Direct Writing of Metal Nanostructures with Focused Helium Ion Beams
Abstract
:1. Introduction
2. Methods
3. Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, S.; Tian, R.; Wu, W.; Li, W.-D.; Wang, D. Helium-ion-beam nanofabrication: Extreme processes and applications. Int. J. Extrem. Manuf. 2021, 3, 012001. [Google Scholar] [CrossRef]
- Allen, F.I. A review of defect engineering, ion implantation, and nanofabrication using the helium ion microscope. Beilstein J. Nanotechnol. 2021, 12, 633–664. [Google Scholar] [CrossRef] [PubMed]
- Nakaharai, S.; Iijima, T.; Ogawa, S.; Suzuki, S.; Li, S.-L.; Tsukagoshi, K.; Sato, S.; Yokoyama, N. Conduction Tuning of Graphene Based on Defect-Induced Localization. Acs Nano 2013, 7, 5694–5700. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Li, W.-D.; Santori, C.; Acosta, V.M.; Faraon, A.; Ishikawa, T.; Wu, W.; Winston, D.; Williams, R.S.; Beausoleil, R.G. Diamond nitrogen-vacancy centers created by scanning focused helium ion beam and annealing. Appl. Phys. Lett. 2013, 103, 081906. [Google Scholar] [CrossRef]
- Cybart, S.A.; Cho, E.Y.; Wong, T.J.; Wehlin, B.H.; Ma, M.K.; Huynh, C.; Dynes, R.C. Nano Josephson superconducting tunnel junctions in YBa2Cu3O7–δ directly patterned with a focused helium ion beam. Nat. Nanotechnol. 2015, 10, 598–602. [Google Scholar] [CrossRef]
- Kasaei, L.; Manichev, V.; Li, M.; Feldman, L.C.; Gustafsson, T.; Collantes, Y.; Hellstrom, E.; Demir, M.; Acharya, N.; Bhattarai, P.; et al. Normal-state and superconducting properties of Co-doped BaFe2As2 and MgB2 thin films after focused helium ion beam irradiation. Supercond. Sci. Technol. 2019, 32, 095009. [Google Scholar] [CrossRef]
- Kamenov, P. Superconducting Quantum Circuits Based on Disordered Aluminum Films. Ph.D. Thesis, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA, 2023. [Google Scholar] [CrossRef]
- Xiang, B.; Wang, Y.; Li, H.; Cybart, S.A. Fabrication and Application of Nano-SQUID Magnetometer to Scanning Imaging of Two-Dimensional Quantum Materials. EMScience 2024, 2, 0060131. [Google Scholar] [CrossRef]
- Prewett, P.D.; Hagen, C.W.; Lenk, C.; Lenk, S.; Kaestner, M.; Ivanov, T.; Ahmad, A.; Rangelow, I.W.; Shi, X.; Boden, S.A.; et al. Charged particle single nanometre manufacturing. Beilstein J. Nanotechnol. 2018, 9, 2855–2882. [Google Scholar] [CrossRef] [PubMed]
- Toulouse, C.; Fischer, J.; Farokhipoor, S.; Yedra, L.; Carlà, F.; Jarnac, A.; Elkaim, E.; Fertey, P.; Audinot, J.N.; Wirtz, T.; et al. Patterning enhanced tetragonality in BiFeO3 thin films with effective negative pressure by helium implantation. Phys. Rev. Mater. 2021, 5, 024404. [Google Scholar] [CrossRef]
- Fenner, D.; DiFilippo, V.; Bennett, J.; Tetreault, T.; Hirvonen, J.; Feldman, L. Ion beam nanosmoothing of sapphire and silicon carbide surfaces. In Proceedings of the International Symposium on Optical Science and Technology, San Diego, CA, USA, 29 July–3 August 2001; Volume 4468. [Google Scholar]
- Iberi, V.; Vlassiouk, I.; Zhang, X.G.; Matola, B.; Linn, A.; Joy, D.C.; Rondinone, A.J. Maskless Lithography and in situ Visualization of Conductivity of Graphene using Helium Ion Microscopy. Sci. Rep. 2015, 5, 11952. [Google Scholar] [CrossRef]
- Zhang, L.; Heinig, N.F.; Bazargan, S.; Abd-Ellah, M.; Moghimi, N.; Leung, K.T. Direct-write three-dimensional nanofabrication of nanopyramids and nanocones on Si by nanotumefaction using a helium ion microscope. Nanotechnology 2015, 26, 255303. [Google Scholar] [CrossRef] [PubMed]
- van Dorp, W.F.; Hagen, C.W. A critical literature review of focused electron beam induced deposition. J. Appl. Phys. 2008, 104, 081301. [Google Scholar] [CrossRef]
- Boden, S.A.; Moktadir, Z.; Bagnall, D.M.; Mizuta, H.; Rutt, H.N. Focused helium ion beam milling and deposition. Microelectron. Eng. 2011, 88, 2452–2455. [Google Scholar] [CrossRef]
- Höflich, K.; Maćkosz, K.; Jureddy, C.S.; Tsarapkin, A.; Utke, I. Direct electron beam writing of silver using a β-diketonate precursor: First insights. Beilstein J. Nanotechnol. 2024, 15, 1117–1124. [Google Scholar] [CrossRef]
- Kohama, K.; Iijima, T.; Hayashida, M.; Ogawa, S. Tungsten-based pillar deposition by helium ion microscope and beam-induced substrate damage. J. Vac. Sci. Technol. B 2013, 31, 031802. [Google Scholar] [CrossRef]
- Wagner, A.; Levin, J.P.; Mauer, J.L.; Blauner, P.G.; Kirch, S.J.; Longo, P. X-Ray Mask Repair with Focused Ion-Beams. J. Vac. Sci. Technol. B 1990, 8, 1557–1564. [Google Scholar] [CrossRef]
- Sanford, C.A.; Stern, L.; Barriss, L.; Farkas, L.; DiManna, M.; Mello, R.; Maas, D.J.; Alkemade, P.F.A. Beam induced deposition of platinum using a helium ion microscope. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2009, 27, 2660–2667. [Google Scholar] [CrossRef]
- Chen, P.; Veldhoven, E.v.; Sanford, C.A.; Salemink, H.W.M.; Maas, D.J.; Smith, D.A.; Rack, P.D.; Alkemade, P.F.A. Nanopillar growth by focused helium ion-beam-induced deposition. Nanotechnology 2010, 21, 455302. [Google Scholar]
- Scipioni, L.; Sanford, C.; van Veldhoven, E.; Maas, D. A Design-of-Experiments Approach to Characterizing Beam-Induced Deposition in the Helium Ion Microscope. Microsc. Today 2011, 19, 22–26. [Google Scholar] [CrossRef]
- Wu, H.M.; Stern, L.A.; Chen, J.H.; Huth, M.; Schwalb, C.H.; Winhold, M.; Porrati, F.; Gonzalez, C.M.; Timilsina, R.; Rack, P.D. Synthesis of nanowires via helium and neon focused ion beam induced deposition with the gas field ion microscope. Nanotechnology 2013, 24, 175302. [Google Scholar] [CrossRef]
- Hill, R.M. Electrical Conduction in Ultra Thin Metal Films II. Experimental. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 309, 397–417. [Google Scholar]
- Hill, R.M.; Mott, N.F. Electrical conduction in ultra thin metal films I. Theoretical. Proc. R. Soc. Lond. A Math. Phys. Sci. 1969, 309, 377–395. [Google Scholar]
- Parylene Properties. Available online: https://scscoatings.com/parylene-coatings/parylene-properties/ (accessed on 11 November 2024).
- Podzorov, V.; Pudalov, V.M.; Gershenson, M.E. Field-effect transistors on rubrene single crystals with parylene gate insulator. Appl. Phys. Lett. 2003, 82, 1739–1741. [Google Scholar] [CrossRef]
- Podzorov, V.; Gershenson, M.E.; Kloc, C.; Zeis, R.; Bucher, E. High-mobility field-effect transistors based on transition metal dichalcogenides. Appl. Phys. Lett. 2004, 84, 3301–3303. [Google Scholar] [CrossRef]
- Gluschke, J.G.; Richter, F.; Micolich, A.P. A parylene coating system specifically designed for producing ultra-thin films for nanoscale device applications. Rev. Sci. Instrum. 2019, 90, 083901. [Google Scholar] [CrossRef]
- Bruevich, V.; Kasaei, L.; Rangan, S.; Hijazi, H.; Zhang, Z.; Emge, T.; Andrei, E.Y.; Bartynski, R.A.; Feldman, L.C.; Podzorov, V. Intrinsic (Trap-Free) Transistors Based on Epitaxial Single-Crystal Perovskites. Adv. Mater. 2022, 34, 2205055. [Google Scholar] [CrossRef]
- Podzorov, V. Technical Notes. Available online: http://www.physics.rutgers.edu/~podzorov/technicalnotes.php (accessed on 11 November 2024).
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM—The stopping and range of ions in matter. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- White, C.W.; Farlow, G.; Narayan, J.; Clark, G.J.; Baglin, J.E.E. Ion beam mixing of metal films on SiO2. Mater. Lett. 1984, 2, 367–372. [Google Scholar] [CrossRef]
- Studzinskii, V.; Fedorenko, E.; Klevtsov, A.; Karaseov, P. Tunable formation of gold nanoparticles on polymer by keV ion beam irradiation. Radiat. Eff. Defect. Solids 2024, 179, 25–32. [Google Scholar] [CrossRef]
- Kosińska, A.; Jagielski, J.; Bieliński, D.M.; Urbanek, O.; Wilczopolska, M.; Frelek-Kozak, M.; Zaborowska, A.; Wyszkowska, E.; Jóźwik, I. Structural and chemical changes in He+ bombarded polymers and related performance properties. J. Appl. Phys. 2022, 132, 074701. [Google Scholar] [CrossRef]
- Bidlack, F.B.; Huynh, C.; Marshman, J.; Goetze, B. Helium ion microscopy of enamel crystallites and extracellular tooth enamel matrix. Front. Physiol. 2014, 5, 395. [Google Scholar] [CrossRef] [PubMed]
- Northby, J.A.; Jiang, T.; Takaoka, G.H.; Yamada, I.; Brown, W.L.; Sosnowski, M. A method and apparatus for surface modification by gas-cluster ion impact. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 1993, 74, 336–340. [Google Scholar] [CrossRef]
- Voorhees, P.W. The theory of Ostwald ripening. J. Stat. Phys. 1985, 38, 231–252. [Google Scholar] [CrossRef]
(Ω/sq.) | (Ω·cm) | d (nm) | Dose (cm−2) | |
---|---|---|---|---|
As-evaporated (unpatterned) ultrathin seed gold film on parylene-N | 4 × 1013 | 1.3 × 107 | 3.3 | 0 |
The same film after the HIM patterning | 7 × 106 | 2.3 | 3.3 | 2 × 1016 |
As-grown (unpatterned) parylene-N alone (no gold) | >4 × 1015 | 1000 | 0 | |
The same (gold-free) parylene-N after the HIM patterning | 2 × 1013 | 1000 | 2 × 1016 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bruevich, V.; Kasaei, L.; Feldman, L.C.; Podzorov, V. Direct Writing of Metal Nanostructures with Focused Helium Ion Beams. Electron. Mater. 2024, 5, 293-302. https://doi.org/10.3390/electronicmat5040018
Bruevich V, Kasaei L, Feldman LC, Podzorov V. Direct Writing of Metal Nanostructures with Focused Helium Ion Beams. Electronic Materials. 2024; 5(4):293-302. https://doi.org/10.3390/electronicmat5040018
Chicago/Turabian StyleBruevich, Vladimir, Leila Kasaei, Leonard C. Feldman, and Vitaly Podzorov. 2024. "Direct Writing of Metal Nanostructures with Focused Helium Ion Beams" Electronic Materials 5, no. 4: 293-302. https://doi.org/10.3390/electronicmat5040018
APA StyleBruevich, V., Kasaei, L., Feldman, L. C., & Podzorov, V. (2024). Direct Writing of Metal Nanostructures with Focused Helium Ion Beams. Electronic Materials, 5(4), 293-302. https://doi.org/10.3390/electronicmat5040018