribs and grooves | Experimental | Copper | Water | Heat transfer coefficient increased by 40% (Nu value of 300) Thermal enhancement factor of 2.8 for discrete ribs and grooves |
9 | Lau et al. [36] | Square with staggered ribs | Experimental | Copper | Water | Discrete ribs show superior performance than ribbed walls |
10 | Shizhong Zhang et al. [37] | Rectangular with trefoil-shaped ribs | Numerical | Copper | Water | Maximum Nu of 30 at Re 1000 Thermal enhancement factor of 1.5 Maximum entropy augmentation number of 0.72 |
11 | Guilian Wang et al. [38] | Rectangular with bidirectional ribs | Experimental and Numerical | Silicon | Water | Thermal enhancement factor greater than 1 Nu 1.42 times higher with bidirectional ribs (Nu value of 13) |
12 | Sadiq Ali et al. [39] | Rectangular with trefoil-shaped ribs | Numerical | Copper | Water | Maximum pressure drop of 60 kPa Maximum Nu value of 29 Thermal enhancement factor of 1.60 at Re 1000 |
13 | M. M. U. Rehman et al. [48] | Rectangular with side wall ribs | Numerical | Copper | Water | Maximum thermal enhancement factor of 1.10 Maximum average heat transfer coefficient value of 19 at Re 1000 Highest pressure drop of 19 kPa at Re 1000 |
14 | Ihsan Ali Ghani et al. [40] | Rectangular with rectangular ribs and sinusoidal cavities | Numerical | Silicon | Water | Performance factor value of 1.83 at Re 800 Average Nu value of 24 at Re 1000 |
15 | Lei Chai et al. [41] | Interrupted with rectangular ribs | Numerical | Silicon | Water | Thermal enhancement factor of 1.3 Interrupted channel without ribs shows high heat transfer |
16 | Y.F. Li et al. [42] | Rectangular with rectangular ribs and triangular cavities | Numerical | Silicon | Water | Thermal enhancement factor of 1.6 at Re 500 Entropy augmentation number of 0.95 Average Nu value of 17 |
17 | Ayodeji S. Binuyo [43] | Interrupted | Numerical | Silicon | Water | Highest Nu value of 14 Average friction factor value of 0.08 |
18 | Abdelkader Korichi et al. [44] | Rectangular with heated obstacles | Numerical | Highest Nu value of 23 Increase in friction factor by factor of 19 | ||
19 | Aparesh Datta et al. [45] | Microchannel with triangular cavities and ribs | Numerical | Silicon | Water | Highest Nu value of 18 Highest friction factor value of 0.80 Performance factor value of 1.45 |
20 | Faraz Ahmad et al. [46] | Rectangular with side wall ribs | Numerical | Copper | Water | Base and side wall ribs show superior performance than all wall |
21 | Q. Zhu et al. [47] | Rectangular with rectangular grooves and different-shaped ribs | Numerical | Silicon | Water | Highest pressure drop value of 119 kPa Average Nu value of 22 Maximum thermal efficiency of 145% |
S. No | Author | Nature of Work | Geometry | Coolant Type | Substrate Material | Key Findings |
---|---|---|---|---|---|---|
1 | Pankaj Kumar [50] | Numerical | trapezoidal MCHS with groove structure | Water | Silicon | Performance factor of 0.62 Friction factor of 0.026 Maximum pressure drop of 140 kPa |
2 | Hamdi E. Ahmed et al. [49] | Numerical | grooved MCHS | Water | Aluminum | Maximum performance evaluation factor of 2 Average Nusselt number ratio of 1.9 |
3 | Guodong Xia et al. [51] | Numerical | MCHS with triangular reentrant cavities | Water | Silicon | Highest thermal enhancement factor of 1.6 Friction factor value of 73 |
4 | Cila Herman et al. [52] | Experimental | grooved MCHS with curved vanes | Air | Copper | Pressure drop increase by 3–5 times more than smooth channel Heat transfer increase by 1.5–3.5 times more than smooth channel |
S. No | Author | Nature of Work | Geometry | Coolant Type | Substrate Material | Key Findings |
---|---|---|---|---|---|---|
1 | Mohib-ur-Rehman et al. [57] | Numerical | MCHS with hemispherical shape protrusions/dimples | Water | Copper | Maximum pressure drop value of 50 kPa Friction factor value of 3.5 Entropy augmentation number of 0.85 |
2 | Minghai Xu et al. [53] | Numerical | MCHS with dimples | Water | Copper | Highest Nusselt number value of 20 Performance improved by increasing number of dimples |
3 | Yu Chen et al. [54] | Numerical | MCHS with turbulent flow over dimpled surface | _ | _ | Highest performance ratio of 2.8 |
4 | Moon et al. [55] | Experimental | Rectangular MCHS with concavities | _ | _ | Normalized Nu value of 2.1 Thermal enhancement factor of 1.75 |
5 | Suabsakul Gururatana [56] | Numerical | Rectangular MCHS with dimpled surfaces | Air | _ | Maximum pressure drop of 8 Pa at Re 350 LOCal Nu value of 17 Performance factor of 1.016 |
S. No | Author | Nature of Work | Geometry | Coolant Type | Substrate Material | Key Findings |
---|---|---|---|---|---|---|
1 | Nawaz Khan et al. [17] | Numerical | Rectangular MCHS with pin fins configuration of varying height | Deionized ultra-filtered water | Copper | Highest pressure drop of 7000 Pa Nu value of 13 Thermal enhancement factor of 1.4 |
2 | Dogan et al. [16] | Experimental | Rectangular MCHS with longitudinal fins | Air | Silicon | Maximum convection heat transfer coefficient value of 27 Highest Nu value of 250 |
3 | F. Hong et al. [60] | Numerical | Rectangular MCHS with offset strip fin | Water | Silicon | Pumping power value of 0.21 W Maximum presssure drop value of 120 kPa |
Ping Li et al. [58] | Numerical | Rectangular MCHS with dimple and pin fin | Water | - | Performance factor of 1.9 Highest Nu ratio value of 2.3 |
S. No | Author | Nature of Work | Geometry | Coolant Type | Substrate Material | Key Findings |
---|---|---|---|---|---|---|
1 | Chu et al. [61] | Experimental | Triangular MCHS | Water | Silicon | Friction factor value of 21 Highest Nu value of 0.7 |
2 | Daxiang Deng et al. [62] | Numerical and Experimental | MCHS with semi-closed omega-shaped configuration. | Deionized water | Oxygen-free pure copper | Pressure drop of 8 kPa Maximum thermal resistance value of 0.41 °C/W |
3 | Ping cheng et al. [63] | Experimental | Trapezoidal MCHS | Water | Silicon | Nu value of 4 at Re 700 Apparent friction factor value of 32 |
4 | Deng, B et al. [64] | Numerical | Rectangular MCHS with various wavy amplitudes | Water | Aluminum | Maximum friction factor value of 0.55 Pressure drop value of 6.2 kPa |
5 | Gunnasegran et al. [65] | Numerical | Zigzag, curvy, and step microchannel heat sinks | Water | Aluminum | Heat transfer coefficient value of 9.64 Maximum pressure drop of 2800 Pa Poiseuille number value of 25 |
6 | H. Ghaedamini et al. [66] | Numerical | Converging–diverging MCHS | Water | Silicon | Highest Nu value of 30 Performance factor of 1.18 |
7 | X. F. Peng et al. [67] | Experimental | Square- shaped MCHS | Water | Silicon | Highest Nu value of 4.61 Heat transfer coefficient value of 30,500 W/m2 |
8 | Xiang-Qi Wang et al. [68] | Numerical | Rectangular (tree-shaped) MCHS | Water | Silicon | Pressure drop value of 320 Pa Studied temperature distribution |
9 | John P. Mchale et al. [69] | Numerical | Trapezoidal and square-shaped MCHS | Water, ethylene glycol, air, and mercury | Silicon and polycarbonate aluminum | LOCal Nu value of 70 Average Nu value of 90 |
S. No | Authors | Geometry | Nature of Work | Substrate Material | Coolant Type | Key Findings |
---|---|---|---|---|---|---|
1 | Wang X.Q. et al. [68] | Pin fins | Numerical | Copper | Air | Pressure drop value of 330 Pa |
2 | Mchale et al. [69] | Pin fins | Numerical | Aluminum | air | Friction factor value of 24 Nu value of 70 |
3 | Harley, J.C. et al. [70] | Plate fin heat sink | Numerical | Aluminum alloy | air | Khudsen number less than 0.38 |
4 | Ping et al. [58] | MCHS with dimple and pin fin | Numerical | air | Performance factor of 1.9 Highest Nu ratio of 2.4 Maximum friction factor ratio of 1.9 | |
5 | Tiseli I. et al. [71] | Plate fin heat sink | Analytical | Copper | Ambient air | Nu value of 5.1 Average temperature of 330 K |
6 | Harms et al. [72] | MCHS variable pin fin configuration | Numerical | Copper | water | Nu value of 110 Pressure drop value of 60 kPa |
7 | Toh, K.C. et al. [73] | Rectangular microchannel | Numerical | Silicon | Water | Thermal resistance value of 0.30 cm2.K/W Friction factor value of 150 |
8 | Gamrat, G. et al. [74] | Rectangular microchannel | Numerical | Silicon | Water | Nu value of 30 Poiseuille number value of 40 |
9 | Xu, J.L. et al. [75] | Rectangular MCHS | Numerical | Copper, aluminum, silicon | Water | Nu value of 16 Friction factor value of 0.02 |
10 | Peng, X. et al. [76] | Rectangular MCHS | Numerical | Silicon | water | Nu value of 10 Heat transfer coefficient value of 7000 W/m2.K |
11 | Betz, A.R. et al. [77] | Rectangular MCHS | Numerical | Silicon | Water | Nu value of 14 Pressure drop of 38 kPa |
12 | Toh, K.C. et al. [73] | Rectangular MCHS | Numerical | Silicon | Air | Friction factor value of 70 Thermal resistance of 0.28 cm2/K/W |
13 | Zade, A.Q. et al. [78] | Rectangular MCHSs | Numerical | Copper | Water–air | Nu value of 33 Friction factor value of 70 |
S. No | Authors | Geometry | Nature of Work | Substrate Material | Coolant Type | Results Obtained |
---|---|---|---|---|---|---|
1 | Yang, D et al. [18] | Rectangular Microchannel | Experimental and Numerical | Silicon | Water | Average Nu value of 30 Average temperature of 120 °C |
2 | Deng, B. et al. [64] | Rectangular Microchannel | Experimental | Silicon | Water | Thermal resistance value of 0.19 K/W |
3 | Saenen. T. et al. [79] | Triangular Microchannel | Experimental and Numerical | Silicon | Water | Average temperature of 128 °C |
4 | Sharma, C.S. et al. [83] | Rectangular Microchannel | Experimental | Silicon | Water | Pressure drop of 1600 Pa Fluid outlet temperature of 65 °C Thermal resistance of 0.285 °C cm2/W |
5 | Chen, C.W. et al. [84] | Rectangular Microchannel | Numerical and Experimental | Bronze Block | Water | Thermal resistance of 0.4 °C/W/cm2 Large flow power can develop low thermal resistance MCHSs |
6 | Japar, W.M.A.A. et al. [85] | Rectangular Microchannel | Experimental | Silicon | Water | Nu value of 10 Pressure drop value of 70 kPa Nu ratio of 2.3 |
7 | Chai, L. et al. [86] | Rectangular Microchannel | Experimental | Silicon | Water | Pressure drop of 60 kPa Friction factor value of 60 Nu value of 15 |
8 | Memon, S.A. et al. [87] | Rectangular Microchannel | Experimental | Aluminum | Water | Pressure drop of 2.8 Pa Minimum average temperature of 311 K |
9 | Yang, M. [88] | Rectangular Microchannel | Numerical | - | - | Pumping power of 2.1 W Thermal resistance of 1.3 K/W |
10 | Gao, W. et al. [89] | Rectangular Microchannel | Numerical | - | - | Pressure drop of 32,000 Pa Pumping power of 0.01 W Nu value of 22 |
11 | Kuppusammy, N. et al. [90] | Array Mini Channel | Experimental and Numerical | Copper | Water | Nu value of 12.5 with pressure drop of 20 kPa |
12 | Bahiraei et al. [91] | Microchannel Heat Sink | Numerical | Silicon | Water | 17% improvement in convective heat transfer coefficient |
13 | Min Yang et al. [82] | Microchannel Heat Sink with Manifold and Oblique Channels | Experimental | Copper | Water | Pressure drop of 4.2 kPa Friction factor value of 17 |
S. No | Author | Geometry | Nature of Work | Substrate Material | Coolant Type | Key Findings |
---|---|---|---|---|---|---|
1 | Japer. W et al. [8] | Rectangular MCHS | Numerical | Copper | Water | Review of literature |
2 | Lei Chai et al. [41] | Rectangular MCHS with triangular cavities | Experimental and numerical | Silicon | Water | Thermal enhancement factor of 1.6 Nu ratio of 1.8 |
3 | Ghani et al. [96] | Rectangular MCHS with ribs and cavities | Numerical | Copper | Water | Friction factor ratio of 4 Nu ratio of 2.2 Performance factor of 1.7 |
4 | Bahirae et al. [91] | MCHS with ribs and secondary channels | Numerical | Copper | Graphene/silver nanoparticles | Secondary channel increases area, thus reducing pressure drop |
5 | Shou Lin Wang et al. [93] | Secondary flow branched design | Numerical | Silicon | Water | Nu value of 18 Performance factor of 2.3 Thermal resistance value of 1.2 |
6 | GD Xia et al. [95] | Sinusoidal secondary flow MCHS | Experimental | Silicon | Water | Heat transfer coefficient value of 45 Pressure drop value of 240 kPa |
7 | SA Razali et al. [101] | MCHS design with trapezoidal cavities, ribs, and secondary channels | Numerical | Copper | Water | Performance factor of 1.8 Maximum Nu ratio of 2.3 Highest friction factor ratio of 5.7 |
8 | Farzaneh et al. [97] | Square-shaped MCHS with one and two initial loops. | Experimental | Silicon | Water | Pressure drop reduced by 25% |
9 | Huang et al. [98] | Rectangular Parallel-Slot MCHS | Numerical | Copper | Water | Nu value of 21 Pressure drop ratio of 2000 Performance factor value of 1.95 |
10 | Poh Seng Lee et al. [99] | Secondary flow MCHS with oblique fins | Experimental | Copper | Water | Average Nu value of 16 Thermal resistance value of 0.097 °C/W Pressure drop value of 3000 Pa |
11 | Yan Fan et al. [100] | Novel cylindrical discrete oblique fin MCHS with secondary flow | Numerical | Copper | Water | Pressure drop of 90 Pa Heat transfer coefficient value of 3000 W/m2.K |
S. No | Author | Geometry | Nature of Work | Substrate Material | Coolant Type | Results Obtained |
---|---|---|---|---|---|---|
1 | S. Abubakar et al. [103] | Straight rectangular MCHS | numerical | silicon | pure water, Fe3O4-H2O4 | Maximum average temperature of 316 K |
2 | A. Sivakumar et al. [104] | Serpentine-shaped MCHS | Experimental and numerical | copper | ethylene glycol-based CuO, water-based CuO, and Al2O3 | Heat transfer coefficient value of 42 kW/m2.K Pressure drop of 0.30 kPa |
3 | L.snoussi et al. [105] | Rectangular cross-section 3D MCHS | numerical | copper | Al2O3/water, Cu/water | Heat transfer coefficient value of 16 kW/m2.K Friction factor value of 0.07 |
4 | Sarafraz et al. [106] | Rectangular MCHS | experimental | copper | multi-walled carbon nanotubes | Heat transfer coefficient value of 7000 W/m2.K Thermal resistance value of 0.11 W/°C |
5 | Thansekhar et al. [107] | Rectangular MCHS | experimental | copper | Al2O3/water, SiO2/water | Heat transfer coefficient value of 180 W/m2.K Thermal resistance value of 1.1 K/W Pressure drop value of 0.035 bar |
6 | A.A.A Arani et al. [108] | Truncated double-layer MCHS | numerical | silicon | water/single-wall carbon nanotubes (SWCNT) | Maximum pressure drop value of 500 kPa Highest friction factor value of 0.21 Average Nu value of 3 |
7 | Arabpour, A. et al. [109] | Zigzag flow channels | experimental | copper | SiO2/DI water | Nu value of 14 Enhancement ratio of 1.2 Maximum pressure drop value of 110 kPa |
8 | R. Vinoth et al. [7] | Oblique finned MCHS with square, semicircular, and trapezoidal cross-sections | experimental | copper | Al2O3/water | Nu value of 19 Pressure drop of 20 kPa Friction factor of 3.8 |
9 | Abollahi et al. [110] | Interrupted MCHS with ellipse and diamond ribs | numerical | copper | Al2O3/water | Highest Nu value of 13 Maximum friction factor value of 0.34 Highest performance factor of 1.3 |
10 | Altayyeb Alfaryajat et al. [111] | 3D rhombus MCHS | numerical | - | Al2O3 mixed with four different base fluids
| Heat transfer coefficient value of 27 kW/m2.K Highest friction factor value of 0.040 |
11 | MM Sarafraz et al. [112] | Straight rectangular MCHS | experimental | copper | biologically produced silver/water | Highest heat transfer coefficient value of 7000 W/m2.K Thermal resistance value of 0.11 W/°C Maximum pressure drop of 55 kPA |
12 | Nagoctan Tran et al. [113] | Multi-nozzle trapezoidal MCHS | numerical | copper | Al2O3 and TiO2 | Thermal resistance value of 0.35 °C/W Highest pressure drop of 55 kPa |
13 | Zongjie Lyu et al. [104] | Single-layer fractal MCHS | numerical | silicon | water and kerosene | Highest Nu value of 45 Pumping power value of 0.15 W Maximum performance factor of 2.3 |
14 | A.A Razali et al. [114] | Rectangular MCHS | experimental and numerical | copper | Al2O3 | Nu value of 6 |
15 | AR Chabi et al. [116] | Rectangular MCHS | experimental | copper | CuO/water | Heat transfer coefficient value of 20,000 W/m2. K Average Nu value of 13 |
16 | Many et al. [115] | Rectangular MCHS | experimental | copper | TiO2/water | Nu value of 12 Thermal resistance value of 0.8 °C/W |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghani, U.; Wazir, M.A.; Akhtar, K.; Wajib, M.; Shaukat, S. Microchannel Heat Sinks—A Comprehensive Review. Electron. Mater. 2024, 5, 249-292. https://doi.org/10.3390/electronicmat5040017
Ghani U, Wazir MA, Akhtar K, Wajib M, Shaukat S. Microchannel Heat Sinks—A Comprehensive Review. Electronic Materials. 2024; 5(4):249-292. https://doi.org/10.3390/electronicmat5040017
Chicago/Turabian StyleGhani, Usman, Muhammad Anas Wazir, Kareem Akhtar, Mohsin Wajib, and Shahmir Shaukat. 2024. "Microchannel Heat Sinks—A Comprehensive Review" Electronic Materials 5, no. 4: 249-292. https://doi.org/10.3390/electronicmat5040017
APA StyleGhani, U., Wazir, M. A., Akhtar, K., Wajib, M., & Shaukat, S. (2024). Microchannel Heat Sinks—A Comprehensive Review. Electronic Materials, 5(4), 249-292. https://doi.org/10.3390/electronicmat5040017