Power Supply Technologies for Drones and Machine Vision Applications: A Comparative Analysis and Future Trends
Abstract
:1. Introduction
2. UAV Classification
3. AI, DL and Computer Vision in UAV Sensing
3.1. Artificial Intelligence
3.2. Deep Learning and Computer Vision
- VGG-16 is a highly accurate object identification and classification system, identifying 1000 photos from 1000 different categories with 92.7% accuracy. It is a popular picture classification technique that may be simply applied to transfer learning [27].
- In contrast, AlexNet is proficient in identifying objects that are not centered, as demonstrated by the fact that most of its top 5 classifications are appropriate for each frame. In 2012, AlexNet emerged as the winner of the ImageNet contest, boasting a top 5 error rate of only 15.33%, which was significantly lower than the 26.2% achieved by the runner-up. Additionally, AlexNet is acknowledged for pioneering deep learning in fields like medical image analysis and natural language processing [28].
3.3. Deep Reinforced Learning
4. UAV Power Sources
4.1. Batteries
4.2. Fuel Combustion Engines
4.3. Solar Power
4.4. Hydrogen Fuel Cells
4.5. Hybrid Energy Sources
4.6. Methanol Fuel Cells
4.7. Hydrogen Fuel Cell and Super Capacitor Combination
4.8. Supercapacitors
4.9. Laser Charging Technology
5. Energy Management System
6. UAV Applications
7. Current Challenges—Future Trends
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chaurasia, R.; Mohindru, V. Unmanned Aerial Vehicle (UAV): A Comprehensive Survey. In Unmanned Aerial Vehicles for Internet of Things (IoT) Concepts, Techniques, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 1–27. [Google Scholar] [CrossRef]
- Daly, D. A Not-So-Short History of Unmanned Aerial Vehicles (UAV), 2020. CONSORTIQ. Available online: https://consortiq.com/uas-resources/short-history-unmanned-aerial-vehicles-uavs (accessed on 23 February 2023).
- Lee, C.; Kim, S.; Chu, B. A Survey: Flight Mechanism and Mechanical Structure of the UAV. Int. J. Precis. Eng. Manuf. 2021, 22, 719–743. [Google Scholar] [CrossRef]
- Li, C.; Zheng, D.; Liu, L.; Zheng, X. A UAV-Based Machine Vision Algorithm for Industrial Gauge Detecting and Display Reading. In Proceedings of the 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS), Singapore, 17–19 July 2020; pp. 109–115. [Google Scholar]
- Horgan, J.; Toal, D. Review of Machine Vision Applications in Unmanned Underwater Vehicles. In Proceedings of the 2006 9th International Conference on Control, Automation, Robotics and Vision, Singapore, 5–8 December 2006; pp. 1–6. [Google Scholar]
- Al-Kaff, A.; Martín, D.; García, F.; de la Escalera, A.; María Armingol, J. Survey of Computer Vision Algorithms and Applications for Unmanned Aerial Vehicles. Expert Syst. Appl. 2018, 92, 447–463. [Google Scholar] [CrossRef]
- Nawrat, A.; Kuś, Z. Vision Based Systems for UAV Applications; Springer: Berlin/Heidelberg, Germany, 2013; Volume 481. [Google Scholar]
- Sako, H. Special Section on Machine Vision and Its Applications. IEICE-Trans. Inf. Syst. 2008, 91, 1847. [Google Scholar] [CrossRef] [Green Version]
- Mendes, O.L.C.; Borille, G.M.R. Computer Vision Systems in Unmanned Aerial Vehicle: A Review. J. Mechatron. Eng. 2019, 2, 11–22. [Google Scholar] [CrossRef] [Green Version]
- Kontitsis, M.; Valavanis, K.P.; Tsourveloudis, N. A UAV Vision System for Airborne Surveillance. In Proceedings of the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004, New Orleans, LA, USA, 26 April–1 May 2004; Volume 1, pp. 77–83. [Google Scholar]
- Lindner, L.; Sergiyenko, O.; Rivas-López, M.; Valdez-Salas, B.; Rodríguez-Quiñonez, J.C.; Hernández-Balbuena, D.; Flores-Fuentes, W.; Tyrsa, V.; Barrera, M.; Muerrieta-Rico, F.N. Machine Vision System for UAV Navigation. In Proceedings of the 2016 International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC), Toulouse, France, 2–4 November 2016; pp. 1–6. [Google Scholar]
- Natraj, A.; Ly, D.S.; Eynard, D.; Demonceaux, C.; Vasseur, P. Omnidirectional Vision for UAV: Applications to Attitude, Motion and Altitude Estimation for Day and Night Conditions. J. Intell. Robot. Syst. 2013, 69, 459–473. [Google Scholar] [CrossRef]
- Coombes, M.; Eaton, W.; Chen, W.H. Machine Vision for UAS Ground Operations: Using Semantic Segmentation with a Bayesian Network Classifier. J. Intell. Robot. Syst. 2017, 88, 527–546. [Google Scholar] [CrossRef] [Green Version]
- Hassanalian, M.; Abdelkefi, A. Classifications, applications, and design challenges of drones: A review. Prog. Aerosp. Sci. 2017, 91, 99–131. [Google Scholar] [CrossRef]
- Pekias, A.; Maraslidis, G.S.; Tsipouras, M.G.; Koumboulis, F.N.; Fragulis, G.F. An overview of power supply technologies for Unmanned Aerial Vehicles (UAVs) and machine vision applications. In Proceedings of the 2022 7th South-East Europe Design Automation, Computer Engineering, Computer Networks and Social Media Conference (SEEDA-CECNSM), Ioannina, Greece, 23–25 September 2022; pp. 1–8. [Google Scholar] [CrossRef]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Gupta, N.; Guizani, M. A comprehensive review of unmanned aerial vehicle attacks and neutralization techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef]
- Vergouw, B.; Nagel, H.; Bondt, G.; Custers, B. Drone technology: Types, payloads, applications, frequency spectrum issues and future developments. In The Future of Drone Use: Opportunities and Threats from Ethical and Legal Perspectives; T.M.C. Asser Press: The Hague, The Netherlands, 2016; pp. 21–45. [Google Scholar] [CrossRef]
- Junk, S.; Klerch, B. Innovative method for Design Education for Additive Manufacturing using the example of the development of an ornithopter. In Proceedings of the INTED2019 Proceedings, IATED—13th International Technology, Education and Development Conference, Valencia, Spain, 11–13 March 2019; pp. 1321–1325. [Google Scholar] [CrossRef]
- Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and future prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [Google Scholar] [CrossRef]
- Bithas, P.S.; Michailidis, E.T.; Nomikos, N.; Vouyioukas, D.; Kanatas, A.G. A survey on machine-learning techniques for UAV-based communications. Sensors 2019, 19, 5170. [Google Scholar] [CrossRef] [Green Version]
- Choi, R.Y.; Coyner, A.S.; Kalpathy-Cramer, J.; Chiang, M.F.; Campbell, J.P. Introduction to machine learning, neural networks, and deep learning. Transl. Vis. Sci. Technol. 2020, 9, 14. [Google Scholar] [CrossRef]
- Corke, P.I.; Khatib, O. Robotics, Vision and Control: Fundamental Algorithms in MATLAB; Springer: Berlin/Heidelberg, Germany, 2011; Volume 73. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; He, J.; Shu, Y.; Zheng, H. Advances in Convolutional Neural Networks. In Advances and Applications in Deep Learning; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Osco, L.P.; Junior, J.M.; Ramos, A.P.M.; de Castro Jorge, L.A.; Fatholahi, S.N.; de Andrade Silva, J.; Matsubara, E.T.; Pistori, H.; Gonçalves, W.N.; Li, J. A review on deep learning in UAV remote sensing. Int. J. Appl. Earth Obs. Geoinf. 2021, 102, 102456. [Google Scholar] [CrossRef]
- Nguyen, A.; Pham, K.; Ngo, D.; Ngo, T.; Pham, L. An Analysis of State-of-the-art Activation Functions For Supervised Deep Neural Network. In Proceedings of the 2021 International Conference on System Science and Engineering (ICSSE), Ho Chi Minh City, Vietnam, 26–28 August 2021; pp. 215–220. [Google Scholar] [CrossRef]
- Pal, R.; Saraswat, M. Enhanced Bag of Features Using AlexNet and Improved Biogeography-Based Optimization for Histopathological Image Analysis. In Proceedings of the 2018 Eleventh International Conference on Contemporary Computing (IC3), Noida, India, 2–4 August 2018; pp. 1–6. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Adv. Neural Inf. Process. Syst. 2012, 25, 1097. [Google Scholar] [CrossRef] [Green Version]
- Enzweiler, M.; Gavrila, D. Monocular pedestrian detection: Survey and experiments. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 2179–2195. [Google Scholar] [CrossRef] [Green Version]
- Dollar, P.; Wojek, C.; Schiele, B.; Perona, P. Pedestrian Detection: An Evaluation of the State of the Art. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 743–761. [Google Scholar] [CrossRef] [PubMed]
- Mundhenk, T.N.; Konjevod, G.; Sakla, W.A.; Boakye, K. A Large Contextual Dataset for Classification, Detection and Counting of Cars with Deep Learning. arXiv 2016, arXiv:1609.04453. [Google Scholar]
- Wen, L.; Du, D.; Cai, Z.; Lei, Z.; Chang, M.C.; Qi, H.; Lim, J.; Yang, M.H.; Lyu, S. UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking. Comput. Vis. Image Underst. 2020, 193, 102907. [Google Scholar] [CrossRef] [Green Version]
- Everingham, M.; Van Gool, L.; Williams, C.K.I.; Winn, J.; Zisserman, A. The Pascal Visual Object Classes (VOC) Challenge. Int. J. Comput. Vis. 2010, 88, 303–338. [Google Scholar] [CrossRef] [Green Version]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Li, F.-F. ImageNet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 248–255. [Google Scholar] [CrossRef] [Green Version]
- Zhu, P.; Wen, L.; Bian, X.; Ling, H.; Hu, Q. Vision Meets Drones: A Challenge. arXiv 2018, arXiv:1804.07437. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.H. Online Object Tracking: A Benchmark. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar] [CrossRef] [Green Version]
- Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Comput. Electron. Agric. 2020, 176, 105626. [Google Scholar] [CrossRef]
- Wang, H.; Fapojuwo, A.O.; Davies, R.J. A Wireless Sensor Network for Feedlot Animal Health Monitoring. IEEE Sens. J. 2016, 16, 6433–6446. [Google Scholar] [CrossRef]
- Muñoz, G.; Barrado, C.; Çetin, E.; Salami, E. Deep Reinforcement Learning for Drone Delivery. Drones 2019, 3, 72. [Google Scholar] [CrossRef] [Green Version]
- Azar, A.T.; Koubaa, A.; Ali Mohamed, N.; Ibrahim, H.A.; Ibrahim, Z.F.; Kazim, M.; Ammar, A.; Benjdira, B.; Khamis, A.M.; Hameed, I.A.; et al. Drone Deep Reinforcement Learning: A Review. Electronics 2021, 10, 999. [Google Scholar] [CrossRef]
- Budde-Meiwes, H.; Drillkens, J.; Lunz, B.; Muennix, J.; Rothgang, S.; Kowal, J.; Sauer, D.U. A review of current automotive battery technology and future prospects. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2013, 227, 761–776. [Google Scholar] [CrossRef]
- Üçgün, H.; Yüzgeç, U.; Kesler, M.; Cicekdemir, C. The Comparison of Energy Sources Used in Unmanned Air Vehicles. People 2019, 5, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Khofiyah, N.A.; Sutopo, W.; Nugroho, B.D.A. Technical feasibility battery lithium to support unmanned aerial vehicle (UAV): A technical review. In Proceedings of the International Conference on Industrial Engineering and Operations Management, Toronto, ON, Canada, 23–25 October 2019; Volume 2019, pp. 3591–3601. [Google Scholar]
- Tlili, F.; Fourati, L.C.; Ayed, S.; Ouni, B. Investigation on vulnerabilities, threats and attacks prohibiting UAVs charging and depleting UAVs batteries: Assessments & countermeasures. Ad Hoc Netw. 2022, 129, 102805. [Google Scholar] [CrossRef]
- Townsend, A.; Jiya, I.N.; Martinson, C.; Bessarabov, D.; Gouws, R. A comprehensive review of energy sources for unmanned aerial vehicles, their shortfalls and opportunities for improvements. Heliyon 2020, 6, e05285. [Google Scholar] [CrossRef]
- Aghaei, M.; Bellezza Quater, P.; Grimaccia, F.; Leva, S.; Mussetta, M. Unmanned aerial vehicles in photovoltaic systems monitoring applications. In Proceedings of the European Photovoltaic Solar Energy 29th Conference and Exhibition, Amsterdam, The Netherlands, 22–26 September 2014; pp. 2734–2739. [Google Scholar] [CrossRef]
- Fuel Cell & Hydrogen Energy Association (F.C.H.E.) Fuel Cell Basics. 2022. Available online: https://www.fchea.org/ (accessed on 15 May 2023).
- Jiao, K.; Xuan, J.; Du, Q.; Bao, Z.; Xie, B.; Wang, B.; Zhao, Y.; Fan, L.; Wang, H.; Hou, Z.; et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369. [Google Scholar] [CrossRef]
- Zhang, B.; Song, Z.; Zhao, F.; Liu, C. Overview of Propulsion Systems for Unmanned Aerial Vehicles. Energies 2022, 15, 455. [Google Scholar] [CrossRef]
- Boukoberine, M.N.; Zhou, Z.; Benbouzid, M. A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects. Appl. Energy 2019, 255, 113823. [Google Scholar] [CrossRef]
- Pan, Z.; An, L.; Wen, C. Recent advances in fuel cells based propulsion systems for unmanned aerial vehicles. Appl. Energy 2019, 240, 473–485. [Google Scholar] [CrossRef]
- Sharma, P.; Kumar, V. Current technology of supercapacitors: A review. J. Electron. Mater. 2020, 49, 3520–3532. [Google Scholar] [CrossRef]
- Ci, S.; Lin, N.; Wu, D. Reconfigurable battery techniques and systems: A survey. IEEE Access 2016, 4, 1175–1189. [Google Scholar] [CrossRef]
- Saeed, A.S.; Younes, A.B.; Cai, C.; Cai, G. A survey of hybrid unmanned aerial vehicles. Prog. Aerosp. Sci. 2018, 98, 91–105. [Google Scholar] [CrossRef]
- Sai, P.G.; Rani, C.S.; Nelakuditi, U.R. Implementation of Power Optimization Technique for UAVs. Mater. Today Proc. 2018, 5, 132–137. [Google Scholar] [CrossRef]
- Şahin, M.E.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Lu, M.; Bagheri, M.; James, A.P.; Phung, T. Wireless charging techniques for UAVs: A review, reconceptualization, and extension. IEEE Access 2018, 6, 29865–29884. [Google Scholar] [CrossRef]
- Achtelik, M.C.; Stumpf, J.; Gurdan, D.; Doth, K.M. Design of a flexible high performance quadcopter platform breaking the MAV endurance record with laser power beaming. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 5166–5172. [Google Scholar] [CrossRef]
- Chen, Q.; Zhang, D.; Zhu, D.; Shi, Q.; Gu, J.; Ai, Y. Design and experiment for realization of laser wireless power transmission for small unmanned aerial vehicles. In AOPC 2015: Advances in Laser Technology and Applications; SPIE: Bellingham, WA, USA, 2015; Volume 9671, pp. 133–139. [Google Scholar] [CrossRef]
- Lei, T.; Yang, Z.; Lin, Z.; Zhang, X. State of art on energy management strategy for hybrid-powered unmanned aerial vehicle. Chin. J. Aeronaut. 2019, 32, 1488–1503. [Google Scholar] [CrossRef]
- Mukhamediev, R.I.; Symagulov, A.; Kuchin, Y.; Zaitseva, E.; Bekbotayeva, A.; Yakunin, K.; Assanov, I.; Levashenko, V.; Popova, Y.; Akzhalova, A.; et al. Review of Some Applications of Unmanned Aerial Vehicles Technology in the Resource-Rich Country. Appl. Sci. 2021, 11, 10171. [Google Scholar] [CrossRef]
- Tsouros, D.C.; Bibi, S.; Sarigiannidis, P.G. A review on UAV-based applications for precision agriculture. Information 2019, 10, 349. [Google Scholar] [CrossRef] [Green Version]
- Radoglou-Grammatikis, P.; Sarigiannidis, P.; Lagkas, T.; Moscholios, I. A compilation of UAV applications for precision agriculture. Comput. Netw. 2020, 172, 107148. [Google Scholar] [CrossRef]
- Fevgas, G.; Lagkas, T.; Argyriou, V.; Sarigiannidis, P. Coverage path planning methods focusing on energy efficient and cooperative strategies for unmanned aerial vehicles. Sensors 2022, 22, 1235. [Google Scholar] [CrossRef]
- Kiropoulos, K.; Tsouros, D.C.; Dimaraki, F.; Triantafyllou, A.; Bibi, S.; Sarigiannidis, P.; Angelidis, P. Monitoring Saffron Crops with UAVs. Telecom 2022, 3, 301–321. [Google Scholar] [CrossRef]
- Campion, M.; Ranganathan, P.; Faruque, S. A Review and Future Directions of UAV Swarm Communication Architectures. In Proceedings of the 2018 IEEE International Conference on Electro/Information Technology (EIT), Rochester, MI, USA, 3–5 May 2018; pp. 903–908. [Google Scholar] [CrossRef]
- Tahir, A.; Böling, J.; Haghbayan, M.H.; Toivonen, H.T.; Plosila, J. Swarms of unmanned aerial vehicles—A survey. J. Ind. Inf. Integr. 2019, 16, 100106. [Google Scholar] [CrossRef]
- Swain, D.L.; Wing, O.E.J.; Bates, P.D.; Done, J.M.; Johnson, K.A.; Cameron, D.R. Increased Flood Exposure Due to Climate Change and Population Growth in the United States. Earth’s Future 2020, 8, e2020EF001778. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1029/2020EF001778 (accessed on 23 February 2023). [CrossRef]
- Khalil, H.; Rahman, S.U.; Ullah, I.; Khan, I.; Alghadhban, A.J.; Al-Adhaileh, M.H.; Ali, G.; ElAffendi, M. A UAV-Swarm-Communication Model Using a Machine-Learning Approach for Search-and-Rescue Applications. Drones 2022, 6, 372. [Google Scholar] [CrossRef]
- Alpha Unmanned Systems. 2021. Available online: https://alphaunmannedsystems.com/product/uav-helicopter-alpha-800/ (accessed on 27 March 2023).
- Horizon Launches Hydrogen Fuel Cell-Powered Drone. 2015. Available online: https://www.aerospace-technology.com/news/newshorizon-launches-hydrogen-fuel-cell-powered-drone-4570469/ (accessed on 27 March 2023).
- The Faraday Institution, Lithium-Sulfur Batteries: Advantages. 2022. Available online: https://faraday.ac.uk/wp-content/uploads/2020/07/Faraday_Insights_8_FINAL.pdf (accessed on 19 May 2022).
- Manthey, E. LG Chem Proves Li-Sulfur Battery Stable in High Flight. 2022. Available online: https://www.electrive.com/2020/09/lg-chem-proves-li-sulfur-battery-stable-in-high-flight/ (accessed on 19 May 2022).
- Randall, E. Battery Research: High Energy Cells Also Suit Aircraft. 2022. Available online: https://www.electrive.com/2020/08/14/battery-researcher-notes-high-energy-cells-could-find-use-in-aircraft (accessed on 19 May 2022).
- Zhou, Y.; Rao, B.; Wang, W. Uav swarm intelligence: Recent advances and future trends. IEEE Access 2020, 8, 183856–183878. [Google Scholar] [CrossRef]
Battery Powered UAVs |
|
Fuel Powered UAVs |
|
Solar-Powered UAVs |
|
Hybrid source UAVs |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pekias, A.; Maraslidis, G.S.; Tsipouras, M.G.; Koumboulis, F.N.; Fragulis, G.F. Power Supply Technologies for Drones and Machine Vision Applications: A Comparative Analysis and Future Trends. Telecom 2023, 4, 459-476. https://doi.org/10.3390/telecom4030024
Pekias A, Maraslidis GS, Tsipouras MG, Koumboulis FN, Fragulis GF. Power Supply Technologies for Drones and Machine Vision Applications: A Comparative Analysis and Future Trends. Telecom. 2023; 4(3):459-476. https://doi.org/10.3390/telecom4030024
Chicago/Turabian StylePekias, Antonios, George S. Maraslidis, Markos G. Tsipouras, Fotis N. Koumboulis, and George F. Fragulis. 2023. "Power Supply Technologies for Drones and Machine Vision Applications: A Comparative Analysis and Future Trends" Telecom 4, no. 3: 459-476. https://doi.org/10.3390/telecom4030024
APA StylePekias, A., Maraslidis, G. S., Tsipouras, M. G., Koumboulis, F. N., & Fragulis, G. F. (2023). Power Supply Technologies for Drones and Machine Vision Applications: A Comparative Analysis and Future Trends. Telecom, 4(3), 459-476. https://doi.org/10.3390/telecom4030024